
Bit-vector Algorithms for Binary Constraint
Satisfaction and Subgraph Isomorphism

JULIAN R. ULLMANN

King’s College London, UK

A copy-edited and re-paginated version of this article is published in the ACM

Journal of Experimental Algorithmics, Vol 15, No 1, Article 1.6 (January 2011),
64 pages.

A solution to a binary constraint satisfaction problem is a set of discrete values, one in each of a

given set of domains, subject to constraints that allow only prescribed pairs of values in specified
pairs of domains. Solutions are sought by backtrack search interleaved with a process that removes

from domains those values that are currently inconsistent with provisional choices already made in

the course of search. For each value in a given domain, a bit-vector shows which values in another
domain are or are not permitted in a solution. Bit-vector representation of constraints allows

bit-parallel, therefore fast, operations for editing domains during search. This article revises and

updates bit-vector algorithms published in the 1970’s, and introduces focus search, which is a new
bit-vector algorithm relying more on search and less on domain-editing than previous algorithms.

Focus search is competitive within a limited family of constraint satisfaction problems.

Determination of subgraph isomorphism is a specialized binary constraint satisfaction problem
for which bit-vector algorithms have been widely used since the 1980’s, particularly for matching

molecular structures. This article very substantially updates the author’s 1976 subgraph isomor-
phism algorithm, and reports experimental results with random and real-life data.

Categories and Subject Descriptors: G.2.1 [Discrete Mathematics]: Combinatorics—Combina-

torial algorithms; G.2.1 [Discrete Mathematics]: Graph Theory—Graph algorithms

General Terms: Algorithms, Experimentation, Performance

Additional Key Words and Phrases: alldifferent constraint, backtrack, binary constraints, bit-

vector, constraint satisfaction, domain reduction, constraint propagation, focus search, forward
checking, graph indexing, molecule matching, prematching, signature file, subgraph isomorphism

1. INTRODUCTION

Determination of subgraph isomorphism, that is, finding whether a given graph is a
subgraph of a further given graph, is an example of a binary constraint satisfaction
problem [Mackworth 1977], in which we seek one or more combinations of discrete
values of a given set of V = {V1, . . . , Vi, . . . , Vn} of n variables so as to satisfy:

Unary constraints. Values of a variable Vi must belong to a given finite domain,
Di, of discrete values.

Binary constraints. Values of variables Vi are constrained to satisfy a given set C
of binary predicates Pij , such that if Vi takes on the value u,
then Vj can take on the value v if and only if Pij(u, v).

A solution, z = (z1, . . . , zi, . . . , zn), is an n-tuple such that

Author’s address: Department of Informatics, King’s College London, Strand, London WC2R 2LS,

UK; email: jrullmann@acm.org.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial

advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to

post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2011 ACM 0000-0000/2011/0000-0001 $5.00

ACM Journal Name, Vol. 15, No. 1, January 2011, Pages 1–0??.

2 · Julian Ullmann

—zi ∈ Di for all 1 ≤ i ≤ n, and

—If there is a constraint between variables Vi and Vj then Pij(zi, zj).

We seek solutions by using enhanced backtrack search [Golomb and Baumert
1965], which instantiates successive variables. Instantiate means assign a trial
value. After instantiating some variables, the search process checks whether con-
straints that should now be satisfied are actually satisfied. If they are satisfied,
then a further variable is instantiated; otherwise the most recently assigned value
is changed. When all values have been tried, the search backtracks to re-instantiate
a previously-instantiated variable, and so on.

After a set, W , of variables have been instantiated, let ZW be the set of solutions
such that in each solution in ZW , each variable in W has its instantiated value.
If there is no solution in ZW that includes a value v of a variable Vi then the set
ZW of solutions is unchanged if v is removed from domain Di. Domain reduction
means removal of values that cannot be included in a solution. Domain reduction is
intended to reduce the number of combinations explored during backtrack search.

Although this constraint satisfaction problem is NP-Complete [Cook 1971], algo-
rithms that interleave domain reduction with backtrack search have a substantial
community of practical users, for example [Boutselakis et al. 2003; Artymiuk et al.
2005; Klukas et al. 2005; Durand et al. 2006]. Practical effectiveness inevitably de-
pends upon implementational detail, which in turn depends upon the representation
of constraints. To avoid re-evaluation of predicates, all evaluation can be done just
once, prior to commencement of backtrack search, which now works with a stored
representation of constraints. For example, we can store a tabular representation of
Pij , which is the set of all ordered pairs (u, v) of values such that Pij(u, v) is true
[Lecoutre 2009]. A different tabular representation of Pij is the set of all ordered
pairs (u, v) of values such that Pij(u, v) is false.

This article is primarily concerned with representation of a predicate Pij by a
one-dimensional array M i

j of sets such that M i
j [u] = {v|Pij(u, v)}. Thus Pij(u, v) ≡

v ∈M i
j [u]. As is very well known, a set can be represented by a bit-vector that has

one bit corresponding to each possible member. A bit is ‘1’ iff the corresponding
member is present in the set. We represent sets by bit-vectors, on which an ordinary
CPU can perform bit-parallel intersection and union operations, thus gaining speed.

Bit-vector representation was used in the 1970’s for seeking subgraph isomor-
phism [Ullmann 1976] and also for general binary constraint satisfaction [McGre-
gor 1979]. During the next thirty years, bit-vector isomorphism algorithms were
widely employed in practice, particularly in molecule matching applications [Wil-
lett et al. 1998]. During the same period the artificial intelligence community de-
veloped constraint satisfaction algorithms working directly with predicates, or in-
stead with tabular representations thereof [Bessière 2006], but usually not with bit-
vector representation. Perhaps this was because bit-vector representation provides
no complexity-theoretic benefit. However, from the viewpoint of practical perfor-
mance, authoritative experimentation [Lecoutre and Vion 2008] suggests strongly
that, for binary constraints, bit-vector implementation has not been surpassed in
the artificial intelligence literature.

In order to benefit from bit-parallelism, domain reduction procedures in Section 3
of this article represent domains, as well as binary constraints, by bit-vectors. When
the search backtracks, domains must be restored to an appropriate previous state.
Bit-vectors representing domains can be saved/restored by push/popping a stack,
incurring considerable cost in time and memory. Section 4 introduces focus search
which is a new algorithm that avoids save/restore. In Section 5 the use of surrogate
values can decrease the length of bit-vectors, thus reducing memory requirements
and increasing the speed of search.

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 3

Section 6 applies the technology of previous sections in the determination of sub-
graph isomorphism, which is a specialized constraint satisfaction problem wherein:

—No two values in a solution z may be the same.

—Specialized unary constraints may greatly reduce the work done by a search pro-
cess.

—Bit-vector memory requirements are reduced when the same constraint predicate
Pij applies to more than one pair (i, j) of variables.

Subgraph isomorphism has well-established practical relevance in chemoinformatics
[Leach and Gillet 2003; Brown 2009].

Before reporting experiments with isomorphism, Section 7 reports experiments
with randomly generated constraint satisfaction problems and also with radio fre-
quency assignment problems, emphasizing that isomorphism is not the only impor-
tant practical application for binary constraint satisfaction algorithms.

Domain reduction in Sections 3 and 4 is based on the well-known idea of support,
which is revised in Section 2.

2. SUPPORT

2.1 Full support

After instantiating a set W of variables, we need to identify values that cannot now
belong to any solution. Identification is based on simple inference, for which we use
the following well-established definitions. A graph is a set of vertices and a set of
edges that are pairs of these vertices. The degree of a vertex is the number of edges
that include it. Two vertices are said to be adjacent if they belong to the same
edge.

Corresponding to a binary constraint satisfaction problem we define a constraint
graph wherein vertices correspond to variables and edges correspond to pairs of
variables that are subject to binary constraints. Two variables are adjacent iff
they are the subject to the same binary constraint. We define Ai to be the set
of variables that are adjacent to the variable Vi. Moreover, Cij is the constraint
between variable Vi and a variable Vj ∈ Ai.

If there is a constraint between Vi and Vj , then in any solution z we must have
Pij(zi, zj). Therefore a value u in the domain Di of Vi cannot belong to any solution
unless there is a value v ∈ Dj such that Pij(u, v). A value v ∈ Dj such that Pij(u, v)
is said to support u ∈ Vi [Bessière 2006; Naanaa 2009]. A value u ∈ Di that is
supported by at least one value in domain Dj is said to be supported in constraint
Cij . A value u ∈ Di that is not supported in constraint Cij cannot belong to
any solution. Going further, a value u ∈ Di is said to be fully supported iff it is
supported in every constraint Cij such that Vj ∈ Ai. A value u ∈ Di that is not
fully supported cannot belong to any solution and can therefore be removed from
domain Di.

The set of solutions remains unchanged if values that are not fully supported are
removed from domains. Removal of values from domains may remove support for
values in other domains, so there may be propagation of removal from domains as
in [Ullmann 1965]. At convergence, which is the situation where there is no further
removal because every value in every domain is fully supported, the constraint
structure is said to be arc consistent [Mackworth 1977; Bessière 2006].

After each instantiation we invoke a domain reduction procedure that attempts to
simplify subsequent search by removing unsupported values from domains. Some
versions of this procedure propagate removal until convergence1, others do not.

1Maintaining Arc Consistency, abbreviated to MAC, is a widely-used name for a family of con-
straint satisfaction backtrack algorithms which, after each instantiation, propagate removal until

arc consistency is achieved, as in [Ullmann 1976; 1977; McGregor 1979; Sabin and Freuder 1994].

ACM Journal Name, Vol. 15, No. 1, January 2011.

4 · Julian Ullmann

If domain reduction empties any domain when a set W of variables have been
instantiated, then there is no solution that includes these instantiations. In this case
nothing can be achieved by instantiating further variables; instead the backtrack
search re-instantiates a variable in W .

When domain Di is inferentially reduced to a single value, we have implied in-
stantiation of the variable Vi, whereas instantiation by the search process is elective
[Lynce and Marques-Silva 2003]. Suppose that immediately after elective or implied
instantiation of Vi, domain reduction continues until convergence. Consider a con-
straint Cij such that domain Dj is multivalued at convergence. At this time we can
be sure that every value in Dj is supported by the single value of Vi. Equally surely,
the single value of Vi is supported by every value in Dj . While further variables are
instantiated, the single value of Vi remains supported in constraint Cij so long as
Dj is not empty. If any domain is empty the search does not proceed. Therefore
we do not need to check whether the value of Vi is supported in constraint Cij after
further instantiation. This is true for every constraint Cik such that Vk ∈ Ai, so if
domain Di is single-valued at the time of convergence, then nothing is achieved by
checking whether the value in Di is supported after further instantiations. Lecoutre
[2008] has emphasized that it is unnecessary to check whether electively-instantiated
values are supported, and this idea appears also at Line 5 in Figure 2 in Bessière
et al [2008]. We now go further by observing that it is also unnecessary to check
whether implied instantiated values are supported. This means that after an elec-
tive instantiation we only need to check whether values in multivalued domains are
supported. Here multivalued means multivalued at the time of convergence in a
previous invocation of a domain reduction procedure, since when there has been
neither backtrack nor re-instantiation.

If, to improve efficiency, we apply domain reduction only to multivalued domains,
then the first application requires attention. If domain Di is single-valued initially,
before the first application of domain reduction, then we cannot then be sure that
its value is fully supported. We deal with this simply by removing all unsupported
values from domains during preprocessing prior to commencement of search, as in
Section 3.3.

2.2 Bit vector representation of support sets

We represent predicate Pij by a one-dimensional array, M i
j , of sets initialized so that

M i
j [u] = {v|Pij(u, v)}. In this M i

j notation, the superscript identifies the variable
whose values select elements of the one-dimensional array; the subscript identifies
the other variable involved in the constraint. Each set M i

j [u] is represented by a
bit-vector.

The bit-vector M i
j [u] can be regarded as a row of a bit-matrix M i

j . If the rows of
this matrix are packed into words to allow bit-parallel operations, the columns are
not. The row M i

j [u] allows bit-parallel operations on the set of all values of Vj that
can be supported in constraint Cij by value u ∈ Di. We also require bit-parallel
operations on the set of all values of Vi that can be supported in constraint Cij by

value u ∈ Dj . For this purpose, we employ a second bit-matrix M j
i , initialized so

that M j
i [u] = {v|Pij(v, u)}, with rows selected by values of the superscript variable.

For this second bit-matrix, Pij(v, u) ≡ (v ∈ M j
i [u]). Representing Pij both by M i

j

and also by its transpose M j
i obviously requires twice as much memory as just one

of these representations. All bit-matrices have the same dimensions such that their
rows are bit-vectors in which the number of bits is always the maximum cardinality,
δ, of any domain.

Constraints are symmetric if all predicates in a given binary constraint satisfaction
problem are such that Pij(u, v) = Pij(v, u); otherwise, constraints are asymmetric.

For symmetric constraints we haveM i
j [u] = {v|Pij(u, v)} andM j

i [u] = {v|Pij(v, u)},
ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 5

procedure search;

input: Dsets which is an array [1..n] of bit-vectors such that Dsets[i] represents domain Di
initialized according to unary constraints; also
initialized bit-matrices (to be referenced by the domain reduction procedure);

output: Line 13 records all solutions.
begin

1 initialize domains, stacks, instantiation sequence and weights;

2 choose(i, terminal); (* Select variable Vi to be instantiated next and
also return terminal = (all domains are single-valued). *)

3 initialize search for untried values in domain Di;

4 repeat
5 if there are any untried values in domain Di then

6 push(i, Dsets); (* This saves a copy of i and also of Dsets *)

7 v := next untried value in domain Di;
8 Di := {v}; (* Instantiating Variable Vi to value v *)

9 reduce(i, Dsets, consistent); (* Domain reduction procedure *)
10 if consistent then (* No domain is empty, so proceed *)

11 choose(i, terminal); (* Select variable Vi to be instantiated and

also return terminal = (all domains are single-valued). *)
12 if terminal then (* All domains are single-valued *)

13 output this solution;

14 pop(i, Dsets) (* Restore before trying another value *)
15 else initialize search for untried values in newly chosen Di;

16 (* The next iteration will instantiate the newly chosen Vi *)

17 end if;
18 else pop(i, Dsets) (* Restore before trying another value of the same variable *)

19 end if;

20 else (* Backtrack to the previous variable *)
21 if stack is not empty then pop(i, Dsets) (* to restore these *) end if

22 end if;
23 until stack is empty;

end search;

Fig. 1. Outline of a backtrack search algorithm that finds all solutions to an instance of the

constraint satisfaction problem.

so M i
j = M j

i and we only need one bit-matrix to represent each predicate. As will
be explained in Section 6.1, subgraph isomorphism with unordered graphs is an
example of a symmetric constraint satisfaction problem: Adjacency matrices of
unordered graphs are symmetric.

3. BASIC BIT VECTOR DOMAIN REDUCTION ALGORITHMS

3.1 A backtrack search algorithm

The backtrack algorithm2 outlined in Figure 1 employs dynamic variable ordering
[Lecoutre 2009, Section 9.1.1], which means that the instantiation sequence may
vary during the search. Procedure choose uses the dom/wdeg heuristic [Boussemart
et al. 2004] employing weights {wij} to select the next variable, Vi, for elective
instantiation3. Procedure choose is shown in Appendix Section A.2.

2This algorithm generally tries many successive values for each variable. Binary branching, which
is an alternative strategy, tries just one value before selecting another variable [Lecoutre 2009,
Page 362].
3This heuristic associates a score with each variable that is a candidate for elective instantiation

because its domain is not already single-valued [Lecoutre 2009, Section 9.3.1]. For the variable
Vi this score is |Di|/(

∑
j∈Ăi

wij), where |Di| is the current cardinality of domain Di, and Ăi =

{Vk|(Vk is adjacent to Vi) ∧ (|Dk| > 1)} and wij is a weight associated with the unordered pair

{Vi, Vj} as follows. Initialization assigns wij := 1. During the search, the weight wij is increased
by one when no value in Di is supported by Dj or when no value in Dj is supported by Di.

Procedure choose selects the variable for which the score is minimal.

ACM Journal Name, Vol. 15, No. 1, January 2011.

6 · Julian Ullmann

To process values in a domain in turn serially, as at Line 7 in Figure 1, we can
search for successive 1’s in the domain’s bit-vector. Instead, to save time, we can
avoid visiting 0’s in bit-vectors by representing each domain by an array, as well
as by a bit-vector, so we have duplicate representation. During the search, the
duplicate representation must be saved and restored4 together with the bit-vector
representation. Appendix Section B gives details.

Save/restore via a stack, as in Figure 1, is pop-stack domain restoration. The
stack must be able to accommodate n copies of an array of n bit-vectors. When the
number, n, of variables is large, e.g. n > 1000, and when the maximum number, δ,
of values in a domain is also large, the amount of memory required for δn2 bits may
require attention. Instead of pushing the entire array, Dsets, of domain bit-vectors
onto a stack, we only need to push bit-vectors that have changed since they were
last pushed. These are easily identified, but at the cost of slowing the search.

If we use array (as well as bit-vector) representation of domains, we do not need
a stack of arrays of domain bit-vectors. Array representation readily shows which
values should be restored to domains, so individual bits can be changed from ‘0’
to ‘1’ accordingly. Appendix Section B.1 gives further details of this method of
restoration, which we call incremental restoration5. Incremental restoration reduces
memory requirements but is usually slower than pop-stack restoration that uses
microprogrammed iteration to move a bock of data within memory.

3.2 A bit-vector direct reduction procedure

This section introduces the first of three versions of the domain reduction procedure
reduce that is called at Line 9 in Figure 1. The set of values in Dj that support
u ∈ Di is {v|Pij(u, v)}∩Dj . This set is represented by the bit-vector M i

j [u]∗Dsets[j],
where ‘*’ denotes bit-wise and and Dsets[j] is a bit-vector representing Dj . In
bit-vector direct reduction [Ullmann 1976; Lecoutre and Vion 2008], a value u is
removed6 from domain Di as soon as procedure reduce finds that M i

j [u]∗Dsets[j] =
0, where 0 is a bit-vector that represents the empty set.

Following McGregor [1979], the direct reduction procedure in Figure 2 uses a
queue7 of ordinals that identify variables; we think of this as being a queue of
variables. If a domain Di is reduced by removal of at least one value, then i is
inserted into the queue to enable a subsequent iteration to check whether any value
in an adjacent domain is no longer fully supported and should therefore be removed.

Appendix Section A.1 explains how, for each variable, we maintain a linked list of
adjacent variables that have multivalued domains at the time of invocation of this
procedure. For each at Line 4 in Figure 2 is implemented efficiently by traversing
this list. Within this list for Vj , the record for the adjacent variable Vi includes a
pointer to the bit-matrix M i

j . This is how the procedure accesses bit-matrices.
At Line 6 we can find values currently in Di by searching for 1’s in Dsets[i].

Instead, to avoid visiting 0’s in bit-vectors, we can use duplicate (bit-vector and
array) representation of domains, as in Appendix Section B.1, although this does
not always make the search faster.

4Lecoutre and Vion [2008] employ linked list duplicate representation. Array representation, with

swapping as in Briggs and Torczon [1993], is somewhat faster because values can be restored to

domains in constant time without being processed serially one-by-one.
5In other terminology [Schulte 1999], incremental restoration is an example of trailing and pop-

stack restoration is an example of copying.
6If I is a bit-vector that represents Di, and if U is a bit-vector that represents {u} and if u ∈ Di,
then u can be removed from I by I:= exclusiveOr(I, U).
7Represented by an array of ordinals and also by a bit-vector to allow rapid checks for set mem-

bership. Our experiments employ a simple first-in first-out queue because bit-vector reduction is
so fast that the overheads of managing a priority queue [Wallace and Freuder 1992; Boussemart

et al. 2004] appear to outweigh the benefit.

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 7

procedure reduce(in h: integer; in out Dsets: array of bit-vectors; out consistent: boolean);

input: h identifies the variable that has just been instantiated;
Bit matrices are accessed via global variables;

input and output: Dsets is an array of bit-vectors representing domains;

output: consistent = (no domain is empty);
begin

1 initialize queue to be empty; insert h into queue;

2 repeat
3 j:= variable removed from queue;

4 for each i such that Vi is adjacent to Vj and Di is multivalued do

(* multivalued means multivalued at the time of invocation of this procedure *)
5 changed:= false;

6 for u:= each value that is currently in Di do

7 if M i
j [u] * Dsets[j] = 0 then (* There is no support in Dj for u in Di *)

8 remove u from Di; changed:= true;

9 if Di is empty then wij := wij + 1; consistent:= false; return end if;
10 end if

11 end for;

12 if changed and (i 6∈ queue) then
insert i into queue (* i will subsequently be a j that is removed from the queue *)

end if;

13 end for;
14 until queue is empty; (* The procedure has reached convergence *)

15 consistent:= true;
end reduce;

Fig. 2. An introductory outline of a bit-vector direct reduction (BVDR) implementation of pro-

cedure reduce.

3.3 A bit-vector cumulative reduction procedure

With direct reduction, the innermost loop (Lines 6 through 11 in Figure 2) is the
part of the entire search-and-reduction algorithm that is executed most frequently.
McGregor [1979] used cumulative reduction8 to simplify and optimize the innermost
loop. Cumulative reduction is so called because it accumulates supported values (in
a bit-vector B in Figure 3) instead of eliminating unsupported values immediately.
Lines 4 and 6 in Figure 3 can be implemented in the same way as Lines 4 and 6 in
Figure 2.

It is sometimes helpful to call procedure reduce between Lines 1 and 2, as well
as at Line 9, in Figure 1. Domain reduction before commencement of search is an
example of preprocessing. When used for preprocessing, the bit-vector cumulative
reduction (BVCR) procedure is modified so that

—All variables are put in the queue initially, and

—All adjacent variables are processed, whether or not their domains are initially
multivalued, and

—There is no provision for restoring eliminated values, because these are perma-
nently eliminated from domains.

When any domain is empty there can be no solution, so the search does not proceed.
Note also that if a domain is single-valued before commencement of search, we
cannot be sure that its single value is fully supported. In this case, the direct and
cumulative domain reduction procedures work correctly only after preprocessing.

8Cumulative reduction has also been employed in [Ullmann 1977; Lecoutre 2008; Cheng and Yap

2010].

ACM Journal Name, Vol. 15, No. 1, January 2011.

8 · Julian Ullmann

procedure reduce(in h: integer; in out Dsets: array of bit-vectors; out consistent: boolean);

input: h identifies the variable that has just been instantiated;
Bit matrices are accessed via global variables;

input and output: Dsets is an array of bit-vectors representing domains;

output: consistent = (no domain is empty);
begin

1 initialize queue to be empty; insert h into queue;

2 repeat
3 j:= variable removed from queue;

4 for each i such that Vi is adjacent to Vj and Di is multivalued do

5 B:= 0; (* A bit-vector wherein all bits are 0. This represents an empty set. *)
6 for v := each value that is currently in Dj do

(* Mj
i [v] is the set of possible values of variable Vi supported by value v in Dj *)

7 B:= B +Mj
i [v] (* ‘+’ denotes bitwise inclusive-or, implementing set union *)

8 end for;

9 B := Dsets[i] * B; (* B := {u ∈ Di|u is supported by value(s) in Dj} *)

10 if Dsets[i] 6= B then (* Di has been reduced *)
11 if B = 0 then wij := wij + 1; consistent:= false; return end if

12 Dsets[i]:= B; (* reducing domain Di *)

13 if (i 6∈ queue) then insert i into queue end if;
14 end if;

15 end for;

16 until queue is empty; (* at convergence *)
17 consistent:= true;

end reduce

Fig. 3. An introductory outline of a bit-vector cumulative reduction (BVCR) implementation of

procedure reduce.

3.4 A bit-vector forward checking procedure

The domain reduction procedures in Sections 3.2 and 3.3 usually reduce a domain
most when they process it for the first time. If procedures are curtailed so that
no domain is reduced more than once, this obviously takes less time but achieves
less reduction than when reduction continues until convergence. McGregor [1979,
Figure 5] introduced a simple curtailed reduction procedure that was given the
name Forward checking by Haralick and Elliott [1980]. Forward checking9 deserves
attention because, in some circumstances, constraint satisfaction problems can be
solved more quickly and simply by using this instead of the procedures in Sections
3.2 and 3.3. With forward checking the number of elective instantiations is much
higher, but much less domain reduction work is done after each instantiation.

The forward checking procedure in Figure 4 is called instead of procedure reduce
at Line 9 in Figure 1. Line 2 in Figure 4 is executed for adjacent variable Vi even
if domain reduction has already reduced Di to a single value. This is because the
single value in Di may not be supported by the value v of Vj . At the time of
invocation of the forward checking procedure, every value in the domain of every
variable that has not yet been electively instantiated is certainly supported by the
value of every adjacent variable that was electively instantiated previously. But a
value in the domain of a variable that was not electively instantiated previously
may not be supported by any value in the domain of an adjacent variable that was
not electively instantiated previously: forward checking does not check this.

With forward checking we use a version of procedure choose that may return i
such that Vi has already been instantiated by implication. This is because procedure
forwardCheck, when called after elective instantiation of an implied-instantiated
variable, may remove values from further domains, thus speeding up the search
[Ullmann 2007]. Appendix Section A.2 includes this version of procedure choose,
and explains how Line 1 in Figure 4 avoids visiting adjacent variables that have not

9Forward checking is an embodiment of preclusion [Golomb and Baumert 1965].

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 9

procedure forwardCheck(in j, v : integer; in out Dsets: array of bit-vectors;
out consistent: boolean);

input: j identifies the variable that has just been instantiated;
v is the value that has been assigned to j by elective instantiation;
Bit matrices are accessed via global variables;

input and output: Dsets is an array of bit-vectors representing domains;
output: consistent = (no domain is empty);
begin
1 for each variable Vi adjacent to Vj that has not been electively instantiated do

2 Dsets[i]:= Dsets[i] ∗M j
i [v]; (* Di := Di ∩ {u|u is supported by v ∈ Dj}.

This assignment eliminates from Di every value that is not supported by v ∈ Dj *)
3 if Dsets[i] = 0 then wij := wij + 1; consistent:= false; return end if;
4 end for
5 consistent:= true;
end forwardCheck;

Fig. 4. An introductory outline of a forward checking domain reduction procedure.

been electively instantiated.
If the forward checking version of procedure choose finds that all domains are

single-valued, then it returns terminal = true, but there is no guarantee that values
of variables which have not been electively instantiated are fully supported. In other
words, it is possible that the single values now in domains may not constitute a
solution because there may be constraints that are not satisfied. To deal with this,
the search could continue until all except one of the variables have been electively
instantiated, but this would be unnecessarily inefficient. Instead, after the forward
checking version of procedure choose returns terminal = true, the search process
calls a procedure allSatisfied which explicitly checks that all binary constraints are
satisfied. A combination of values, one in each domain, is accepted as a solution
only if all constraints are satisfied.

4. FOCUS SEARCH

4.1 The static instantiation sequence in focus search

When domain reduction is interleaved with backtrack search, a domain may be
restored before any benefit has been obtained from its reduction. In this respect,
domain reduction processes are inevitably inefficient. Focus search is so called be-
cause it focuses reduction primarily on a small number of uninstantiated domains
that may soon be instantiated electively. Focus search does not entirely avoid fruit-
less reduction operations, but it does avoid saving and restoring the results of these
operations during the search. Like forward checking, focus search does not apply
domain reduction iteratively until convergence; instead, again like forward checking,
focus search relies on a very large number of invocations of a simple domain reduc-
tion procedure. Compared with bit vector cumulative reduction, forward checking
performs a very much larger number of elective instantiations, and therefore the
total cost of saving and restoring domains during the search is very much higher.
It is important that focus search entirely avoids save/restore during the search.

For forward checking, another consequence of the large number of instantiations
is that a large total amount of time is spent selecting successive variables for instan-
tiation. Focus search avoids spending this time by working instead with a static
instantiation sequence that is fixed before commencement of search and remains
unchanged thereafter.

Section 2.2 explained that the procedures in Section 3 require duplicate repre-
sentation of asymmetric constraint predicates: a predicate Pij is represented both

ACM Journal Name, Vol. 15, No. 1, January 2011.

10 · Julian Ullmann

1: AA-------------------

2: B-B------------------

3: -C-C-----------------

4: ---DD----------------

5: E---EE---------------

6: --F-FFF--------------

7: --G-G--G-------------

8: ------H-H------------

9: -------III-----------

10: J-------J-J----------

11: K-------K--K---------

12: --------L---L--------

13: ---------M--MM-------

14: ------------NNN------

15: ------------OO-O-----

16: ----P--------P--P----

17: ----Q-----------QQ---

18: --R-------------R-R--

19: ------------S-----SS-

20: ---T----------T-----T

Fig. 5. An example in which columns correspond to successive variables in the static instantiation
sequence 0, 1, . . . , n − 1. There is one row corresponding to each variable except the first. In the

row corresponding to Vh, the location of the rightmost letter identifies Vh. Locations of other

letters in this row identify preceding variables in Yh that are adjacent to Vh.

by M i
j and also by the transpose M j

i . Because of its static instantiation sequence,
focus search does not require this duplicate representation. For example, if V7 pre-
cedes V3 in the instantiation sequence, then M7

3 [v] will at some time be required
but M3

7 [v] will never be required because V3 will never be instantiated before V7.
In the static instantiation sequence for focus search, let Yi be the set of variables

that precede and include the variable Vi. The variable Vi+1 is chosen so as to
maximize10 the number of variables in Yi that are adjacent to Vi+1. An example
in Figure 5 indicates the variables in Yi to which a variable Vi+1 is adjacent. In
many cases, more than one variable not in Yi is adjacent to the largest number of
variables in Yi: such ties are broken by a heuristic that favors the variable for which
the sum of the branches of its adjacent variables is maximal. Here branches of a
variable Vi means the sum of the degrees of the variables to which Vi is adjacent.

4.2 Focussed domain reduction

Like the algorithms in Section 3, focus search is a backtrack search algorithm that
calls a domain reduction procedure reduce immediately after each elective instanti-
ation. Each of the algorithms in Section 3 achieves both of the following effects in
the same way:

(1) Reduction of the number of values to which a variable Vi will be instantiated,
thus reducing the number of elective instantiations.

(2) Avoidance of parts of the search space that do not include any solution. If after
instantiation of Vi the domain of any not-yet-instantiated variable contains no
value that is fully supported, then the search proceeds no further until at least
one variable has been re-instantiated.

In focus search, these two effects are achieved in different ways, both involving
pastAdj(Vi), which is the set of variables in Yi that are adjacent to Vi. Vi is not
included in pastAdj(Vi). Within pastAdj(Vi), λ(i) is the last, and therefore closest

10This differs from the maximum cardinality algorithm of Tarjan and Yannakakis [1984] only in

that ties are not broken arbitrarily.

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 11

to Vi, in the static sequence. In Figure 6, which outlines procedure reduce for focus
search, f(h) is the current instantiated value of the variable Vh.

To achieve the first effect, focus search waits until all variables in pastAdj(Vj)
have been instantiated and then, at Line 8 in Figure 6, makes Dj be the set of all
values of Vj that are supported by values of variables in pastAdj(Vj). The intention
is that domain reduction is focussed on the single domain Dj from which values
of Vj will next be selected for instantiation. Actually domain reduction is not so
exactly focussed because Vi may possibly be the last variable in pastAdj(Vj) for
more than one j, as can be seen in Figure 5. For example, if Vλ(j) = Vλ(j+3) then,
immediately after instantiation of Vλ(j), Lines 5 through 9 in Figure 6

—remove from Dj all values that are not supported by values of variables in
pastAdj(Vj) and

—remove from Dj+3 all values that are not supported by values of variables in
pastAdj(Vj+3)

If any domain is now empty, procedure reduce returns consistent = false.
If, between the times of instantiation of Vλ(j) and Vj , there is backtrack such

that a variable Vk after Vλ(j) and before Vj in the static sequence is re-instantiated,
then Dj is not affected because, by definition of Vλ(j), Vk is not adjacent to Vj . If
backtrack is such that Vλ(j) is re-instantiated then Lines 5 through 9 in Figure 6
recompute Dj . For these reasons, focus search does not save/restore Dj .

Lines 1 through 4 in Figure 6 achieve the second of the two effects mentioned in
the first paragraph of this section11, after instantiation of the variable Vi. In Line
1 the condition (i 6= λ(j)) prevents duplication of work that will be done at Lines
5 through 9. At Line 2, prec(i, j) = pastAdj(Vj)∩ Yi, which means that prec(i, j) is
the set of instantiated adjacent predecessors of Vj . At Line 2 focus search does not
store the result bit-vector jD and therefore does not need to save/restore it. As well
as avoiding save/restore, an advantage of not saving jD is that when this consists
of hundreds of bits, copying it to memory takes appreciable time. A disadvantage is
that, during subsequent invocations, Line 6 in Figure 6 in some cases re-computes
intersections that were computed at Line 2, and could have been stored, during
previous invocations of procedure reduce.

The focus search procedure reduce assumes that initialization has ensured that
every value in Mh

j [v] is also in the initial Dj which is specified as part of the original

formulation of the problem. This is why Dinitial
j is not included in the intersection

at Lines 2 and 6 in Figure 6.

4.3 The search procedure in focus search

Like the previous backtrack search procedure in Figure 1, focus search instantiates
a variable Vi to successive values that are currently in domain Di. Focus search
employs a linked list of values that could possibly be in Di, and refers to Dsets[i] to
check whether each successive value is currently in Di. For Vi the list could simply
contain all values in Dinitial

i , that is, the initial contents of Di specified as part of
the problem formulation. However, the following development improves efficiency.

For each variable Vi, except the first variable in the static instantiation sequence,
we arbitrarily select just one variable, Vh, say, from the set pastAdj(Vi). The selected
variable Vh is the selector for Vi. For each possible value, u, of the selector Vh, we
initialize seLists[i, u] to be a linked list representation of the set Mh

i [u]∩Dinitial
i . As

before, Mh
i [u] represents the set of possible values of Vi that are supported by the

value u of Vh. Thus seLists[i, u] represents the set of values in Di supported by the
value u in Dh. At Line 10 in Figure 7, selector[i] ↑ = u such that u is the currently

11Focus search works correctly, but not so fast, if Lines 1 through 4 are omitted.

ACM Journal Name, Vol. 15, No. 1, January 2011.

12 · Julian Ullmann

procedure reduce(i: integer; out consistent: boolean);

input: i identifies the variable that has just been instantiated;
Bit matrices are accessed via global variables;

output: Dsets is an array of bit-vectors representing domains;

consistent = (no domain is empty);
begin

1 for each j such that (Vi ∈ pastAdj(Vj)) ∧ (i 6= λ(j)) do

(* for each j such that i is an adjacent predecessor, but not the last, of j do *)
2 jD := ∩

Vh∈prec(i,j)
Mh
j [f(h)]; (* jD := {v|v is supported by the

instantiated value of every variable in Yi that is adjacent to Vj} *)
3 if jD = 0 then consistent:= false; return end if;

4 end for;

5 for each j such that i = λ(j) do (* for each j such that i is the
last adjacent predecessor of j do *)

6 jD := ∩
Vh∈pastAdj(Vj)

Mh
j [f(h)]; (* jD := {v|v is supported by the

instantiated value of every variable in Yi that is adjacent to Vj} *)
7 if jD = 0 then consistent:= false; return end if;

8 Dsets[j] := jD;

9 end for;
10 consistent:= true;

end reduce;

Fig. 6. Focus search procedure reduce. Here jD is a bit vector of the same type as Dsets[j].

instantiated value of Vh, where Vh is the selector for Vi. What this achieves is that
Line 5 only checks values that could be in Di when Vh = u.

When i = lastV ar at Line 11, each value in Dsets[lastVar] is certainly included
in a solution, so there is no need to execute the loop at Line 3 through 24. Instead,
Line 12 calls procedure lastInstantiation, which is:

while valuePtr 6= nil do
if valuePtr↑.value in Dsets[i] then output solution end if;
valuePtr:= valuePtr↑.nextValue

end while;

This includes each value currently in Dsets[lastVar] in a separate solution. If only
one solution is required, we amend this procedure to return after the first solution
is found.

4.4 List structures for focus search

Focus search needs to identify Vλ(j) as the last variable in pastAdj(Vj) at the time of
instantiation of Vλ(j). This would be impossible if dynamic variable ordering were
applied. Another reason for using a purely static instantiation sequence is that we
are able to construct lists, prior to commencement of search, that enable procedure
reduce to find all h such that Vh ∈ pastAdj(Vj) without searching through any h
such that Vh 6∈ pastAdj(Vj). Prior to commencement of search, focus search also
builds further list structures, as follows.

For each variable, Vj , there is a linked list comprising one record for each variable,
Vjk , in pastAdj(Vj). The information in each such record is

—An ordinal, k, that identifies the variable Vjk ,

—A pointer, which is the same as valueAt[k], pointing to the current value f(jk)
of Vjk ,

—A pointer to the bit-matrix that should be used at Lines 2 and 6 in Figure 6, and

—A pointer to the next record in pastAdj(Vj).

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 13

procedure focusearch;

input: Dsets which is an array [1..n] of bit-vectors such that Dsets[i] represents domain Di;
initialized bit-matrices (to be referenced by the domain reduction procedure);

output: All solutions.
begin

1 initialize the instantiation sequence; initialize lists outlined in Section 4.4 ;

initialize array successor so that successor[i] identifies the successor of Vi in the
instantiation sequence; initialize array predecessor so that

predecessor[i] identifies the predecessor of Vi in the instantiation sequence;

predecessor[firstVar]:= nil; (* firstVar is the first variable in the instantiation sequence *)
2 i := firstVar; next[i]:= initialDlist; valuePtr:= initialDlist; (* points to list of

possible values of firstVar *)

3 loop
4 if valuePtr 6= nil then (* there is an untried value of Vi *)

5 if valuePtr↑.value in Dsets[i] then (* this value is in Di *)

6 v:= valuePtr↑.value; (* instantiate Vi to this value *) valueAt[i] ↑:= v;
(* so procedure reduce can access v without dereferencing an array element *)

7 reduce(i, consistent); (* attempt domain reduction *)
8 if consistent then (* search can proceed *)

9 next[i]:= valuePtr↑.nextValue; (* pointing to next possible value of Vi *)

10 i:= successor[i]; valuePtr:= seLists[i, selector[i] ↑];
(* valuePtr now points to the first possible value of the new Vi *)

11 if i = lastVar then (* all variables except VlastV ar have been instantiated;

lastVar is the last in the instantiation sequence *)
12 lastInstantiation(valuePtr, Dsets[i]); (* this instantiates Vi to each in

turn of its available values without calling procedure reduce *)

13 i:= predecessor[i]; (* backtrack *)
14 valuePtr:= next[i]; (* points to the next untried value of this Vi *)

15 end if;

16 else valuePtr:= valuePtr↑.nextValue; (* points to the next untried value *)
17 end if

18 else valuePtr:= valuePtr↑.nextValue (* points to the next untried value *)
19 end if;

20 else (* backtrack *)

21 i:= predecessor[i];
22 if i = nil then exit (* end of search *)

else valuePtr:= next[i]; (* points to next untried value of Vi after backtrack *)

end if;
23 end if;

24 end loop;

25 conclude;
end

Fig. 7. The search procedure in focus search.

The intersection at Line 6 in Figure 6 is implemented efficiently by traversing this
list.

For each variable, Vi, focus search also has a linked list in which each record
points to a pastAdj(Vj) list, as in the previous paragraph, such that i = λ(j). This
list, which may be empty, enables procedure reduce to find quickly all j such that
i = λ(j). This is how for each is implemented at Line 5 in Figure 6.

For each variable Vi, focus search has yet another linked list, for use at Line 1 in
Figure 6. In the list for Vi there is one record for each Vj such that Vi ∈ pastAdj(j)
and i 6= λ(j). Each such record points to a linked list of members of prec(i, j). A
list of members of prec(i, j) does not require additional memory because physically
it is a sublist of the pastAdj(Vj) list. This is achieved by sorting the records in each
pastAdj(Vj) list so that they contain variables in the reverse of the instantiation
sequence. Thus the first variable in the pastAdj(Vj) list is Vλ(j); the last variable in
this list is, within pastAdj(Vj), the earliest variable in the instantiation sequence.

ACM Journal Name, Vol. 15, No. 1, January 2011.

14 · Julian Ullmann

The list for prec(i, j), which is used for computing the intersection at Line 2 in
Figure 6, is implemented by a pointer to the record for Vi in the pastAdj(Vj) list.

As mentioned in Section 4.3, for each variable Vi and for just one of variable, Vh,
that precedes Vi in the instantiation sequence, focus search has a separate linked
list of records for each value, u, in Dinitial

h . This is a linked list representation of
the set Mh

i [u]. The total memory required for these lists depends on the average
cardinality of {v|Pij(v, u)}.

All of the lists used by focus search are constructed before the start of the search
and are not changed thereafter. Of course these lists contribute to the total memory
requirement for focus search. However, focus search does not maintain for each
variable Vi a linked list of currently multivalued variables adjacent to Vi. Focus
search does not have memory requirements, such as a stack of arrays of domains,
associated with save/restore. Moreover, focus search does not require duplicate
bit-matrix representation of asymmetric predicates.

4.5 The search tree

For analytical purposes we can construct a search tree in which nodes correspond to
elective instantiations. A node’s descendent branches represent values successively
assigned to that node by instantiation. If forward checking (FC) and focus search
solve the same problem, both using the same static instantiation sequence, with
values in domains remaining in the same static sorted order, their search trees are
identical.

To see this, assume inductively that the search trees of both algorithms are iden-
tical up to the time immediately before instantiation of Vi. We need to show that
forward checking (FC) and focus search will successively instantiate Vi to the same
set of values, and that the truth-value of consistent will be the same for each such
instantiation.

After instantiating a variable Vh a value u, FC removes from the domains of
all uninstantiated adjacent variables all values that are not supported by Vh = u.
When this has been done for Vh and, previously, for each of its predecessors, the
domain of an uninstantiated variable Vj is

Dh
j = {v ∈ Dinitial

j |v is supported by the values of all variables in pastAdj (j)∩Yh}.

Whereas FC instantiates a variable Vj to each value in Dj−1
j , focus search instan-

tiates Vj to each value in D
λ(j)
j , which is the set represented by Dsets(j) at Line

8 in Figure 6. By definition, no predecessor variable later than λ(j) is adjacent to
Vj . Therefore pastAdj (j) ∩ Yh = pastAdj (j) ∩ Yλ(j), whence FC and focus search
instantiate Vj to the same set of values.

After domain reduction following instantiation of a variable Vi, let Di
j be the

domain of an uninstantiated variable Vj . FC returns consistent = false iff any Di
j

is empty. At Line 3 in Figure 6, focus search returns consistent = false iff any Di
j is

empty, where i 6= λ(j). At Line 7 focus search returns consistent = false iff any Di
j

is empty, where i = λ(j). Thus FC and focus search return the same truth-value of
consistent.

When FC is not confined to the static instantiation sequence of focus search, the
FC search tree is usually substantially smaller; but for each elective instantiation
FC does more work than focus search. Appendix C explains that focus search is
not merely a binary-constraint version of partition search, although both of these
algorithms do belong to the same family.

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 15

5. SURROGATE VALUES

Long bit-vectors are physically implemented as arrays of single-word bit-vectors.
Operations such as bitwise and and or require word-by-word processing, taking
time that depends on the number of words. For this reason, and, more obviously,
to reduce memory requirements, it is desirable to minimize the number of words by
minimizing the total length of each bit-vector.

In the initial formulation of a constraint satisfaction problem, the discrete values
given in each domain are the data values. A domain Di may contain δi data values
within a range lowerBound . . . upperBound such that upperBound − lowerBound is
very much greater than δi. Examples are given in Section 7.2.

When upperBound − lowerBound � δi, it may be worthwhile to work with
surrogate values in the range 0..δi − 1 instead of the original data values. The
advantage is that we now have shorter bit vectors that comprise δ bits, where δ is
the maximum, over all domains, of δi. Memory requirements are reduced; bit-vector
operations are faster.

We use a two dimensional array S to convert data values to surrogate values. The
bounds of the first subscript are 1..numberOfDomains; the bounds of the second
subscript are 0..δ− 1. Array element S[i, u] contains a data value, x, that is unique
within domain Di. The subscript u is the surrogate value that we use instead of
the data value x. For each domain, Di, the array S implements a function Si such
that x ≡ Si(u). The surrogate value u uniquely represents the data value x in this
domain.

We use the symbol Di to represent a domain given as part of the initial formu-
lation of the constraint satisfaction problem; for notational simplicity, we use the
same symbol Di to represent the domain comprising surrogate values that represent
data values in the original domain Di. We solve a constraint satisfaction problem
by working with domains containing these surrogate values, and applying surrogate
predicates P sij defined by

P sij(u, v) ≡ Pij(Si(u), Sj(v))

where Pij(x, y) is a predicate given in the original formulation of the problem.
A surrogate solution, zs, consists of exactly one surrogate value in each domain,
satisfying P sij(z

s
i , z

s
j) for all i, j such that there is a constraint between Vi and Vj .

Let z be a set of data values, one in each domain, such that the value in domain
Di is Si(z

s
i). By construction, z satisfies Pij(Si(z

s
i), Sj(z

s
j)) for all i, j such that

there is a constraint between Vi and Vj , so z is a solution to the original problem.
A solution to the original problem can be obtained from a surrogate solution zs

simply by replacing each value zsi in zs by S[i, zsi].
Predicates in frequency assignment problems in Section 7.2 are symmetric, but

the derived surrogate predicates are not. Consider, for example, the simple predicate
Pij(x, y) = |x− y| > 8, where |x− y| denotes the absolute value of x− y. If

Si(1) = −5 Sj(1) = −3
Si(2) = 6 Sj(2) = 2

then

P sij(1, 2) = |Si(1)− Sj(2)| > 8 = false

P sij(2, 1) = |Si(2)− Sj(1)| > 8 = true

Because surrogate predicates are asymmetric, the memory requirement for surrogate
bit-matrices is 2eδ2 bits, where e is the number of binary constraints. With origi-
nal data values instead of surrogates, and with symmetric predicates, the memory
requirement for bit-matrices is e∆2 bits, where ∆ =upperBound−lowerBound+1.

ACM Journal Name, Vol. 15, No. 1, January 2011.

16 · Julian Ullmann

6. SUBGRAPH ISOMORPHISM

6.1 Constraint satisfaction problem formulation

A graph G = (V,E) consists of a set V = {V1, . . . , Vn} of vertices and a set E of
edges which are unordered pairs of vertices in V . There is a subgraph isomorphism
between a graph Gα = (V α, Eα) and a graph Gβ = (V β , Eβ) iff Gα is isomorphic
to a subgraph of Gβ . A subgraph isomorphism is a function I : V α → V β such
that (V αi , V

α
j) ∈ Eα ⇒ (I(V αi), I(V αj)) ∈ Eβ and (i 6= j) ⇒ (I(V αi) 6= I(V αj))).

Thus a subgraph isomorphism is an injective function from V α to V β that preserves
adjacency. In almost all of the many practical applications of subgraph isomorphism
mentioned by Messmer and Bunke [2000], attributes are associated with the vertices
and edges of Gα and Gβ ; the attributes of corresponding vertices and edges are
required to match. However, to review the basic business of subgraph isomorphism,
we start by considering graphs that are not labelled with attributes and are not
directed.

From the viewpoint of constraint satisfaction, variables identify vertices of the
graph Gα. Possible values for these variables are identifiers of vertices of the graph
Gβ . A constraint satisfaction problem is to assign to each vertex in V α, a value
that identifies a vertex in V β , subject to:

Unary constraints. The set Di of allowed values of a variable V αi identify vertices
of Gβ such that u ∈ Di iff there is no known a priori reason why vertex V βu in Gβ
cannot correspond to vertex V αi of Gα in a subgraph isomorphism. For example,
u 6∈ Di if the degree of vertex V βu of Gβ is less than the degree of vertex V αi of Gα.

Binary constraints. For each (i, j) ∈ Eα, we have a predicate Pij(u, v) = (u, v) ∈
Eβ .

AllDifferent constraint. Every variable in V α has a value that differs from the
value of every other variable in V α.

It is immediately clear that a subgraph isomorphism assigns values to variables so
as to satisfy all of these constraints [McGregor 1979]. It is equally easy to see that
every solution to this constraint satisfaction problem is a subgraph isomorphism.

For general binary constraints, Section 1 introduced M i
j [u] = {v|Pij(u, v)}. For

subgraph isomorphism, this becomes M i
j [u] = {v|(u, v) ∈ Eβ}. Thus M i

j [u] is a

bit-vector that represents the set of all vertices of Gβ that are adjacent to V βu . In
other words, M i

j is exactly the same thing as the adjacency matrix of the graph Gβ .
Section 2.2 said that constraints are symmetric iff Pij(u, v) = Pij(v, u). When

graphs are not directed, V βu is adjacent to V βv iff V βv is adjacent to V βu ; in this
case, for subgraph isomorphism, M i

j is symmetric. Every edge in Eα has the same
constraint predicate, which is represented by the same symmetric matrix, which is
the adjacency matrix of Gβ . When graphs are not directed and not labelled, the
overall total number of matrices required is one. In this context we denote this
single matrix by M .

6.2 Invariant domain reduction

Domain reduction in Section 3 is propagational in the sense that removal of values
from one domain may lead to removal of values from further domains, and so on.
For isomorphism, invariant domain reduction is another important practical means
of removing values from domains. A vertex invariant is a vertex property such that
two vertices can correspond in a graph isomorphism only if their vertex invariants
are identical. A simple example is the degree of a vertex [Corneil and Kirkpatrick
1980]; another example is a tuple whose components are the degrees of adjacent
vertices sorted into decreasing order. Yet another [Fowler et al. 1983] is a tuple
whose components are distance degrees, sorted into sequence of increasing distance.

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 17

The distance between two vertices is the number of edges in the shortest path
between these two vertices. The distance-k-degree of vertex Vi is the number of
vertices at distance k from Vi. McKay [2009] lists many further vertex invariants.
Invariant domain reduction is achieved by

—Determining vertex invariants of graph Gα in isolation from graph Gβ .

—Determining vertex invariants of graph Gβ in isolation from graph Gα.

—Evaluating, for each pair of vertices V αi and V βu , a predicate whose arguments
are the vertex invariants of V αi and V βu , and removing u from domain Di if this
predicate returns false.

For graph isomorphism, but not for subgraph isomorphism, this predicate returns
true iff the vertex invariants of V αi and V βu are identical. For graph isomorphism
it is useful to partition the set of vertices of a graph into subsets such that no
two vertices within the same subset have different vertex invariants. This is vertex
partitioning, which is fundamental to the success of Nauty [McKay 2009].

For subgraph isomorphism we need to specify allowed differences between the
vertex invariants of V αi and V βu . This specification can be formulated as a predicate
that returns false if the vertex invariants of V αi and V βu are such that V βu cannot
correspond to V αi in a subgraph isomorphism. A simple example is a predicate that
returns false iff the degree of V αi exceeds the degree of V βu . Section 6.4.2 provides
further examples.

The essential difference between propagational and invariant domain reduction
is that propagational domain reduction removes u from domain Di if u is not fully
supported by current domains of variables that are adjacent to Vi. Invariant do-
main reduction ignores domains of variables that are adjacent to Vi. From the
viewpoint of the constraint satisfaction literature, invariant domain reduction sim-
ply removes values that do not satisfy unary constraints. This is not mandatory:
The propagational bit-vector cumulative reduction (BVCR) algorithm works cor-
rectly if no unary constraints are applied and instead each domain is initialized
to be {v|V βv ∈ V β}. However, by applying unary constraints derived from vertex
invariants we may reduce the time taken by subsequent preprocessing and search,
without changing the outcome of the search.

Although the VF2 algorithm subgraph isomorphism algorithm [Cordella et al.
2004] is not propagational, it uses vertex-matching properties that vary during the
search. Cordella et al have formulated this algorithm for the case where graphs
are directed. For simplicity we now consider related domain-reduction rules for
undirected graphs, using the following definition of past and future degree:

—pastDegreeOf (V αi) = cardinality of {V αj |V αj is adjacent to V αi and the variable
that corresponds to V αj is now electively instantiated}.

—futureDegreeOf (V αi) = cardinality of {V αj |V αj is adjacent to V αi and the variable
that corresponds to V αj is not currently instantiated}.

We define pastDegreeOf (V βu) and futureDegreeOf (V βu) similarly, except that V βu
is here said to be instantiated electively iff there exists V αi that is currently in-
stantiated electively such that Di = {u}. The BVCR algorithm could possibly be
developed to apply the following extra domain reduction rule: include u in Di only
if

(pastDegreeOf (V αi) ≤ pastDegreeOf (V βu)) and
(futureDegreeOf (V αi) ≤ futureDegreeOf (V βu)).

Suppose that, for BVCR, domains are initialized so that u ∈ Di only if degreeOf (V αi) ≤
degreeOf (V βu). Consider a value u that survives in any domain Di immediately after
the BVCR domain reduction procedure has returned consistent = true. Every in-
stantiated vertex V αj that is adjacent to V αi has a single-valued domain at this time.

ACM Journal Name, Vol. 15, No. 1, January 2011.

18 · Julian Ullmann

If Dj = {v} then, since consistent = true, V βv is adjacent to V βu . Therefore pastDe-
greeOf (V αi) = pastDegreeOf (V βu). Initialization has ensured that degreeOf (V αi) ≤
degreeOf (V βu), so futureDegreeOf (V αi) ≤ futureDegreeOf (V βu). Therefore the pro-
posed extra domain reduction rule has no effect because it is necessarily satisfied
when the BVCR domain reduction procedure returns consistent = true.

Taking a step closer to VF2 [Cordella et al. 2004], the BVCR algorithm could
possibly be developed to apply the additional domain reduction rule: include u in
Di only if

CardinalityOf ({V βv adjacent to V βu | pastDegreeOf (V βv) > 0})
is not less than
CardinalityOf ({V αj adjacent to V αi | pastDegreeOf (V αj) > 0})

Immediately after the BVCR domain reduction procedure has returned consistent
= true then, as in the previous paragraph, for any value u in any domain Di,
pastDegreeOf (V αi) = pastDegreeOf (V βu). At this time, u ∈ Di only if for each
V αj adjacent to V αi there exists v ∈ Dj such that V βv is adjacent to V βu . Since

pastDegreeOf (V βv) = pastDegreeOf (V αj) the proposed additional domain reduction
rule is necessarily satisfied and so has no effect within BVCR, although such rules
may be valuable within VF2.

6.3 Bit-vector algorithms with the allDifferent constraint

6.3.1 Cumulative and direct reduction. With direct and with cumulative reduc-
tion, it is helpful to propagate the allDifferent constraint, as follows. When a
domain becomes single-valued due to elective or implied instantiation, this single
value should be deleted from all currently multivalued domains. If a further domain
thereby becomes single-valued, then this single value should also be deleted from
all currently multivalued domains, and so on.

We modify the direct reduction procedure, Figure 2, so that if the domain of a
variable removed from the queue is single valued, this value is removed from all other
domains that include it. If this makes any domain be empty, then the procedure
returns consistent = false. Otherwise, if a value is removed from domain Dh then
h is inserted into the queue. With direct reduction, each iteration of the outermost
loop deals with single-valued domains before attempting domain reduction using
binary constraints.

When a variable, j, is removed from the queue in the isomorphism version of the
cumulative reduction procedure, the cardinality of the Dj is generally not known.
Values in Dj are counted while using binary constraints to reduce domains of ad-
jacent variables. Afterwards, if Dj is found to be single-valued, then this value is
removed from all other domains that include it, and we proceed as in the previous
paragraph. In this version of the cumulative reduction procedure, each iteration of
the outermost loop attempts domain reduction using binary constraints before deal-
ing with single-valued domains12. For direct and cumulative reduction, Section B.3
gives procedural details using duplicate (i.e. bit-vector plus array) representation
of domains.

When seeking isomorphism, we use a cumulative reduction preprocessing routine
that starts by putting successively at the head of queue all the variables whose do-
mains are initially single-valued, and also by putting all other variables successively
at the tail of the queue, as in Section 3.3. This preprocessing routine applies and

12In effect there is a constraint Pi,j(u, v) = (u 6= v) between every pair of variables, but this is not

enforced in the same way as other binary constraints. Instead we wait until Di or Dj is single-
valued. If Di = {u} we remove u from Dj . If Dj = {v} we remove v from Di. At convergence of

direct or cumulative reduction, all such constraints are satisfied.

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 19

propagates the allDifferent constraint as in the previous paragraph.

6.3.2 The allDifferent constraint in forward checking. Procedure forwardCheck
is called just after a variable has been instantiated to a value v. As well as ap-
plying binary constraints, the isomorphism version of this procedure enforces the
allDifferent constraint simply by removing the value v from all other domains that
include it. If this empties any domain, then the procedure returns consistent =
false. Procedure forwardCheck does not propagate the allDifferent constraint.

Section 3.4 noted that when the forward checking version of procedure choose
finds that all domains are single-valued, we cannot be sure that all constraints
are satisfied. With isomorphism forward checking, we also cannot be sure that
the allDifferent constraint is satisfied. We therefore use a version of the constraint
checking procedure allSatisfied which also checks that all values are different. When
procedure choose returns terminal = true, we have a solution only if procedure
allSatisfied finds explicitly that all constraints, including the allDifferent constraint,
are satisfied.

6.3.3 The allDifferent constraint in focus search. For subgraph isomorphism, fo-
cus search is always preceded by preprocessing13, which initially imposes the allD-
ifferent constraint. Preprocessing initializes allowed to be the set of all i such that
Di is multivalued at completion of preprocessing. This set is represented by a bit-
vector of the type that represents a domain. In effect, Line 5 in Fig 7 is changed
to

if valuePtr↑.value in (Dsets[i] ∗ allowed) then

so a variable can only be instantiated to allowed values. When a variable Vj is
instantiated to a value v, this value is removed from the set allowed, to prevent
instantiation of other variables to the value v. Before Vj is re-instantiated, and
also before the search backtracks to a preceding variable, this value v is restored
to the set allowed. The focus search procedure reduce is modified so that, in effect,
jD := jD ∩ allowed is inserted between Lines 2 and 3, and also between Lines
6 and 7, in Fig 6. Thus jD cannot contain values belonging to domains that are
already single-valued. Like forward checking, focus search does not propagate the
allDifferent constraint.

For focus search the static instantiation sequence is determined after completion
of preprocessing. Variables whose domains are single-valued after preprocessing and
before commencement of search are put at the beginning of the instantiation se-
quence and are not visited by the search because they do not require re-instantiation.
This arrangement is essential because during the search

if valuePtr↑.value in (Dsets[i] ∗ allowed) then

prevents instantiation of domains that are already single-valued.
When one or more variables are excluded from the search because their domains

are initially single-valued, the following situation arises. An excluded variable may
be Vλ(i) for a variable Vi whose domain is initially multivalued, so Dsets[i] will not
be properly determined by the focus search procedure reduce. In this case we assign
to Dsets[i] the bit-vector that represents domain Di at the time of return from the
preprocessing procedure.

6.4 The local allDifferent constraint

6.4.1 Bipartite matching. Let Aαi be the set of all vertices adjacent to vertex
V αi in Gα. Similarly, let Aβu be the set of all vertices adjacent to V βu in Gβ . If an
isomorphism, I, exists such that I(V αi) = V βu then there exists an injective function
L : Aαi → Aβu such that

13When used before focus search, BVCR preprocessing is implemented using linked-list instead of

array representation of domains, because this is appreciably faster when there is no save/restore.

ACM Journal Name, Vol. 15, No. 1, January 2011.

20 · Julian Ullmann

procedure prematches(in i, u: integer): boolean;

input: i and u identify vertices in Gα and Gβ respectively;

output: the predicate prematches returns true if V βu could

correspond to V αi in a subgraph isomorphism;

begin

if degreeOf (V αi) > degreeOf (V βu) then return false end if;

for k := 1 to degreeOf(V αi) do

if degreeOf(V αik) > degreeOf(V βuk) then return false end if;

end for;
return true

end prematches;

Fig. 8. Predicate prematches for undirected unlabelled graphs. This requires vertices in Aαi and

Aβu to be in sequence of decreasing degree.

—For all V αj ∈ Aαi , L(V αj) = V βv such that (v ∈ Dj) ∧ (V βv ∈ Aβu), and

—L(V αj) 6= L(V αk) for all V αj , V
α
k in Aαi such that j 6= k.

Here, ‘L’ stands for local: the function L involves an allDifferent constraint that is
local in that it is restricted to Aαi . Indeed L is the restriction of I to Aαi . If no such
function L exists then no function I exists such that I(V αi) = V βu and in this case u
can be removed from domain Di. Solnon [2010] seeks a function L by incremental
application of the bipartite matching algorithm of Hopcroft and Karp [1973]. For
each (i, u) the worst-case complexity is O(|Aαi | × |Aβu|).

Algorithms in Section 6.3 certainly ensure that all values in a solution are different
without applying the local allDifferent constraint. For each (i, u) the complexity of
these bit-vector procedures is O(|Aαi |) for

for each j ∈ Aαi do if Dj ∩M i
j [u] = ∅ then ...

but, without applying the local allDifferent constraint, we may remove fewer values
from domains than does Solnon’s process, and therefore explore more combinations
of values. This provides another example of a trade-off between doing more work
after each elective instantiation, or instead doing less work but requiring more
elective instantiations.

Instead of seeking a function L, Larrosa and Valiente [2002] apply a necessary
but not sufficient condition for existence of a function L. The effect is to do less
work than Solnon [2010] after each elective instantiation but remove fewer values
from domains. Compared with our bit-vector procedures, Larrosa and Valiente
may remove more values from domains but without the advantage of bit-parallel
Dj ∩M i

j [u] in the innermost loop of the algorithm.

6.4.2 Prematching. Before preprocessing and search, when domains are such
that

u ∈ Di = (degreeOf(V αi) ≤ degreeOf(V βu))

a function L can be sought by the very simple predicate procedure in Fig 8 which
has time complexity O(|Aαi |). This works correctly only if the vertices in

Aαi = {V αi1 , . . . , V
α
ik
, . . . , V αidegreeOf(V α

i
)
}

have been sorted into sequence of decreasing degree and the vertices in

Aβu = {V βu1
, . . . , V βuk , . . . , V

β
u
degreeOf(V

β
u)
}

have also been sorted into this sequence. To see this, note that if degreeOf(V αi1) >

degreeOf(V βu1
) then no function L exists because V βu1

is the vertex in Aβu that has
the largest degree. If degreeOf(V αi1) ≤ degreeOf(V βu1

) then prematches associates

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 21

V βu1
with V αi1 because there is no other member of Aαi that has higher degree than V αi1

and should therefore be associated with V βu1
. If degreeOf(V αi2) > degreeOf(V βu2

)

then no function L exists because V βu2
is the member of {V βu2

, . . . , V βu
degreeOf(V

β
u)
} that

has highest degree and V βu1
is not available because it has already been associated

with V αi1 . Similar reasoning can be applied successively to the remaining members
of Aαi .

The predicate prematches compares vertex invariants. For each vertex the invari-
ant is the degree of the vertex together with an ordered list of degrees of adjacent
vertices. This is one of the first vertex invariants in a succession employed by Zam-
pelli et al [2010]. The next in this succession is the degree of the vertex together
with, for each adjacent vertex Va, the degree of Va and an ordered list of degrees
of vertices adjacent to Va. Zampelli et al continue this succession until it yields no
further domain reduction.

In what follows, prematching means removing from each domain Di each value u
such that prematches(i, u) = false. For initial domain reduction, before preprocess-
ing and search, prematching usually turns out to be so cost-efficient that we will
formulate versions of it for directed and for labelled subgraph isomorphism.

6.5 Directed unlabelled graphs

In a directed graph, an edge, which in this context is known as an arc, is an ordered
pair of vertices; (V αi → V αj) denotes an arc from V αi to V αj . When directed subgraph
isomorphism is formulated as a constraint satisfaction problem, there is a binary
constraint corresponding to every arc in Gα. For an arc (V αi → V αj) the constraint

predicate is Pi,j(u, v) = (V βu → V βv) ∈ Eβ and the bit matrix M i
j is such that

M i
j [u] = {v|(V βu → V βv) ∈ Eβ}. For an arc (V αi → V αj) the constraint satisfaction

algorithms in Section 3 require the asymmetric matrix M i
j and also its transpose

M j
i . This pair of matrices is the same for all (i, j) such that (V αi → V αj) ∈ Eα.

For an arc (V αh ← V αk) the constraint satisfaction algorithms in Section 3 require
the asymmetric matrix Mh

k such that Mh
k [u] = {v|(V βu ← V βv) ∈ Eβ} and also

its transpose Mk
h . Again, this pair of matrices is the same for all (h, k) such that

(V αh ← V αk) ∈ Eα. Thus for directed unlabelled graphs the overall total number of
matrices required is four.

The indegree of a vertex is the number of arcs directed towards that vertex;
the outdegree is the number of arcs directed away from that vertex. For directed
subgraph isomorphism we can apply unary constraints that allow u ∈ Di only if the
indegree of V βu is not less than the indegree of V αi and also the outdegree of V βu is not
less than the outdegree of V αi . Fig 9 shows a version of the predicate prematches
that enforces stronger unary constraints which may eliminate more values from
domains. For this we define

−→
Aαi = {V αj |(V αi → V αj) ∈ Eα}

and
−→
Aαi = {

−→
V αi1 , . . . ,

−→
V αik , . . . ,

−−−−−−−−−−−→
V αioutDegreeOf(V α

i
)
}

in which the vertices have been sorted into sequence of decreasing degree, where

degree = indegree + outdegree. We define
←−
Aαi ,
−→
Aβu and

←−
Aβu similarly.

An example in Table I illustrates what happens if we compare indegrees and
outdegrees instead of simply comparing degrees in the last two loops in Fig 9. In

this example there are four vertices in
−→
Aαi and also in

−→
Aβu; Table I shows their

indegrees and outdegrees. We seek a function ~L :
−→
Aαi →

−→
Aβu such that for all k in

1, . . . , 4

—inDegreeOf(
−→
V αik) ≤ inDegreeOf(~L(

−→
V αik)) and

ACM Journal Name, Vol. 15, No. 1, January 2011.

22 · Julian Ullmann

procedure prematches(in i, u: integer): boolean;

input: i and u identify vertices in Gα and Gβ respectively;

output: the predicate prematches returns true if V βu could

correspond to V αi in a subgraph isomorphism;

begin

if (outDegreeOf(V αi) > outDegreeOf(V βu))) or

(inDegreeOf(V αi) > inDegreeOf(V βu)) then return false
end if;

for k := 1 to outDegreeOf(V αi) do

if degreeOf(
−→
V αik) > degreeOf(

−−→
V βuk) then return false end if;

end for;

for k := 1 to inDegreeOf(V αi) do

if degreeOf(
←−
V αik) > degreeOf(

←−−
V βuk) then return false end if;

end for;

return true

end prematches;

Fig. 9. Predicate prematches for directed unlabelled graphs. This requires that vertices adjacent
to V αi and V βu must be in sequence of decreasing degree.

−−→
Aαi

−−→
Aβu

indegree outdegree indegree outdegree

4 2 4 3
3 2 3 4
2 4 3 2

2 3 2 3

Table I. Example of indegrees and outdegrees of four vertices adjacent to V αi and V βu .

—outDegreeOf(
−→
V αik) ≤ outDegreeOf(~L(

−→
V αik)) and

—~L satisfies the allDifferent constraint.

For this example there is no lexicographic ordering on (indegree, outdegree) pairs

in
−→
Aαi and in

−→
Aβu such that a function ~L exists if and only if for all k in 1, . . . , 4

(inDegreeOf(
−−→
V αik) ≤ inDegreeOf (

−−→
V βuk)) and (outDegreeOf(

−−→
V αik) ≤ outDegreeOf(

−−→
V βuk))

For the example in Table I, a function ~L does exist but finding it requires a process

that has worst-case time complexity greater than O(|
−→
Aαi |).

6.6 Labelled undirected graphs

Vertices and edges may be labelled with information of any kind whatsoever. For
example, labels may be numbers, or characters, or vectors, or sets. We now seek
subgraph isomorphisms, I, such that

—attributeOf(I(V αi)) = attributeOf(V αi) and

—(V αi , V
α
j) ∈ Eα ⇒ (I(V αi), I(V αj)) ∈ Eβ and

attributeOf(I(V αi), I(V αj)) = attributeOf(V αi , V
α
j) and

—i 6= j ⇒ (I(V αi) 6= I(V αj))

In molecule-matching applications [Willett 1999] attributes of vertices are letters
that identify atoms, e.g., ‘C’, ‘H’, ‘O’, and attributes of edges are bond-types, e.g.,
single, double, or aromatic. In the present section we insist, for simplicity, that
attributes match exactly, although a more general requirement is that a predicate

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 23

4 3 1

3

1

5

1

4

4

2

2

5

5

2

6

2

4

6

3

Fig. 10. Triple list structure. Numbers in the horizonal list are edge attribute values.
Numbers in vertical lists are vertex attribute values. Numbers in diagonal lists are degrees
of individual vertices.

whose arguments may include attributes of V αi and I(V αi) returns true when there
is a match within prescribed tolerances [Proschak et al. 2007].

When edges are not labelled, we have M [u] = {v|(u, v) ∈ Eβ}, as in Section 6.1.
When edges are labelled, more than one edge in Eα may have the same attribute.
Let λ1, . . . , λh, . . . , λη be the set of distinct edge attributes that occur in Eα. For
an edge (i, j) in Eα that has edge-attribute λh, and for the case where exact match
is required, the constraint predicate is

Ph(u, v) = ((u, v) ∈ Eβ) ∧ attributeOf(u, v) = λh)

and this is represented by a bit-matrix Mh[u] = {v|Ph(u, v)}. Thus we require η
distinct bit-matrices, one for each distinct edge-attribute that occurs in Eα. For
each edge in Eα a domain reduction procedure such as BVCR now works with
whichever bit-matrix has the same attribute as that edge. The binary constraint
predicates are symmetric, so each is represented by a single bit-matrix, and the
total number of such matrices is η. In molecule matching applications, η is usually
very much less than the number of edges in Eα, indeed often less than eight.

We take the liberty of saying that vertex Vj , adjacent to vertex Vi, has edge-
attribute λh, meaning that the edge (i, j) has edge-attribute λh. Let ν1, . . . , νk,
. . . , νζ be the set of different vertex attributes that occur in V α. We define the
hk-attribute-degree of vertex Vi to be the number of vertices Vj adjacent to Vi such
that Vj has edge-attribute λh and vertex-attribute νk. It is reasonable to include
u ∈ Di only if for all h ∈ [1, . . . , η] and for all k ∈ [1, . . . , ζ] the hk-attribute-degree
of vertex V αi is not greater than the hk-attribute-degree of a vertex V βu .

Going further, the version of predicate prematches in Fig 11 applies the local
allDifferent constraint. For each hk pair, this version of prematches seeks corre-
spondence between degrees of individual adjacent variables. Before the first call
of prematches, we construct a separate triple list structure for each vertex. This
vertex invariant structure is of the same type for every vertex in V α and in V β ,
and remains unchanged during all invocations of prematches. This structure is now
described for a vertex Vi.

For Vi there is an outer list that has one member for each different edge attribute
of any vertex adjacent to Vi. The member of this list for edge attribute λh points to
a further list that has one member for each different vertex attribute of any vertex

ACM Journal Name, Vol. 15, No. 1, January 2011.

24 · Julian Ullmann

adjacent to Vi that has edge attribute λh. The member of this further list that
corresponds to edge attribute λh and vertex attribute νk points to a final list that
has one member for each vertex (adjacent to Vi) that has edge attribute λh and
vertex attribute νk. In this final list, the member for each vertex Vj includes the
degree of Vj . Every final list must be in sorted order of decreasing degree; more
than one vertex in a final list may have the same degree. There are no duplicates in
the outermost list and in the middle lists, which must be in a sorted order that is
the same for all vertices. These lists are here assumed to be in decreasing sequence
of attribute value14. Figure 10 shows the list structure for an example in which the
(edge-attribute, vertex-attribute) pairs for the ten vertices adjacent to Vi are (4, 3),
(4, 1), (3, 6), (1, 5), (1,3), (1, 1). In practice many final lists have only one member.

In Fig 11 the loop at Lines 24 through 30 simply compares degrees. To compare
hk-attribute-degrees instead, we would require an algorithm that has non-linear
time complexity, for the reason that was illustrated by the example in Table I.
However there is no problem when the loop at Lines 23 through 29 is amended to
compare distance-2-degrees instead of distance-1-degrees.

When a single graph Gα is compared with a single graph Gβ , the memory occu-
pied by the lists can be released after the initial membership of domains has been
determined. In systems that have dynamic memory allocation, this area of memory
can be re-used for bit-matrices, which can be constructed after all unary constraints
have been applied.

6.7 Graph retrieval

Most practical applications of subgraph isomorphism involve comparison of many
pairs of graphs. In image matching applications, many small graphs are compared
with a single bigger graph [Conte et al. 2004]. Contrariwise, in chemical applications
[Brown 2009; Willett 1999] a single molecular substructure is compared with many
bigger molecules. More generally, graph retrieval is concerned with a large collection
of graphs, which are known in this context as targets. Given a smaller graph, here
known as a query, a common practical requirement is to identify all targets to which
the query is subgraph isomorphic [Cheng et al. 2009; Zou et al. 2008]. A more
general requirement, which is not addressed in this article, is to find all targets to
which the query is approximately subgraph isomorphic [Yan et al. 2006].

The simple routine:

for each target do seek subgraph isomorphism between query and target

would usually be intolerably slow. Instead, normal practice is to employ a set,
sometimes known as an alphabet, of small subgraphs, known as fragments. We
identify all fragments that are in the query and also in the alphabet, and we do the
same for every target. For the set of targets, this information can be re-used for any
number of queries. If the set of fragments in a given target does not include the set
of fragments in the query, then the query cannot possibly be subgraph isomorphic
to this target, and a search for isomorphism should therefore be omitted. The
alphabet of fragments is chosen with the aim of maximizing avoidance of fruitless
searches.

For each fragment in the alphabet, Yan et al [2005] compile an index list of
(identifiers of) all target graphs that include this fragment. Yan et al seek detailed
subgraph isomorphism between the query and each of the target graphs within the
intersection of the index lists for those fragments that are included in the query. If
the indexed fragments are small then we may need many of them, each associated
with a list of many thousands of target identifiers. Intersecting many long lists

14When these attributes are letters such as ‘C’, ‘H’, ‘O’, a list is sorted in decreasing sequence of

ordinals uniquely associated with letters. This association must be the same for all vertices.

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 25

procedure prematches(in i, u : integer): boolean;

input: i and u identify vertices in Gα and Gβ respectively;

output: the predicate prematches returns true if V βu could
correspond to V αi in a subgraph isomorphism;

begin

1 if vertexAttributeOf(V αi) 6= vertexAttributeOf(V βu) then return false end if
2 alphaEdgePtr:= pointerToFirstRecordInListOfEdgeAttributesOf V αi ;

3 betaEdgePtr:= pointerToFirstRecordInListOfEdgeAttributesOf V βu ;
4 while alphaEdgePtr 6= nil do (* iterate over edge attributes *)
5 loop (* to find identical edge attributes *)
6 if (betaEdgePtr = nil) or
7 betaEdgePtr↑.attribute < alphaEdgePtr↑.attribute) then return false
8 elsif betaEdgePtr↑.attribute = alphaEdgePtr↑.attribute then exit
9 else betaEdgePtr:= betaEdgePtr↑.next
10 end if
11 end loop;
12 alphaVertexPtr:= alphaEdgePtr↑.pointerToFirstRecordInListOfVertexAttributes;
13 betaVertexPtr:= betaEdgePtr↑.pointerToFirstRecordInListOfVertexAttributes;
14 repeat (* iterate over vertex attributes *)
15 loop (* to find identical vertex attributes *)
16 if (betaVertexPtr = nil) or
17 (betaVertexPtr↑.attribute < alphaVertexPtr↑.attribute) then return false
18 elsif betaVertexPtr↑.attribute = alphaVertexPtr↑.attribute then exit
19 else betaVertexPtr:= betaVertexPtr↑.next
20 end if
21 end loop;
22 alphaDegreePtr:= alphaVertexPtr↑.pointerToFirstRecordInListOfVertices;
23 betaDegreePtr:= betaVertexPtr↑.pointerToFirstRecordInListOfVertices;
24 loop (* comparing degrees of individual adjacent vertices *)
25 if alphaDegreePtr↑.degree > betaDegreePtr↑.degree then return false end if;
26 alphaDegreePtr:= alphaDegreePtr↑.next;
27 if alphaDegreePtr = nil then exit end if
28 betaDegreePtr:= betaDegreePtr↑.next;
29 if betaDegreePtr = nil then return false end if
30 end loop; (* over individual vertices *)
31 alphaVertexPtr:= alphaVertexPtr↑.next;
32 until alphaVertexPtr = nil;
33 alphaEdgePtr:= alphaEdgePtr↑.next;
34 end while;
35 return true
end prematches

Fig. 11. Predicate prematches for labelled undirected graphs.

takes considerable time. Having larger fragments in the alphabet can reduce the
length of these lists, but the number of possible fragments increases exponentially
with their size [Jiang et al. 2007].

The use of signatures is a well-established alternative to the use of indexes. The
simplest bit-string method associates with each target, and also with a query, a
bit-vector in which there is one bit corresponding to each fragment in the alphabet
[Willett 2005]. These bit-vectors typically comprise 1000 bits. In a target’s bit-
vector, a bit is ’1’ iff the corresponding fragment is in the target. Similarly, in a
query bit-vector a bit is ’1’ iff the corresponding fragment is in the query. If bit-
parallel operations reveal that any ’1’ in the query bit-vector corresponds to a ’0’
in a target bit-vector, then isomorphism between the query and this target should
not be sought. In this context, a bit-vector is an example of a signature, that is, a

ACM Journal Name, Vol. 15, No. 1, January 2011.

26 · Julian Ullmann

for each target do

for each trilabel in the query do
if the number of occurrences in the query does not exceed the

number of occurrences of this trilabel in the target then

if prematching does not empty any domain then
if preprocessing does not empty any domain then

seek subgraph isomorphism between query and target

Fig. 12. Brief outline of graph retrieval procedure.

collection of information that characterizes a target.
For textual information retrieval, Zobel et al [1998] found that index-based meth-

ods substantially out-performed signature methods. However, the number of frag-
ments involved in a conjunctive graph retrieval query is usually not so small. This
is one reason why, for graph retrieval, bit-vector methods are well established in
practice [Daylight Chemical Information Systems, Inc 2007] whereas index-based
methods are still subject to research investigation [Zhang et al. 2009; Zhao et al.
2007; Cheng et al. 2009].

Fragment-based methods require judicious selection of the alphabet. Selection
requires substantial effort, which may need to be repeated for each different collec-
tion of targets. Moreover, detection of selected fragments within a query may take
appreciable time. These disadvantages can be avoided by using a signature method
with very simple fragments, and counting their occurrences instead of merely de-
tecting their presence or absence. More specifically, following [Chang and Lee 1991],
our experiments work with trilabels.

A trilabel is a triple comprising the label of a vertex, the label of an adjacent
vertex, and the label of the edge between these two vertices. A trilabel, which is
the same thing as a 2-graph [Chou and Shapiro 1998] and a distinct edge [Cheng
et al. 2009] is analogous to a textual trigram. Prior to retrieval we store, for each
target graph, a signature which consists of the number of occurrences of each and
every trilabel in that target. Signatures can subsequently be used in answering any
number of queries. At query time we count the number of occurrences of each and
every trilabel in the query and then proceed as in Fig 12. For each trilabel in the
query signature, this routine requires a search for the same trilabel in the target
signature. Appendix Section D describes a fast trilabel matching procedure.

As in Graph Grep [Giugno and Shasha 2002; Shasha et al. 2002], paths of length
greater than one could be used instead of trilabels, but of course the number of
paths increases rapidly with their length. Instead of using longer paths, we rely
on prematching and preprocessing to reduce the number of searches for subgraph
isomorphism. Prematching and preprocessing achieve domain reduction that facili-
tates search, whereas trilabel matching does not. The trilabel test simply prevents
further work on comparisons that can certainly not yield any isomorphism. Another
comment is that neither prematching nor preprocessing has worst-case exponential
time-complexity.

7. EXPERIMENTS

7.1 Experiments with randomly generated constraint satisfaction problems

7.1.1 Experimental framework. Section 7.1 reports experiments with randomly
generated instances of the general binary constraint satisfaction problem, not with
isomorphism. Parameters that characterize an instance are:

n, the number of variables.

e, the number of scopes. A scope is a set of variables that are all subject to the
same constraint.

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 27

ρ, the average degree of the variables: ρ = 2e/n. The degree of a variable Vi is the
number of variables to which Vi is adjacent.

δ, the domain cardinality. Every domain has the same cardinality δ.

J , the number of (u, v) pairs such that Pij(u, v) = true. J is the same for each pair
(i, j) of variables that are subject to a constraint. In other words, every scope
has the same J .

Exponential time complexity implies that there is a region, within the space defined
by these parameters, where algorithms are too slow to be serviceable. A central
purpose of our experiments is to explore the extent of this region on a larger scale
than has been reported previously. A further purpose is to compare performance
of algorithms. With randomly generated instances we can observe and compare
algorithm performance when parameters n, ρ, δ and J are varied systematically,
but we cannot explore the whole of this four-dimensional space. Instead we have
chosen combinations of parameter values to illustrate their effect on the relative
speed of algorithms.

We generate random instances by first choosing e = nρ/2 scopes randomly, ex-
cept we make the degree of every variable be at least two, to prevent a short cut
that saves time by processing acyclic subgraphs after cyclic parts of the constraint
network have been satisfied [Sabin and Freuder 1997]. Moreover, we do not use any
randomly chosen set of scopes that does not have a connected constraint graph.
This prevents replacement of the constraint satisfaction by a collection of separate
smaller problems.

After choosing scopes, our generator randomly chooses J pairs of values on each
scope. No two pairs of values on the same scope are the same: duplicates are
precluded. If Rij is the set of randomly chosen tuples (i.e. pairs of values) on the
scope (i, j) then Pij(u, v) ≡ (u, v) ∈ Rij and J = |Rij |. Except for making the
degree of every variable be at least two, our generator is the same as the Model
B generator [Gent et al. 2001]. Constraints generated in this way are asymmetric:
Pi,j(u, v) 6≡ Pi,j(v, u).

For each of the randomly chosen scopes, the set of randomly chosen pairs of val-
ues on that scope is put directly into fast main memory (not disk) by the random
generator. Timings reported below are initialized when this has been done. These
timings, using a 3.2GHz Pentium 4 with 2Gbytes of RAM, include time for initial-
ization of the bit matrices. In Sections 7.1.2 and 7.2 the search stops as soon as a
solution is found. Constraints are randomly generated completely afresh for each
trial. Many trials are required when variance of time taken is high.

In Section 7.1 algorithms are identified as follows, always without preprocess-
ing, always with pop-stack restoration and always with duplicate representation of
domains except in Tables II and III:

BVDR: Bit vector direct reduction, as in Sections 3.2 and B.2.

BVCR: Bit vector cumulative reduction, as in Sections 3.3 and B.2.

BVFC: Bit vector forward checking, as in Sections 3.4 and B.2.

Focus: Focus search, as in Section 4.

AC2001: As in [Bessière et al. 2005].

Tables II and III show that in some cases duplicate (i.e. bit-vector and array)
representation15 makes the search somewhat slower. In Section 7.1.2 we have only
used duplicate representation because switching between duplicate and bit-vector-
only representation would obscure intercomparison of results.

15Duplicate representation is intended to save time by avoiding visiting 0’s in bit-vectors. In Table
II, duplicate representation is slowest when the average number of 0’s in bit-vectors is highest,

which is the opposite of what we expected.

ACM Journal Name, Vol. 15, No. 1, January 2011.

28 · Julian Ullmann

Table II. The ratio column shows the time taken using duplicate
representation of domains divided by the time taken using only bit-

vector representation. With duplicate representation, the time is the
average over all the trials in Figures 13, 14, 15 and 16. With only bit-

vector representation, the time is the average over the same number of

trials with the same parameters. The column headed nb0s shows the
average number of 0’s in bit-vectors immediately before invocation

of the domain reduction procedure. The depth is the average number

of electively instantiated variables at this time.

BVCR BVDR BVFC

ρ n δ ratio nb0s depth ratio ratio

3.5 100 300 1.294 104.71 2.02 1.373 -

7.0 100 100 0.713 34.58 2.36 0.836 0.915

7.0 100 300 1.336 92.74 1.68 1.431 1.125
7.0 300 100 0.978 22.71 2.38 1.059 1.096
7.0 300 300 1.380 65.52 1.77 1.549 0.986

14.0 300 100 1.003 21.47 2.05 1.088 1.011

Table III. Cumulative reduction with higher J than in Table II: average times

for 1000 trials with duplicate representation of domains and also with only bit-
vector representation (BVO). sd is the standard deviation of the average, not

of the variate. Meanings of nb0s and depth are the same as in Table II.

BVCR + Duplicate BVO

ρ n δ J av sd nb0s depth av sd

3.5 100 300 4600 4.60 1.91 224.5 13.4 6.65 0.75

7.0 100 100 3225 1.32 0.21 87.6 27.6 3.25 0.56
7.0 100 300 22900 2.12 0.41 280.5 35.9 3.19 0.73

7.0 300 100 3380 2.22 0.74 89.4 92.7 1.44 0.20

7.0 300 300 23600 4.99 1.65 275.4 108.2 4.01 1.10

14.0 300 100 6024 2.53 0.25 95.7 130.3 5.35 0.97

7.1.2 Examples of time-growth curves. As before, J is the number of (u, v) pairs
such that Pij(u, v) = true; δ is the domain cardinality. When J is small the
constraints are said to be tight. When J is large in comparison with its maximum
value, δ2, the constraints are said to be loose. A problem that has very tight
constraints is unlikely to have any solution, whereas a problem with very loose
constraints is unlikely not to have any solution. Between these extremes there is a
well known crossover point where the probability of existence of a solution is 0.5 and
random problems require the largest search [Prosser 1996; Smith and Dyer 1996].

When J increases in (a) in Figures 13, 14, 15 and 16 there is exponential growth
of time on the tight side of crossover, where there is no solution. When J increases
above crossover, the number of solutions increases, so the time to find one decreases
in (b) in these figures. Between (a) and (b) there is a gap, within the range of
J , wherein exponential time complexity makes these algorithms impractical. In
Table IV this gap increases with the average degree ρ, because when there are more
constraints it is more difficult to find a solution on the loose side of crossover. The
gap increases when looseEnd decreases.

Comparing Figure 13(a) with Figure 15(c), also Figure 14(a) with Figure 16(a),
we see that, on the tight side of crossover, search becomes much faster when ρ is
doubled and other parameters are unchanged. Search is faster because it is more

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 29

1700 1900 2100 2300 2500
J

0

5

10

15

Ti
m

e
in

se
co

nd
s

BVCR
BVDR
BVFC
Focus

4500 4600 4700 4800 4900 5000
J

0

2

4

6

8

10

12

Ti
m

e
in

se
co

nd
s

BVCR
BVDR

(a) (b)

Fig. 13. Average times versus J in 1000 trials with average degree ρ = 3.5, number of variables

n = 100, and domain cardinality δ = 300. (a) Tight side of crossover. (b) Loose side of crossover.

1100 1300 1500 1700
J

0

5

10

15

Ti
m

e
in

se
co

nd
s

BVCR
BVDR
BVFC
Focus

5980 6000 6020 6040 6060 6080
J

0

5

10

15

20

25

Ti
m

e
in

se
co

nd
s

BVCR
BVDR

(a) (b)

Fig. 14. Average times versus J with average degree ρ = 14, number of variables n = 300 and

domain cardinality δ = 100. (a) 500 trials on the tight side of crossover. (b) 1000 trials on the
loose side of crossover, where variance of average time is greater.

constrained16.
We also see that cumulative reduction is appreciably faster than direct reduction

on the tight side, but there is no significant difference on the loose side of crossover.
On the loose side, forward checking, focus search and AC2001 are always very
much slower than cumulative reduction: Table V gives examples. On the tight
side, AC2001 is always very much slower than direct reduction (BVDR), as would
be expected from the wide-ranging large-scale experimental results of Lecoutre and
Vion [2008]. Our subsequent experiments exclude AC2001 because there is no reason
to expect it to be competitive with BVCR.

Focus search time depends on the number values to which a variable will be
instantiated. This is the number of 1’s in the result of bit-vector intersection at
Line 6 in Fig 6. Focus search becomes more competitive when this number is
reduced:

16When constraints are not binary, search is faster the greater the number of variables within each

constraint [Ullmann 2007, Table 9].

ACM Journal Name, Vol. 15, No. 1, January 2011.

30 · Julian Ullmann

1000 1100 1200 1300 1400 1500 1600
J

0

10

20

30

40

Ti
m

e
in

se
co

nd
s

BVCR
BVDR
BVFC
Focus

3135 3160 3185 3210 3235 3260 3285 3310
J

0

5

10

15

20

25

Ti
m

e
in

se
co

nd
s

BVCR
BVDR

(a) (b)

3500 4000 4500 5000 5500 6000 6500 7000
J

0

5

10

15

20

25

Ti
m

e
in

se
co

nd
s

BVCR
BVDR
BVFC
Focus

22300 22400 22500 22600 22700 22800 22900 23000
J

0

5

10

15

20

Ti
m

e
in

se
co

nd
s

BVCR
BVDR

(c) (d)

Fig. 15. Average times versus J with average degree ρ = 7 and number of variables n = 100. (a)

δ = 100. 500 trials on the tight side of crossover. (b) δ = 100. 1000 trials on the loose side of
crossover. (c) δ = 300. 500 trials on the tight side of crossover. (d) δ = 300. 1000 trials on the
loose side of crossover.

Table IV. JT = J such that the average BVCR

search time on the tight side of crossover is 10 sec-
onds. JL = J such that the average BVCR search

time on the loose side of crossover is 10 seconds. δ is

the maximum cardinality of domains; δ2 is the greatest
possible value of J . Gap = (JL−JT)/δ2. LooseEnd =

(δ2−JL)/δ2. ρ is the average degree; n is the number
of variables.

Figure ρ n δ gap looseEnd

13(a)(b) 3.5 100 300 0.023 0.950

15(a)(b) 7.0 100 100 0.162 0.682
15(c)(d) 7.0 100 300 0.187 0.750
16(a)(b) 7.0 300 100 0.230 0.666

16(c)(d) 7.0 300 300 0.223 0.739

14(a)(b) 14.0 300 100 0.446 0.400

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 31

750 850 950 1050
J

0

5

10

15

20

25

Ti
m

e
in

se
co

nd
s

BVCR
BVDR
BVFC
Focus
AC2001

3300 3320 3340 3360 3380 3400 3420 3440
J

0

5

10

15

20

25

Ti
m

e
in

se
co

nd
s

BVCR
BVDR

(a) (b)

2600 2800 3000 3200 3400 3600 3800
J

0

5

10

15

20

Ti
m

e
in

se
co

nd
s

BVCR
BVDR
BVFC
Focus

23350 23450 23550 23650
J

0

5

10

15

20

Ti
m

e
in

se
co

nd
s

BVCR
BVDR

(c) (d)

Fig. 16. Average times versus J with average degree ρ = 7 and number of variables n = 300. (a)
Domain cardinality δ = 100. 500 trials on the tight side of crossover. (b) δ = 100. 1000 trials on

the loose side of crossover. (c) δ = 300. 500 trials on the tight side of crossover. (d) δ = 300. 1000
trials on the loose side of crossover.

Table V. Average time in seconds, and standard deviation of average time,

on the loose side of crossover, with ρ = 7. Here ‘-’ signifies that the algo-
rithm was too slow to permit sufficient trials. NbOfTrials is the number of
trials.

n δ J Algorithm Time Av Time Sd NbOfTrials

100 100 3300 BVCR 0.17 0.02 1000

100 100 3300 BVFC 4.15 0.94 100
100 100 3300 Focus 101.96 32.98 100

100 100 3300 AC2001 12.42 0.52 100

100 300 23000 BVCR 1.72 0.41 1000

100 300 23000 BVFC 8.72 2.19 500
100 300 23000 Focus 71.61 31.76 100

100 300 23000 AC2001 343.10 66.61 100

300 100 3430 BVCR 0.20 0.01 1000

300 100 3430 BVFC - - -
300 100 3430 Focus - - -
300 100 3430 AC2001 188.96 71.13 50

300 300 23700 BVCR 5.01 2.05 1000

300 300 23700 BVFC 767.79 268.51 10

300 300 23700 Focus - - -
300 300 23700 AC2001 135.20 7.74 50

ACM Journal Name, Vol. 15, No. 1, January 2011.

32 · Julian Ullmann

By increasing the average degree of variables. This increases the number of bit-
vectors that are intersected. Focus search is faster in Figure 15(c), where average
degree ρ = 7, than in Figure 13(a), where ρ = 3.5. Again, focus search is faster
in Figure 14, where ρ = 14, than in Figure 16(a), where ρ = 7.0, other parameters
being the same.

By increasing δ whilst J remains unchanged. This reduces the density of 1’s in
bit-matrix rows. Focus search is faster in Figure 15(c), where δ = 300, than in
Figure 15(a), where δ = 100. Again, focus search is faster in Figure 16(c), where
δ = 300, than in Figure 16(a), where δ = 100, other parameters being the same.

By decreasing the average cardinality of domains. Sections 7.6.4 and 7.7 provide
examples.

It is not so easy to explain why focus search is less competitive in Figure 16(a),
where n = 300, than in Figure 15(a), where n = 100.

7.2 Experiments with Frequency assignment problems

Binary constraint satisfaction problems arise in the assignment of frequency and
polarization to radio links so as to satisfy constraints such as minimization of in-
terference [Aardal et al. 2007]. A collection of fapp (i.e. frequency assignment
problem with polarization) problem instances are available at http://www.cril.univ-

artois.fr/∼lecoutre/research/benchmarks/benchmarks.html for use as benchmarks in the
experimental evaluation of constraint satisfaction algorithms; physical requirements
have been translated into clear ready-made constraint satisfaction problem formu-
lations. An XML file includes, for each instance, a specification of the domains of
variables, a specification of constraint scopes, and a specification of one or more
numeric predicates that must be satisfied on each scope. An example of a numeric
predicate is

Pij(u, v) = (u× v < a) ∨ (|u− v| ≥ b)

where a and b are prescribed constants.
These fapp benchmarks consist of forty sets, fapp01, fapp02,. . . , fapp40, each

containing eleven instances. Within each set, the eleven instances all have the same
number, n, of variables, the same number, e, of scopes, and, for each domain, the
same upperBound− lowerBound. In fact upperBound− lowerBound is so big that
bit-vector algorithms are practical only with surrogate values, as in Section 5. For
example, for fapp01, the greatest range of values in any domain is 5312, whereas
δ = 190. Another example is that for fapp20, the greatest range of values in any
domain is 5640, whereas δ = 302. Within each set, all of the eleven instances have
the same value of δ.

In these fapp benchmarks there are many cases where, for a given scope, two
specified predicates must both be satisfied. If these two predicates for the scope (i, j)
are P 1

ij and P 2
ij then bit-matrices M i

j and M j
i , initially empty, can be constructed

by the routine:

for each surrogate value u of Vi do
for each surrogate value v of Vj do

if P 1
ij(Si(u), Sj(v)) ∧ P 2

ij(Si(u), Sj(v)) then

include v in M i
j [u]; include u in M j

i [v];
end if

end for
end for

In Table VI, differences in average timings for BVDR, BVCR and IRCR may
not be significant since there are only eleven instances in each of the 40 sets, so we
have small-sample statistics. Because incremental restoration requires less memory,

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 33

Table VI. Parameters and timings on 40×11 fapp instances, using duplicate representation

of domains, not using preprocessing, and stopping when one solution is found. BVDR and
BVCR use pop-stack domain restoration; IRCR differs from BVCR only in that it uses

incremental restoration. If the search takes more than 1000 seconds it is stopped and this

situation is a time-out; ‘to’ denotes the number of time-outs; time is the average search
time. This is the average over only those instances for which there is no time-out. ‘-’

signifies insufficient memory.

Set-up BVDR BVCR IRCR

fapp n e δ time time to time to time to

01 200 1108 190 8.71 0.283 0 0.225 0 0.222 0
02 250 1636 210 16.02 0.345 0 0.277 0 0.283 0

03 300 2327 250 35.35 0.244 0 0.254 0 0.254 0

04 300 1799 270 35.49 4.045 0 4.911 0 4.961 0
05 350 2488 270 59.46 0.792 0 0.772 0 0.774 0

06 500 3478 290 78.93 7.142 0 7.618 0 7.618 0

07 600 4777 302 79.49 0.410 0 0.346 0 0.348 0
08 700 3834 282 71.38 1.264 0 1.535 0 1.371 0

09 800 4800 350 61.08 0.634 0 1.097 0 1.078 0
10 900 6071 362 164.21 2.541 0 1.944 0 1.940 0
11 1000 8005 362 319.38 2.335 0 42.780 0 42.700 0

12 1500 13439 310 506.64 19.845 6 59.992 5 59.527 5
13 2000 13699 190 156.47 4.507 4 4.476 4 4.538 4
14 2500 21610 362 942.23 - - - - 143.328 6

15 3000 17754 182 218.08 13.309 1 1.603 2 1.595 2
16 260 2088 302 29.96 0.007 0 0.003 0 0.012 0
17 300 2056 302 40.24 0.014 0 0.010 0 0.017 0

18 350 2387 302 34.93 0.012 0 0.011 0 0.021 0
19 350 3114 802 515.94 0.149 0 0.127 0 0.114 0
20 420 2487 302 51.03 0.009 0 0.009 0 0.011 0
21 500 1589 242 30.31 0.056 0 0.046 0 0.108 0

22 1750 16924 802 - - - - - - -
23 1800 33337 302 859.99 0.048 0 0.059 0 0.049 0
24 2000 14301 302 453.17 0.219 0 0.189 0 0.184 0

25 2230 11974 302 266.76 0.193 0 0.154 0 0.155 0
26 2300 12761 302 386.77 0.335 0 0.334 0 0.255 0
27 2550 6231 242 117.77 0.753 0 0.636 0 0.632 0

28 2800 12046 998 - - - - - - -
29 2900 41781 998 - - - - - - -
30 3000 33301 778 - - - - - - -

31 400 1644 700 280.97 - - - - 1.060 0
32 550 5017 998 - - - - - - -
33 650 4631 498 288.29 - - - 0.142 0

34 750 4623 998 - - - - - - -
35 1500 11723 698 - - - - - - -

36 2000 10067 454 517.94 - - - - 0.445 0
37 2250 22553 998 - - - - - - -
38 2500 32622 698 - - - - - - -
39 2750 12605 502 1,115.05 - - - - 2.829 0

40 3000 28313 698 - - - - - - -

IRCR processes 55 more fapp instances than BVCR and BVDR. Another comment
is that Set-up time is almost entirely the average time to construct bit-matrices.
Although in most cases the set-up time very greatly exceeds the search-time, the
use of bit-matrices may nevertheless be sensible because set-up time is O(eδ2)
whereas a search algorithm has worst-case exponential time complexity. For the fapp
benchmarks, timings obtained by other workers can be seen at http://www.cril.univ-

artois.fr/CPAI06/round2/results/globalbybench.php?idev=6&idcat=38&idSubCat=56.
Table VII shows average search time and numbers of time-outs for forward check-

ing (without preprocessing) on fapp01-10. Here forward checking is certainly very
much slower than BVCR. With focus search (without preprocessing) there is time-
out on all of these 110 instances, so focus search is certainly very much slower than
forward checking. Very poor timings for focus search and forward checking can

ACM Journal Name, Vol. 15, No. 1, January 2011.

34 · Julian Ullmann

Table VII. Average forward

checking search times on fapp01-
10. K is the average number

of 1’s in bit-matrices; higher K

signifies looser constraints.

fapp time to K

01 18.73 4 11,163
02 5.20 8 14,005

03 9.71 3 22,734

04 3.72 8 28,876
05 108.76 6 34,655

06 0.78 7 34,166

07 101.72 3 24,998
08 0.01 8 27,992

09 186.14 7 18,795

10 5.22 5 40,803

probably be attributed to the looseness of the constraints, which was unhelpful to
these procedures on the loose side of crossover in Section 7.1.

7.3 Graph versions of algorithms

The remainder of Section 7 deals with isomorphism, for which search is always
preceded by preprocessing. Algorithms are henceforward identified as follows:

BVCR: Bit vector cumulative reduction, as in Section 6.3.1,

BVFC: Bit vector forward checking, as in Section 6.3.2,

Focus: Focus search, as in Section 6.3.3,

Preprocessing: As in Section 6.3.1.

ADNP: This is a variant of BVCR in which the allDifferent constraint is
not propagated17. ADNP stands for allDifferent not propagated.

Duplicate (i.e. bit-vector and array) representation of domains is used because
in Table VIII this is usually faster than representing domains only by bit-vectors.
More importantly, duplicate representation allows incremental restoration, which
enables experimentation on a larger scale than with pop-stack restoration. For this
reason, incremental restoration is always used in Sections 7.4.1, 7.5 and 7.6. Pop-
stack restoration would have been practicable in some cases, but switching between
pop-stack and incremental restoration would have obscured the inter-comparison of
results.

7.4 Experiments with graph automorphism

7.4.1 Random graphs. An automorphism is an isomorphism of a graph with
itself. Although determination of automorphism of random graphs is nowadays
a too-easy test of an isomorphism algorithm, Figure 17 shows some timings for
comparison with [Foggia et al. 2001; Cordella et al. 2004]. Here Gβ is the same
graph as Gα, which is connected and randomly-generated except that no vertex has
degree one, for reasons briefly indicated in Section 7.1.1. Figure 17 shows results
obtained using three different vertex invariants:

17ADNP uses a set available of values that are currently absent from single-valued domains. ADNP

instantiates a variable i to a value u only if u ∈ available. When a variable i is instantiated to a

value u, then u is removed from available, following Ullmann [1976]. Moreover, when a domain
is reduced to a single value, v, then v is removed from available unless v is already absent from

available, in which case procedure reduce returns consistent = false. If, when at least one domain

is multivalued, procedure choose finds no multivalued domain that includes at least one value in
available then the effect is the same as when procedure reduce returns consistent = false. The set

available is subject to pop-stack restoration.

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 35

Table VIII. Average times for finding all subgraph isomorphisms in 10,000 trials

with duplicate representation of domains and with only bit-vector representation
(BVO). In these experiments with graphs randomly generated as in Section 7.6.1,

nα = 500, η is the number of distinct vertex and edge labels, and the column

headed directed indicates whether graphs are directed. The column headed isos
shows average numbers of subgraph isomorphisms. Here sd is the standard de-

viation of the average, not of the variate.

Duplicate BVO

nβ ρ η directed isos av sd av sd

550 3 1 no 41,272.8 0.6776 0.0784 1.3267 0.1616
625 6 1 no 57,759.8 1.1025 0.1060 1.2193 0.1427

625 9 1 no 6.4 0.8873 0.0107 0.6801 0.0791

625 3 2 no 29,963.7 0.5616 0.0570 0.7015 0.0846
725 3 3 no 17.909.3 0.3292 0.0596 0.5619 0.0879
750 3 3 no 47.807.1 1.0445 0.0866 1.4307 0.1247

1000 3 4 no 16.691.4 0.4915 0.0515 0.6346 0.0622

575 3 1 yes 16,378.8 0.2701 0.0401 0.4066 0.0500

625 6 1 yes 255.9 0.0226 0.0002 0.0327 0.0003
675 6 1 yes 100,591.8 1.5456 0.1058 1.9650 0.2131

800 9 1 yes 69,377.0 1.1395 0.1650 1.3486 0.1984

1000 2000 3000 4000 5000
n

0

500

1000

1500

D
om

ai
n

ca
rd

in
al

ity
be

fo
re

pr
ep

ro
ce

ss
in

g Degrees
Branches
preMatch

1000 2000 3000 4000 5000
n

0

2

4

6

8

Ti
m

e
in

se
co

nd
s

Degrees
Branches
preMatch

(a) (b)

Fig. 17. Results of 100 trials, with algorithm BVCR with preprocessing and ρ = 3 which is the
average degree. Here n is the number of vertices in the graph. (a) Average cardinality of domains

before commencement of preprocessing. (b) Average time to find all automorphisms.

degrees a value u is initially included in domain Di if
degreeOf(V βu) = degreeOf(V αi).

branches a value u is initially included in domain Di if the sum of degrees of
vertices adjacent to V βu equals the sum of degrees of vertices adjacent
to V αi . Results obtained using branches do not differ significantly from
results obtained using distance-2-degrees instead of branches.

prematches a value u is initially included in domain Di if prematches(i, u) returns
true, where prematches is as in Figure 8 except that the two instances
of ‘>’ are both changed to ‘6=’.

For each different number of vertices in Figure 17:

—The average number of automorphisms is less than 1.41.

—The average cardinality of domains after preprocessing is less than 1.0003.

—The average of the total number of elective instantiations during the search is
less than 1.53

ACM Journal Name, Vol. 15, No. 1, January 2011.

36 · Julian Ullmann

Table IX. Details of ten sets of strongly regular graphs.

nbGraphs is the number of graphs in a set; nbAutomorphisms
is the average number of automorphisms of graphs in this set.

Row n ρ λ µ nbGraphs nbAutomorphisms

1 25 8 3 2 1 28,800

2 25 12 5 6 15 52.27

3 26 10 3 4 10 18.9

4 27 10 1 5 1 51,840

5 28 12 6 4 4 10,290

6 29 14 6 7 41 11.85

7 35 16 6 8 3854 14.05

8 35 18 9 9 227 189.95

9 36 14 4 6 180 78.92

10 40 12 2 4 28 3,782.1

Table X. Experimental results in Row x are obtained with the
set of graphs in Row x of Table IX. time is the average total time

in seconds to find all automorphisms; nodes is the average number

of search-tree nodes visited, which is the same thing as the average
number of elective instantiations during the search. BVCR and

BVFC here use pop-stack domain restoration.

BVCR BVFC Focus

Row time nodes time nodes time nodes

1 0.210 50,025 0.300 99,225 0.060 358,425

2 0.014 2,412 0.027 5,947 0.002 7,694

3 0.006 701 0.011 3,036 0.001 4,298

4 0.440 88,857 0.950 298,647 0.200 875,367

5 0.255 24,645 0.360 99,511 0.077 267,004

6 0.032 3,213 0.056 11,188 0.004 12,872

7 0.086 4,765 1.012 14,385 0.007 16,413

8 1.685 94,862 1.352 197,079 0.069 184,510

9 0.034 1,655 0.068 13,126 0.007 15,657

10 0.134 7,391 0.269 40,288 0.060 134,611

This means that there is almost no search, and times in Figure 17(b) are almost
entirely times taken by preprocessing. The curve-fit curves in Figure 17(a) are
exactly linear; in (b) they are gently quadratic. Because there is almost no search,
there is no point in comparing the performance of different search algorithms such
as BVCR, forward checking and focus search on randomly generated graphs.

7.4.2 Strongly regular graphs. A graph G = (V,E) that has n vertices, all of
these having the same degree ρ, is said to be strongly regular if there are integers λ
and ν such that:

—Every two adjacent vertices have λ common neighbors, and

—Every two non-adjacent vertices have ν common neighbors.

Finding automorphisms of strongly regular graphs can be a hard test for a vertex
partitioning algorithm. In the present context, strongly regular graphs are of in-
terest because preprocessing, as in Section 6.1, does not reduce any domain and
is therefore useless; there is no point in comparing performance using unary con-
straints derived from degrees or branches or prematching, because none of these
reduce any domain. Every domain is initialized to contain exactly n values.

Each row in Table IX provides information about one of ten sets of strongly
regular graphs obtained from http://cs.anu.edu.au/∼ bdm/data/graphs.html. Within
a set, all the graphs belong to the same class, denoted by srg(n, ρ, λ, ν). Focus
search is fastest in all rows in Table X, which shows timings. In Section 7.1, forward
checking and focus search work best with high ρ. Forward checking is faster than

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 37

Table XI. Average time in seconds for BVCR, ADNP, BVFC and focus search

on benchmark instances of Solnon [2010]. ρα and ρβ are average degrees of
Gα and Gβ ; nβ is the number of vertices in Gβ . Each line in this table shows

averages over 90 instances, except for the random instances, where averages are

over 30 instances, and scalefree, where averages are over 20 instances. Moreover
each line shows average times for finding one isomorphism, except for the bottom

three lines, which show average times for finding all isomorphisms. Algorithms

are implemented in Modula-2. There are no time-outs except for two with focus
search with random 0.10 and nβ = 600. A hyphen signifies that an algorithm is

excessively slow.

benchmark nβ ρα ρβ BVCR ADNP BVFC Focus

fixed 200 5.67 6.00 0.050 0.047 0.008 0.130

valence 400 5.83 6.00 0.412 0.689 0.056 0.173
800 5.91 6.00 4.795 8.603 0.390 1.723

bounded 200 4.12 5.98 0.002 0.002 0.002 0.005

valence 400 4.18 5.90 0.006 0.009 0.128 0.037
800 4.27 5.99 0.026 0.036 0.105 0.045

4D 256 4.11 6.04 0.030 0.044 0.026 0.016
irregular 625 4.28 6.23 0.083 0.267 1.104 0.133

meshes 1296 4.36 6.35 2.699 3.521 2.566 6.028

random 200 2.82 4.45 0.018 0.037 0.022 0.096
0.01 400 4.03 8.18 10.000 10.450 63.291 4.010

600 5.42 12.08 72.380 184.339 63.891 2.795

random 200 7.97 19.47 6.039 30.117 0.841 0.263
0.05 400 15.60 38.94 - - 14.706 1.976

600 23.41 58.43 - - 89.447 10.333

random 200 15.08 37.85 - - 8.862 1.435
0.10 400 25.17 50.55 - - - 89.278

600 45.48 113.82 - - - 209.295

scale 200 5.43 6.03 0.015 0.018 0.016 0.017
free 600 5.43 6.02 0.268 0.268 0.267 0.238

1000 5.44 6.02 1.129 1.078 1.103 1.027

BVCR only in Row 8 of Table X, where ρ = 18. In Row 8, the time taken by
focus search is less than the time taken by BVCR by a factor of 24; this is the only
row where the number of nodes visited by focus search is less than the number of
nodes visited by forward checking. Although focus search visits the largest number
of nodes in all other rows, it is fast because it does less work after each elective
instantiation.

7.5 Experiments with subgraph isomorphism benchmarks

Solnon [2010] has reported experimental comparison of recent subgraph isomor-
phism algorithms using benchmark pairs of graphs (Gα, Gβ) available at
http://www710.univ-lyon1.fr/∼csolnon/benchmarks.tgz. Timings in Table XI can be
compared with Solnon’s timings for other algorithms on the same benchmarks.
Comparison is of course hazardous when algorithms are implemented in different
programming languages by different programmers and when timings are obtained
using different processors. It would be more meaningful to compare time-growth
curves, as we have done for BVCR and focus search in Section 7.1.2, but appropriate
time-growth curves have not yet been published for competitor algorithms.

In twenty trials with each of the scalefree benchmarks with nβ = 200, 600, 1000, an
isomorphism was found respectively in 9, 10 and 12 trials by preprocessing without
any search. This is one reason why timings with these benchmarks are similar for
the four algorithms. As in Section 7.1.2, focus search becomes more competitive
the higher the average degree of Gα. This is particularly clear with the random
benchmarks.

ADNP is a variant of BVCR that was introduced in Section 7.3. Results for
ADNP are included to help assess the extent to which propagation of the allDifferent
constraint in BVCR is actually beneficial. In Table XI the differences in times

ACM Journal Name, Vol. 15, No. 1, January 2011.

38 · Julian Ullmann

for BVCR and ADNP are not very significant, except where the average time for
BVCR exceeds two seconds, but BVCR is very much faster than ADNP in Figure
18. Results of small-scale experimentation, as in Table XI, may be misleading.

7.6 Experiments with subgraph isomorphism of randomly generated graphs

7.6.1 Experimental framework. We aim to show how search time and number
of isomorphisms depend on the sizes of the two graphs. We work with randomly
generated graphs to facilitate systematic variation of problem parameters. Our
procedure is as follows.

A graph Gβ , having nβ vertices, is generated randomly, except that no vertex has
degree less than two. A subset of nα vertices of Gβ are selected randomly to be the
vertices of a new smaller graph Gα. Every pair of these vertices that are adjacent
in Gβ are also adjacent in Gα. There are no other edges in Gα, except that if Gα is
found not to be connected then, until Gα becomes connected, a succession of new
edges are inserted into Gα and Gβ so as to preserve subgraph isomorphism. In most
cases very few new edges are inserted. In Section 7.6, ρ denotes the average degree
of graph Gβ before insertion of extra edges to ensure that Gα is connected.

In experiments with randomly generated labelled graphs, each vertex in Gβ is
labelled with an ordinal chosen randomly within the range 1, . . . , η. Each edge in
Gβ is also labelled with an ordinal chosen randomly within the same range. Of
course different ranges could be used for vertices and edges, but for simplicity we
use equal ranges. Labels of vertices and edges in Gα are the same as those of the
vertices and edges in Gβ to which they are mapped by the isomorphism inherent in
the construction.

In all experiments reported in Section 7.6, the search is preceded by BVCR pre-
processing, which is preceded by prematching. Prematching means applying unary
constraints by invoking the appropriate version of prematches.

7.6.2 Unlabelled undirected subgraph isomorphism. As before, nα and nβ are
the numbers of vertices in graphs Gα and Gβ , respectively. When nβ = nα, finding
graph (not sub-graph) isomorphism is not NP-Complete; instead, we have relatively
gentle time-growth, as in Figure 17(b). If we start with nα much less than nβ
and increase nα progressively until nβ = nα, the time to find one isomorphism at
first increases exponentially, as in Section 7.1.2 and then decreases as we approach
nβ = nα. The maximum in Figure 18 has not, so far as we know, been reported
previously. Figure 18 also shows that ADNP, a variant of BVCR introduced in
Section 7.3, is usually much slower than BVCR. This suggests that propagation of
allDifferent, as in Section 6.3.1, substantially increases the speed of BVCR.

If we fix nα and progressively increase nβ , starting near nα = nβ , the time to
find one isomorphism at first increases exponentially, in Figure 19, until it reaches a
further maximum, which again, so far as we know, has not been reported previously.
When nβ is increased beyond this maximum there are more edges in Gβ that could
correspond to a given edge in Gα. Because there are more solutions, finding one
of these takes less time. Near the maximum the variance of timings is particularly
high; the search is quick in most cases and very slow in others18. Despite the upward
slope of the average-time plot in Figure 19(b), the number of time-outs tends to
decrease as nβ increases. Moreover, the average time when nβ > 150 in Figure
19(a) exceeds all average times in Figure 19(b).

7.6.3 Unlabelled directed subgraph isomorphism. With unlabelled directed graphs,
and with the same parameters as in Figure 19, we see no maximum in Figure 20(a).

18which is heavy-tailed behavior [Gomes et al. 2000; Hulubei and O’Sullivan 2006]. This also

occurs at crossover in Section 7.1.2.

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 39

265 270 275 280 285 290 295 300
nAlpha

0

100

200

300

400

N
um

be
ro

ft
im

eO
ut

s

BVCR
ADNP

700 750 800 850 900
nAlpha

0

100

200

300

400

500

N
um

be
ro

ft
im

eO
ut

s

BVCR
ADNP

(a) (b)

Fig. 18. The number of timeOuts when seeking one isomorphism in 500 trials with nβ = 1000

and average degree ρ = 3. Here a timeOut is a trial in which the search is stopped at 10 seconds.
(a) Tight side of maximum. (b) Loose side of maximum.

120 130 140 150 160 170
nBeta

0

2

4

6

8

Ti
m

e
in

se
co

nd
s

0

20

40

60

tim
eo

ut
s

time
timeouts

500 550 600 650 700 750 800
nBeta

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ti
m

e
in

se
co

nd
s

0

5

10

15

tim
eo

ut
s

time
timeouts

(a) (b)

Fig. 19. Average time to find one isomorphism (Left-hand axis) and number of time-outs (Right-

hand axis) with BVCR, nα = 100, average degree ρ = 3 and 1000 trials. Here a timeOut is a trial
in which the search is stopped at 1000 seconds; time is the average over trials where there is no

time-out. (a) Tight side of maximum. (b) Loose side of maximum.

The increasing difference between total time19 and search time is almost entirely
due to preprocessing, which removes an increasing number of values from domains,
as can be seen in Figure 20(b).

7.6.4 Labelled undirected subgraph isomorphism. When all isomorphisms are
found, the sharp peak in Figure 21(a) is unexpected and unexplained. Again with
the same parameters as in Figures 19 and 20, Figure 21(b) shows average total time
to find one isomorphism. Most of this time is taken by preprocessing20, which is
the same for Figures 21(a) and (b), and this is why the difference in total times is
slight.

19In 1000 trials there is exactly one time-out at 1000 seconds when nα = 1000, 1200, 1400 and

this is not included in the average over the remaining 999 trials in Figure 20(a). There are no

time-outs with other values of nα.
20When nβ = 5, 600, the average cardinalities of domains before and after preprocessing are 653.2

and 1.632 respectively.

ACM Journal Name, Vol. 15, No. 1, January 2011.

40 · Julian Ullmann

0 1000 2000 3000 4000 5000 6000
nBeta

0

4

8

12

Ti
m

e
in

se
co

nd
s

TotalTime
Search time

0 1000 2000 3000 4000 5000 6000
nBeta

0

1000

2000

3000

4000

D
om

ai
n

ca
rd

in
al

ity

card.before
card.after

(a) (b)

Fig. 20. Results of 1000 trials with unlabelled directed subgraph isomorphism, BVCR, nα = 100,

and average degree ρ = 3. (a) Average total time and search time to find one isomorphism.
(b) Domain cardinalities before and after preprocessing.

0 1000 2000 3000 4000 5000 6000
nBeta

0

2000

4000

6000

8000

10000

Is
om

or
ph

is
m

s

0.00

0.02

0.04

0.06

0.08

0.10

0.12

To
ta

lt
im

e
in

se
co

nd
s

Isomorphisms
Total time

0 1000 2000 3000 4000 5000 6000
nBeta

0.00

0.04

0.08

0.12

Ti
m

e
in

se
co

nd
s

Total time
Prepro time

(a) (b)

Fig. 21. Results of 500 trials with labelled undirected subgraph isomorphism with BVCR,
nα = 100, average degree ρ = 3 and with η = 2 which means that there are two possible
labels for each vertex and for each edge. (a) Number of isomorphisms (left-hand axis) and
total time to find all of them (right-hand axis). (b) Average total time and preprocessing
time to find only one isomorphism.

When we fix nα = 200 and increase nβ , the number of isomorphisms increases
so rapidly that it is not practical to observe the top of the peak. Instead, Figure
22(a) shows the number of isomorphisms and the time to find all of them, up to
nβ = 380. Figure 22(b) continues these results for nβ ≥ 1000. Focus search is
competitive in these experiments because of the very low cardinality21 of domains
after preprocessing, as can be seen in Figure 23(a), right-hand axis. We see no
peak in total time to find one isomorphism, left-hand axis. When η = 4 and all
isomorphisms are found, the peak is so small that we can see the whole of it in
Figure 23(b).

With nα = 1000 and η = 8 labels, the slight peak in the number of isomorphisms

21Very low cardinality means that the amount of data moved by incremental restoration is excep-
tionally low, so incremental restoration is substantially faster than pop-stack restoration in this

case, although in most other cases incremental restoration is appreciably slower.

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 41

200 250 300 350
nBeta

100

101

102

103

104

105

106

N
um

be
ro

fi
so

m
or

ph
is

m
s

0

2

4

6

8

To
ta

lt
im

e
in

se
co

nd
s

Isomorphisms
BVCR time
Focus time

1000 1200 1400 1600 1800 2000
nBeta

104

105

106

6

2
3
4
5
7

2
3
4
5
7

2

N
um

be
ro

fi
so

m
or

ph
is

m
s

0

1

2

3

4

5

To
ta

lt
im

e
in

se
co

nd
s

Isomorphisms
BVCR time
Focus time

(a) (b)

Fig. 22. Five hundred trials with labelled undirected subgraph isomorphism, BVCR and focus

search, nα = 200, average degree ρ = 3 and η = 2 labels. The number of isomorphisms is plotted
against the left axis, which is logarithmic. The total time, in seconds, to find all isomorphisms is

plotted against the right axis, which is linear. (a) nβ ≤ 380. (b) nβ ≥ 1000.

0 1000 2000 3000 4000
pBeta

-0.01

0.04

0.09

0.14

Ti
m

e
in

se
co

nd
s

1.00

1.05

1.10

1.15

1.20

ca
rd

af
te

rp
re

pr
o

Total time
card after

0 500 1000 1500 2000
nBeta

0

20

40

60

Is
om

or
ph

is
m

s

0.000

0.005

0.010

0.015

0.020

Ti
m

e
in

se
co

nd
s

isomorphisms
Total.time

(a) (b)

Fig. 23. Labelled undirected subgraph isomorphism with BVCR, nα = 200 and average degree

ρ = 3. (a) With η = 2 labels, one hundred trials wherein the search stops as soon as the first
isomorphism is found. (b) With η = 4 labels, five hundred trials wherein all isomorphisms are

found.

in Figure 24(a) may perhaps be due to the slight peak in average domain cardinality
after preprocessing. This cardinality, which is always less than 1.01, is plotted
against the right hand axis in Figure 24(b). Total time to find all isomorphisms, in
Figure 24(a), is only very slightly greater than the time to find just one isomorphism
in Figure 24(b). This is because when nα = 1000 the total time is predominantly
prematching time, as can be seen in Figure 24(b). Prematching checks nα × nβ
possible correspondences, taking significant time when values of nα and nβ are high.
The discontinuity in total-time curves at nβ = 2000 is presumably due to the visible
discontinuity in the prematching time curve, for which we have no explanation.

7.7 Molecular graph retrieval experiments

The structural formula of a molecule can be regarded as a graph, in which vertices
are labelled with atom-identifiers, such as C, O, N, and edges are labelled with

ACM Journal Name, Vol. 15, No. 1, January 2011.

42 · Julian Ullmann

1000 2000 3000 4000 5000 6000
nBeta

0

100

200

300

Is
om

or
ph

is
m

s

0.05

0.10

0.15

0.20

Ti
m

e
in

se
co

nd
s

Isomorphisms
Total.time

1000 2000 3000 4000 5000 6000
nBeta

0.00

0.05

0.10

0.15

0.20

Ti
m

e
in

se
co

nd
s

1.000

1.002

1.004

1.006

C
ar

d
af

te
r

Total.time
Card.after
Prematch.time

(a) (b)

Fig. 24. Results of trials with labelled undirected subgraph isomorphism with BVCR, nα = 1000,

average degree ρ = 3 and η = 8 labels. (a) Five hundred trials wherein all isomorphisms are found.
(b) One hundred trials wherein the search stops as soon as the first isomorphism is found.

Table XII. Numbers of atoms in intervals 41 through 52. Within Interval 52, the

number of atoms is distributed decreasingly across the range 84..382; the lower end

of this range is very much more densely populated than the higher end.

Min number Max number Average number Average number

Interval of atoms of atoms of atoms of bonds

41 41 41 41.00 44.82
42 42 42 42.00 45.66
43 43 44 43.51 47.09

44 45 46 45.50 49.52
45 47 48 47.50 51.52
46 49 51 50.06 54.53

47 52 54 52.92 57.70
48 55 58 56.46 61.37
49 59 63 60.97 66.26
50 64 70 66.62 71.88

51 71 83 76.22 81.80
52 84 382 118.33 133.77

bond-types22, which may be 1,2,3 or 4. In the following experiments, queries and
targets are graphs representing molecules; we seek all targets to which a query is
exactly subgraph isomorphic. These experiments are intended to show how the
effectiveness of trilabel matching, prematching and preprocessing depend on the
numbers of atoms in query and target molecules, using molecular data freely avail-
able to the public23. This data is of a kind for which there are well-established
practical requirements for determination of subgraph isomorphism.

We have sorted this data-set into intervals, each containing at least 1000 molecules.
For 6 < n < 43, every molecule in interval n has exactly n atoms. For n > 41,
Table XII shows the range of numbers of atoms in molecules in interval n. Note
that this range increases with n and that interval 52 includes molecules containing
up to 382 atoms. Molecules within each interval have not been sorted and remain
in the same sequence as in the original data-set.

When comparing millions of pairs of molecular structures, we aim to spend min-
imal time using trilabels and prematching to rule out non-isomorphic comparisons.

22Here 4 denotes an aromatic bond as in a benzene ring. In all cases we have converted 121212

benzene rings to 444444.
23From the US Developmental Therapeutics Program via the bottom link on the page

http://dtp.cancer.gov/docs/3d database/Structural information/structural data.html.

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 43

30 35 40 45 50
Interval

0.00

0.05

0.10

0.15

0.20

Fr
ac

tio
n

trilabel
prematch
prepro
isomorphism

30 35 40 45 50
Interval

0.00

0.02

0.04

0.06

0.08

Fr
ac

tio
n

trilabel
prematch
prepro
isomorphism

(a) (b)

Fig. 25. Fraction admitted versus interval that contains target atoms. (a) Query has 12 atoms;

nα = 12. (b) Query has 24 atoms; nα = 24.

In Figure 25, which explores effectiveness of methods for avoiding search for iso-
morphism, nα is the number of atoms in a query. These experiments use the first
3000 molecules24 having nα atoms as queries, and use the first 1000 molecules in
each interval 33 through 52 as targets. For 3000×1000 comparisons in each of these
twenty intervals, Figure 25 shows four fractions of the three million comparisons:

trilabel is the fraction wherein no trilabel occurs more times in the query than
in the target.

prematch is the fraction wherein prematching leaves no domain empty.

prepro is the fraction wherein preprocessing leaves no domain empty.

isomorphism is the fraction wherein an isomorphism is found. The search termi-
nates when an isomorphism is found.

Figure 25 shows that prematching greatly reduces the number of invocations of
preprocessing, particularly when nα = 24. Although the number of invocations of
prematching increases when interval increases, the number of invocations of prepro-
cessing increases more slowly.

Table XIII shows the average total time, including disk access time, for comparing
a query with a target. Cases where there is no preprocessing or no search25 are
included in average preprocessing and search times. For example, when there is no
search, zero search time is included in the average search time. One reason why
total time is less when nα = 24 is that trilabel and prematch filtering are more
effective than when nα = 12, as can be seen in Figure 25. Although the search time
for focus search is an order of magnitude less than for BVCR when nα = 24, there is
not much difference in total time, because of the time taken by disk access, trilabel
matching and prematching; also because search is avoided in many cases. The time
growth curves in Figure 26 are not simply exponential26: Timings are similar for
BVCR and focus search when nα = 12, but focus search is faster27 when nα = 24.

24Excluding molecules that are not connected. A molecule is connected iff there is a path from

any one of its atoms to all of its atoms via bonds. We also exclude any molecule that includes any

atom other than C, O, N, H, Cl or S, which occur most frequently in this data-set. Inclusion of
unusual atoms would make a query too easy.
25For focus the number of searches is exactly the same as it is for BVCR.
26Negative slope is attributable to decreasing cardinalities of domains.
27Low cardinality of domains improves the speed of focus search. For example, with nα = 24

there were 917 searches in interval 35; average domain cardinality and average search time were

ACM Journal Name, Vol. 15, No. 1, January 2011.

44 · Julian Ullmann

Table XIII. Average time in microseconds for comparing one query with one target.

These averages are over the 3000× 20× 1000 query-target comparisons in Figure 25. In
these experiments, BVCR has pop-stack restoration.

BVCR Focus
Number of atoms Total Preprocess Search Total Preprocess Search

in query time time time time time time

12 22.455 0.409 0.314 21.536 0.416 0.359
24 11.266 0.141 1.396 10.349 0.126 0.123

30 35 40 45 50
Interval

0.2

0.4

0.6

0.8

Ti
m

e
in

m
ic

ro
se

co
nd

s

preproTime
searchTime

30 35 40 45 50
Interval

0.2

0.4

0.6

0.8

Ti
m

e
in

m
ic

ro
se

co
nd

s

preproTime
searchTime

(a) (b)

30 35 40 45 50
Interval

0.0

0.5

1.0

1.5

2.0

Ti
m

e
in

m
ic

ro
se

co
nd

s

preproTime
searchTime

30 35 40 45 50
Interval

0.0

0.1

0.2

0.3

0.4

Ti
m

e
in

m
ic

ro
se

co
nd

s

preproTime
searchTime

(c) (d)

Fig. 26. Preprocess time and search time versus interval. (a) BVCR with nα = 12. (b) Focus

search with nα = 12. (c) BVCR with nα = 24. (d) Focus search with nα = 24.

Whereas Figure 25 plots fraction against target interval, Figure 27(a) plots frac-
tion against the number, nα, of atoms in each query. Total time decreases as nα
increases because trilabel testing and prematching become more effective. Although
focus search time decreases remarkably in Figure 27(d), the effect on total time is
negligible.

Figures 25 and 27 show results of a four stage process: trilabel signature matching,
prematching, preprocessing and search. Preprocessing, as in Section 6.3.1, applies
and propagates the allDifferent constraint, which is essential, but trilabel matching
and prematching can be omitted. In Table XIV, which illustrates the effect such
omissions, there are three cases:

5.465 and 305 µsecs, respectively. With nα = 24 there were 1214 searches in interval 42; average

domain cardinality and average search time were 5.100 and 131 µsecs, respectively.

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 45

10 15 20 25 30
Atoms in query

0.00

0.05

0.10

0.15

0.20

Fr
ac

tio
n

trilabel
prematch
prepro
isomorphism

10 15 20 25 30
Atoms in query

5

10

15

20

25

30

A
ve

ra
ge

do
m

ai
n

ca
rd

in
al

ity

Before prepro
After prepro

(a) (b)

10 15 20 25 30
Atoms in query

0

1

2

3

Ti
m

e
in

m
ic

ro
se

co
nd

s

10

20

30

40

To
ta

lt
im

e
in

m
ic

ro
se

co
nd

s

preproTime
searchTime
totalTime

10 15 20 25 30
Atoms in query

0.2

0.4

0.6

0.8
Ti

m
e

in
m

ic
ro

se
co

nd
s

10

20

30

40

To
ta

lt
im

e
in

m
ic

ro
se

co
nd

s

preproTime
searchTime
totalTime

(c) (d)

Fig. 27. Results of experiments with 1000 target molecules in Interval 52 and 3000 query molecules
in Interval nα. The meaning of average times is the same as for Table XIII, except that these are

averages over 3000× 1000 query-target comparisons. (a) Fraction admitted. (b) Average domain

cardinality before and after preprocessing. (c) Average search time and preprocessing time (left
axis) and total time (right axis) for BVCR. (d) Average search time and preprocessing time (left

axis) and total time (right axis) for focus search.

(1) Trilabel matching and prematching are both applied.

(2) Trilabel matching is omitted and prematching is applied.

(3) Trilabel matching is applied and prematching is replaced by hk-attribute degree
matching as in Section 6.6.

These results have been obtained with 60 queries28 which are not complete
(hydrogen-suppressed) molecules, but instead are molecular substructures that are
typical of practical queries. In these 60 queries the minimum number of atoms is
five, the maximum number is 23 and the average is 10.82. Table XIV confirms that
omission of stages increases average overall time. Comparing Case 1 with Case 3,
we see that replacing prematching by hk-attribute degree doubles the total time.

8. CONCLUSION

Domain reduction is not an antidote for worst-case exponential time-complexity,
but it does allow some real practical problems to be solved, e.g. [Kohler et al. 2002;

28Kindly provided by Dr John Holliday, Department of Information Studies, The University of

Sheffield, UK.

ACM Journal Name, Vol. 15, No. 1, January 2011.

46 · Julian Ullmann

Table XIV. Results of comparison of 60 queries

with 1000 molecules in interval 52. Number of pre-
pros is the number of invocations of preprocessing

within 60,000 query/target comparisons. Domain

cardinality is the cardinality after preprocessing,
averaged over the number of searches. Total time

is the average in microseconds over 60,000 compar-

isons including cases where there is no prematch
or no preprocessing or no search. The search algo-

rithm is BVCR with pop-stack restoration.

Case 1 2 3

Number of prepros 4,706 5,208 5,779

Number of searches 1,711 1,724 1,817

Domain cardinality 6.872 7.024 7.016

Total time 45.98 138.25 90.35

Chisholm and Motherwell 2004; Willett 2008; Bandyopadhyay et al. 2009; Hassan
2009]. For binary constraints, bit-vector domain reduction gains speed by using
bit-parallel operations that are available in conventional processors. However, there
may never be just one bit-vector domain reduction procedure that is always the
best one to choose.

Incremental restoration allows us to solve bigger problems than pop-stack restora-
tion, but is usually somewhat slower. Cumulative reduction is sometimes more than
twice as fast as direct reduction, but is usually not much more than thirty percent
faster. Compared with direct reduction, cumulative reduction does not incur any
additional memory cost, but it does make the reduction procedure rather more
complicated.

There is a well-known trade-off between, on the one hand, light-weight domain
reduction that requires many invocations because each achieves only a little reduc-
tion, and on the other hand, heavy-weight reduction that requires fewer invocations
because each achieves more reduction [Bessière et al. 2002; Chmeiss and Säıs 2004].
Hitherto, forward checking has been the usual example of a light-weight domain
reduction procedure. The main original contribution of this paper is the introduc-
tion of focus search, which is lighter-weight than forward checking. Focus search
is an ultra light-weight process that does not have save/restore, nor dynamic vari-
able ordering, nor does it update duplicate representations of domains during the
search. Implementation of the allDifferent constraint is simpler in focus search than
in forward checking.

Although heavy-weight reduction, e.g. BVCR, is fastest for many constraint
satisfaction problems, light-weight reduction is sometimes an order of magnitude
faster. Two examples are when the average degree of randomly-generated constraint
graphs is high (Figs 14(a), 15(c), 16(c))), and when constraint symmetry hampers
domain reduction in the enumeration of automorphisms of strongly regular graphs
(TableX). In these examples, forward checking is faster than BVCR, and focus
search is even faster.

Besides introducing focus search, this article has also contributed an up-to-date
algorithm for subgraph isomorphism, which differs from an earlier algorithm [Ull-
mann 1976] as follows:

(1) Straightforward implementation of a requirement that edges which correspond
in an isomorphism must have matching labels.

(2) Dynamic variable ordering is applied with the weighting heuristic of Boussemart
et al [2004].

(3) Propagational domain reduction procedures employ a queue, following Mack-
worth [1977].

(4) Domain reduction is not applied to domains that are single-valued at the time

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 47

of invocation of the domain reduction procedure. Linked lists serve to prevent
the domain reduction procedure from visiting single-valued domains.

(5) The allDifferent constraint is applied within the domain reduction procedure.
When a domain becomes single-valued, this value is removed from all other
domains, and in this sense the allDifferent constraint is propagated, thus sub-
stantially reducing search time.

(6) Prematching is a non-propagational domain reduction procedure that can be
helpful before preprocessing.

(7) To avoid serial search for 1’s in bit vectors, domains can be represented by
arrays as well as by bit-vectors, using Briggs-Torczon swapping to facilitate
save/restore of array contents. An advantage of this duplicate representation
is that it allows efficient incremental save/restore of domains when pop-stack
restoration would require too much memory.

Technical developments reported in this article have allowed systematic experi-
mentation on an unusually large scale, although it is only possible to explore an
extremely small part of the multidimensional space of possible problems. With
randomly-generated binary constraint satisfaction (not isomorphism) problems, we
have found that if the average degree ρ is increased whilst other parameters are
unchanged, the search becomes faster on the tight side of crossover but takes longer
on the loose side because there are fewer solutions, so the average time to find one
is greater. Between the two sides, there is a region where algorithms are intolerably
slow. The size of this region increases when ρ increases in Table IV.

For unlabelled undirected subgraph isomorphism there are two separate regions
where search may be intolerably slow. As before, nα and nβ are the numbers of
vertices in the smaller and in the larger graph, respectively. If nβ is fixed while
nα increases, search time at first increases exponentially, and then decreases as
nα approaches nβ , in Figure 18, because graph (not subgraph) isomorphism is not
NP-Complete. If nα is fixed while nβ is increased above nα, search time at first
increases exponentially and then decreases, in Figure 19, because there are more
solutions. This second maximum is analogous to crossover.

NP-Completeness [Cook 1971] has hitherto discouraged development of algo-
rithms for subgraph isomorphism. For directed unlabelled and undirected labelled
subgraph isomorphism, which are the most important practical cases, our results
suggest that average-time complexity is not exponential when nβ < 5600. The
time to find a single isomorphism increases quadratically with nβ in Figures 20(a),
21(b), 23(a) and 24(b). It is therefore not surprising that algorithms for subgraph
isomorphism have well-established practical applications in chemoinformatics.

Prematching is a valuable addition to the pre-existing armory of techniques
for avoiding fruitless searches for molecular subgraph isomorphism. Searches are
avoided more successfully as the molecular query size, nα, increases in Figures 25
and 27(a). This is why in Figure 27(c)(d) the total time per molecular comparison
decreases as nα increases, contradicting an assertion [Shang et al. 2008] that the
larger the query graphs “the higher the cost for subgraph isomorphism testing.”

We intend that future experimentation will include equitable comparison with Sol-
non’s [2010] bipartite matching algorithm. We hope that future theoretical progress
will explain peaks in numbers of isomorphisms in Figures 21(a), 22, 23(b) and 24(a).

ACM Journal Name, Vol. 15, No. 1, January 2011.

48 · Julian Ullmann

APPENDIX

A. REPRESENTATION OF THE SET OF VARIABLES THAT HAVE MULTIVALUED
DOMAINS

A.1 Data structure

While solving a constraint satisfaction problem, much time is usually spent within
domain reduction procedures, which therefore require efficient access to adjacent
variables whose domains are currently multivalued29 without wasting time visiting
other adjacent variables. To allow rapid access, we provide each variable with
a doubly-linked list of adjacent variables. This is doubly-linked so that adjacent
variables can easily be unlinked when their domains cease to be multivalued, and
can easily be re-linked when multiple values have been restored to their domains.

More specifically, we provide a one-dimensional array of pointers, one for each
variable. The pointer for Vi points to a dummy record in a circular doubly-linked list
of multivalued variables adjacent to Vi. This list is circular and includes a dummy
record to prevent the list from becoming empty, thus avoiding the need to check for
this. These doubly-linked lists are part of a multilist structure that is accessible via
an index, which is another one-dimensional array of pointers, one for each variable,
as in Figure 28. For a variable Vi, the element of the index points to a record for Vi
in the doubly-linked list for an adjacent variable Vj . This record includes a pointer
to the record for Vi in the doubly-linked list for another variable Vk that is adjacent
to Vi. This record includes a pointer to the record for Vi in the doubly-linked list
for yet another variable Vh that is adjacent to Vi, and so on, until all records for Vi
are included in the list pointed to by the index element for Vi. The index serves to
identify records that should be unlinked/re-linked from/into doubly linked lists, as
will be explained.

In the doubly-linked list of variables adjacent to Vg, the record for an adjacent
variable Vi includes three pointers:

toNextAdjacent points to the next variable that is adjacent to Vg;

toPreviousAdjacent points to the previous variable that is adjacent to Vg;

toNextForSameVariable points to the record for Vi within the doubly-linked list
for another variable that is adjacent to Vi

If the record for adjacent variable Vi is the last in the list, then toNextAdjacent
points to the dummy record for Vg. If the record for adjacent variable Vi is the first
in the list, then toPreviousAdjacent points to the dummy record for Vg. If Vi is
not adjacent to any further variable then its record has toNextForSameVariable
= nil. As well as these three pointers, each record in a doubly-linked list also
includes a pointer to the relevant bit-matrix and, for adjacent variable Vi, the value
of i.

During the search, when procedure choose finds that domain Di has become
single-valued, records for Vi in all doubly-linked lists are located via the index and
are unlinked. However, these records for Vi remain linked into the list pointed to
by the index element for Vi. When, because of backtrack, Di is no longer single-
valued, then Vi is re-linked into the doubly-linked lists for all variables adjacent
to Vi. Relinking is achieved by updating pointers that point to the record for Vi.
Pointers within this record remain unchanged because the sequence in which records
are re-linked is exactly the reverse of the sequence in which they were previously
unlinked [Knuth 2000].

When used with direct or cumulative domain reduction, procedure choose selects,
for elective instantiation, a variable whose domain is not already single-valued. We

29In this section, multivalued means multivalued at the time of invocation of the domain reduction

procedure.

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 49

toNextAdjacent
toPreviousAdjacent
toNextForSameVariable

Fig. 28. An incomplete example of doubly linked circular lists threaded by index lists. At the

top, rectangles in the horizontal row represent elements of the index. At the left, each rectangle
corresponds to a variable and points to a circular list of adjacent variables. Concentric circles

represent dummy records.

arrange that procedure choose proceeds:

for each variable that has a multivalued domain do evaluate heuristic score ...

without visiting variables that have already been found to have single-valued do-
mains. For this we maintain an array varSequence so that elements varSequence[0],
varSequence[1], . . .,varSequence[endSubscript] identify variables that currently have
multivalued domains and elements varSequence[endSubscript+1],. . .,
varSequence[n−1] identify variables that currently have single-valued domains. The
main advantage of maintaining this array is that it readily shows which variables
should be removed from, or inserted into, doubly-linked lists.

Suppose, as a toy example, that there are only ten variables, V0, . . . , V9, and that
before commencement of search, array varSequence is initialized to contain:

0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9

where the upper row of digits are array subscripts and the lower row are array
elements that identify variables. If, for example, all variables are multivalued before
procedure choose initially selects a variable V3 then this procedure rearranges the
array contents:

0 1 2 3 4 5 6 7 8 9
0 1 2 9 4 5 6 7 8 3

and assigns endSubscript:= 8, signifying that variables identified by
varSequence[0], . . . , varSequence[8] are multivalued. DomainD3 will be made single-
valued by elective instantiation; so, via the index, V3 will be detached from the
doubly-linked lists associated with all variables that are adjacent to V3.

Continuing this example, suppose that the next invocation of procedure reduce
renders D1 and D5 single-valued and that procedure choose selects V2 to be instan-
tiated next. In this case, procedure choose swaps30 the array contents:

30This idea of swapping has come from Briggs and Torczon [1993] via Cheng and Yap [2008].

ACM Journal Name, Vol. 15, No. 1, January 2011.

50 · Julian Ullmann

0 1 2 3 4 5 6 7 8 9
0 8 6 9 4 7 2 5 1 3

so that domains identified by varSequence[0], . . . ,varSequence[endSubscript],
where now endSubscript= 5, are multivalued. If the next invocation of the domain-
reduction procedure does not yield an empty domain, then the next invocation
of procedure choose will only process domains identified by varSequence[0], . . .,
varSequence[endSubscript] so some unnecessary work will be avoided. Far more
importantly, variables identified by varSequence[endSubscript +1],. . .,
varSequence[previousEndSubscript], where previousEndSubscript = 8, are detached
from the doubly-linked lists of adjacent variables.

Before updating endSubscript, procedure choose pushes onto a stack the value
that endSubscript had at the time of this call of procedure choose. To illustrate the
use of this, suppose now that in the last example shown above, where finally end-
Subscript = 5, the next invocation of the domain reduction procedure does yield an
empty domain, and that this is the case after each available value has been assigned
to V2 by elective instantiation. The search must now backtrack to the situation
that existed just before V2 was selected for instantiation. The assignment endSub-
script:= value popped off the stack, which in this example means endSubscript:= 8,
signifies that domains of variables varSequence[0], . . . , varSequence[endSubscript]
are again multivalued. This efficient restoration does not put the contents of array
varSequence back into their original sequence, but that does not matter for our pur-
poses. What is again important is that variables identified by varSequence[6],. . . ,
varSequence[8] are re-linked into doubly linked lists of adjacent variables.

A.2 Implementation of procedure choose

Figure 29 shows the version of procedure choose that is used with bit vector cu-
mulative reduction (BVCR) and direct reduction (BVDR), which continue domain
reduction until convergence. This procedure selects for elective instantiation a vari-
able Vi whose domain is not already single-valued due to implied instantiation.
This procedure also identifies further domains that have become single valued, and
decrements endSubs after swapping these out. The call endPush(previousEndSubs)
at Line 22 simply pushes previousEndSubs onto a stack, which is named endStack.
Although, for introductory simplicity, this is not shown, a call relink(endSubscript)
at the end of Line 21 in Figure 1 achieves:

for i := endSubscript+ 1 to value now at top of endStack do
for Vj := each variable adjacent to Vi do

re-link record for Vi into doubly linked list that is associated with Vj
end for

end for

This call of relink is followed immediately by the call endPop(endSubscript) which
assigns to endSubscript the value popped off endStack.

With forward checking we use a version of procedure choose, Figure 30, which
may select for elective instantiation a variable whose domain is already single valued.
Unlike domain reduction procedures that iterate until convergence, forward checking
does not require efficient access to adjacent variables that had multivalued domains
at the time of invocation of this procedure. Instead it requires efficient access to all
adjacent variables that are not already instantiated electively.

The loop at Lines 4 through 10 in Figure 30 does not swap out variables whose
domains are found to be single-valued; such variables are candidates for elective
instantiation. Therefore the value of endSubscript is not changed by this loop.
Records for the single selected variable are the only ones unlinked from doubly-
linked lists by the call of unlink at Line 15. These lists enable efficient access to all
adjacent variables except those that have been instantiated electively.

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 51

procedure choose(out i : integer; out terminal: boolean);
input (via global variables): cardinalities of domains;
output: terminal = (all domains are single-valued);

i such that Vi will be instantiated next (if terminal = false);
input and output: The following are accessed and updated via global variables:

endSubcript; (* see Section A.1 *)
varSequence, endStack; (* of previous endSubscripts *)
and doubly linked lists; (* see Section A.1 *)

begin
1 if endSubscript < 0 then (* all domains are single-valued *)

terminal:= true; return
end if;

2 min:= greatestAvailableValue; i := 0; j := 0; previousEndSubs:= endSubscript;
3 loop (* over variables already known to be multivalued *)
4 k := varSequence[j];
5 if Dk is now multivalued then (* Vk is a candidate for instantiation *)
6 compute heuristic score for the variable Vk;
7 if score < min then min:= score; i := k; iSubscript:= j end if;
8 if j = endSubscript then exit end if;
9 j := j + 1;
10 else (* swap k out of the range of multivalued variables in varSequence *)
11 varSequence[j]:= varSequence[endSubscript];
12 varSequence[endSubscript]:= k; endSubscript:= endSubscript - 1;
13 if j > endSubscript then exit end if;
14 end if;
15 end loop;
16 if endSubscript < 0 then (* no unlinking is required *)

terminal:= true; endSubscript:= previousEndSubs; (* to prevent unlink/relink *)
return

17 else terminal:= false
18 end if;
19 if iSubscript < endSubscript then (* swap i out of multivalued range *)
20 varSequence[iSubscript]:= varSequence[endSubscript]; varSequence[endSubscript]:= i;
21 end if; (* this swap is not required if iSubscript = endSubscript *)
22 endPush(previousEndSubs); (* to allow subsequent restoration *)
23 unlink(endSubscript, previousEndSubs); (* unlink Vi from lists identified by

varSequence[endSubscript]..varSequence[previousEndSubs] *)
24 endSubscript:= endSubscript - 1; (* instantiation will make Di single-valued *)
end choose;

Fig. 29. Procedure choose for use with BVDR and BVCR.

B. ARRAY REPRESENTATION OF DOMAINS

B.1 Swapping in the array representation of domains

Bitwise parallel and and or operations in Sections 3.2 and 3.3 necessarily work with
bit-vector representation of domains. This representation does not allow efficient
search for untried values in Fig 1, nor does it allow efficient enumeration of values
within domain reduction procedures (Line 6 in Figures 2 and 3). As well as repre-
senting domain Di by a bit-vector Dsets[i], we can also store values currently in Di

in Darrays[i, 1], . . . , Darrays[i, Dcards[i]], where Dcards[i] is the current cardinality
of Di. Values currently in Di can be enumerated simply by

for k := 1 to Dcards[i] do nextValue:= Darrays[i, k] ...

ACM Journal Name, Vol. 15, No. 1, January 2011.

52 · Julian Ullmann

procedure choose(out i: integer; out terminal: boolean);
input (via global variables): cardinalities of domains;
output: terminal = (all domains are single-valued);

i such that Vi will be instantiated next (if terminal = false);
input and output: The following are accessed and updated via global variables:

endSubcript; (* see Section A.1 *)
varSequence, endStack; (* of previous endSubscripts *)
and doubly linked lists; (* see Section A.1 *)

begin
1 terminal:= true;
2 if endSubscript < 0 then return end if; (* all domains are single-valued *)
3 min:= greatestAvailableValue; i := 0; j := 0;
4 loop (* over variables that have not been electively instantiated *)
5 k := varSequence[j];
6 if Dk is multivalued then terminal:= false end if ;
7 compute heuristic score for the variable Vk;
8 if score < min then min:= score; i := k; iSubscript:= j end if;
9 if j = endSubscript then exit else j := j + 1 end if;
10 end loop;
11 if terminal then return end if;
12 if iSubscript < endSubscript then (* swap i out of multivalued range *)
13 varSequence[iSubscript]:= varSequence[endSubscript]; varSequence[endSubscript]:= i;
14 end if; (* this swap is not required if iSubscript = endSubscript *)
15 endPush(endSubscript); unlink(endSubscript, endSubscript);
16 endSubscript:= endSubscript - 1; (* instantiation will make Di single-valued*)
end choose;

Fig. 30. Procedure choose for use with forward checking.

without searching for 1’s in Dsets[i]. Following Briggs and Torczon [1993], as in
Section A.1, a value v can be removed from the Darrays representation of Di by
swapping it out of the subarray Darrays[i, 1], . . . , Darrays[i, Dcards[i]]. Values that
are not currently in domain Di reside in Darrays[i,Dcards[i] + 1], . . . , Darrays[i, δ],
where δ is the greatest cardinality of any domain. Given the subscript that locates
a value v in Darrays[i], value v can be swapped out by:

procedure swapOut(in i, subscript, v: integer; in out dCard: integer);
input: i identifies a domain; v is a value that is to be removed from Di;

subscript is such that v resides at Darrays[i, subscript];
input and output: dCard is the current cardinality of Di;

Darrays[i, 1]..Darrays[i, dCard] are the values currently in Di;
begin

Darrays[i, subscript]:= Darrays[i, dCard]; Darrays[i, dCard]:= v;
dCard:= dCard−1

end swapOut

Values can be restored to the array representation of Di by appropriately incre-
menting Dcards[i]. As a toy example, in which the top row shows subscripts and
the second row shows values in Darrays[i],

0 1 2 3 4 5 6 7 8 9
0 8 6 9 4 7 2 5 1 3

with Dcards[i] = 4 we have Di = {0, 8, 6, 9}. Suppose for example that {4, 7, 2}
have been removed from Di by domain reduction. It is important that {4, 7, 2}
can be restored to domain Di simply by Dcards[i] := Dcards[i] + 3, without moving

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 53

any value within Darrays. Values may not be restored into their original sequence
within Darrays, but that does not matter here.

Many domains must be saved and restored during the search. Although this is not
shown in Figure 1, the search routine saves the whole of the two-dimensional array
Darrays at Line 6 by pushing the whole of the one dimensional array Dcards onto
a stack. It is important that the two-dimensional array Darrays is not pushed onto
a stack. At Lines 14, 18 and 21 in Fig 1, which does not show this detail, the two-
dimensional array Darrays is restored by popping the one-dimensional array Dcards
off the stack [Cheng and Yap 2008], without moving any value within Darrays.

Pop-stack save/restore of the entire array Dsets can be avoided by using incre-
mental restoration, which is easy when Darrays and Dcards are up-to-date and
consistent with Dsets at the time of restoration:

oldCards:= Dcards; Dcards:= DcardStack[top]; top:= top - 1;
(* Dcards has been popped off the stack *)

for i := 0 to n− 1 do (* for each variable *)
for k := oldCards[i] + 1 to Dcards[i] do include Darrays[i, k] in Dsets[i]
end for

end for

In many cases we find experimentally that the use of double (i.e. Dsets and
Darrays) representation does not significantly improve the speed of search, and in
some cases makes it slower. However, the availability of incremental restoration is
a clear advantage of double representation.

B.2 Direct and cumulative reduction with array representation

The direct reduction procedure in Figure 31 uses bit-vector and array representation
of domains. After removing a value u from Dsets[i] this procedure swaps u out of
Darrays[i] only if Di is not now empty. If Di would be emptied by removing the last
value, this value is not removed from Dsets, nor is it swapped out of Darrays. In
this case the assignment Dcards[i]:= 1 makes Dsets, Darrays and Dcards mutually
consistent, so incremental restoration can be used straightforwardly.

Array representation can also be used with cumulative reduction, as in Figure
32. Unlike direct reduction, cumulative reduction does not remove values from a
domain Di sequentially, and therefore cannot update Darrays[i] as soon as a value
is removed. However, if Di is reduced, then i is put into the queue, and will be j
in a subsequent iteration. After removing j from the queue, cumulative reduction
processes values in Dj sequentially, aiming to reduce adjacent domains. During
this sequential process for the first variable adjacent to Vj , the procedure updates
Darrays[j] and Dcards[j]

The cumulative reduction procedure may return consistent = false when the
queue contains variables for which Darrays is inconsistent with Dsets. This proce-
dure does not waste time enforcing consistency that will anyway be over-ridden by
pop-stack restoration. With pop-stack restoration, this is an advantage of cumula-
tive reduction, but not with incremental restoration, which requires Darrays, Dsets
and Dcards to be mutually consistent. With incremental restoration, just before the
cumulative reduction procedure returns consistent = false, we restore consistency
by:

for g:= each variable in the queue do
for x := 1 to Dcards[g] do include Darrays[g, x] in Dsets[g] end for

end for

With forward checking, Dcards is required for reference by procedure choose. The

ACM Journal Name, Vol. 15, No. 1, January 2011.

54 · Julian Ullmann

procedure reduce(in h: integer; out consistent: boolean);

input: h identifies the variable that has just been instantiated;
Bit matrices are accessed via global variables;

input and output: Dsets is an array of bit-vectors representing domains;

Dcards is an array of domain cardinalities;
Darrays is an array of arrays that represent domains;

output: consistent = (no domain is empty);

begin
1 initialize queue to be empty; insert h into queue;

2 repeat

3 j:= variable removed from queue;
4 for each variable Vi that is adjacent to Vj such that Di is multivalued do

(* uSubscript is the subscript of the next value in Darrays[i] *)

5 uSubscript:= 1; dCard:= Dcards[i]; changed:= false;
6 while uSubscript ≤ dCard do (* for each value now in Di do *)

7 u:= Darrays[i, uSubscript];
8 if M i

j [u] * Dsets[j] = 0 then (* there is no support in Dj for u in Di *)

9 if dCard = 1 then (* Di would be empty after removing u *)
wij := wij + 1; consistent:= false; Dcards[i]:= 1; return

end if;

10 remove u from Dsets[i]; changed:= true;
11 swapOut(i, uSubscript, u, dCard); (* swap u out of Darrays[i] *)

12 else uSubscript:= uSubscript + 1 (* to access next value in Di *)

13 end if;
14 end while;

15 if changed and (i 6∈ queue) then insert i into queue end if;

16 Dcards[i]:= dCard;
17 end for;

18 until queue is empty;

19 consistent:= true;
end reduce;

Fig. 31. A bit-vector direct reduction implementation of procedure reduce with array representation

of domains.

version of forward checking in Figure 33 counts 1’s in bit-vectors while updating
Darrays if consistent = true. If consistent = false then, with pop-stack restoration,
this procedure does not waste time updating Darrays and Dcards, which will be
over-written by restoration. With incremental restoration, if consistent = false, we
make Darrays consistent with Dsets in the same way as for cumulative reduction.
That is, we refer to Darrays to restore all values that have been removed from Dsets.

By referring to Darrays, the loop at Line 8 in Figure 33 avoids checking every bit
in Dsets[i]. If we do not have duplicate representation of domains, we need to check
every bit in Dsets[i] to update Dcards[i]. This is particularly unwelcome in forward
checking, in which the domain reduction procedure is intended to be maximally
simple. Another comment is that array representation enables the search routine to
find untried values without visiting 0’s in bit vectors. This is important for forward
checking, which usually involves many more elective instantiations than direct or
cumulative reduction.

B.3 Enforcing the allDifferent constraint using the array representation of domains

With direct reduction we enforce allDifferent by inserting the fragment shown in Fig
34 between Lines 3 and 4 in Figure 31. This propagates the allDifferent constraint
via the queue. Moreover, when a value is removed from a domain, Dsets, Darrays
and Dcards remain mutually consistent, so this fragment works correctly with pop-
stack or incremental restoration.

When j is removed from the queue during cumulative reduction, Dcards[j] is out
of date. We therefore wait until Dcards[j] has been updated before checking whether

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 55

procedure reduce(in h: integer; out consistent: boolean);

input: h identifies the variable that has just been instantiated;
Bit matrices are accessed via global variables;

input and output: Dsets is an array of bit-vectors representing domains;
Dcards is an array of domain cardinalities;

Darrays is an array of arrays that represent domains;

output: consistent = (no domain is empty);
begin

1 initialize queue to be empty; insert h into queue;

2 repeat
3 j:= variable removed from queue; dCard:= Dcards[j];

4 if there is no variable adjacent to Vj that has a multivalued domain then

5 vSubscript:= 1;
6 while vSubscript ≤ dCard do (* without attempting domain reduction

update Darrays[j] by removing values that are not in Dsets[j] *)

7 v:= Darrays[j, vSubscript];
8 if v in Dsets[j] then vSubscript:= vSubscript + 1 (* to access next v *)

9 else swapOut(j, vSubscript, v, dCard)
10 end if;

11 end while;

12 else
13 firstAdjacent:= true;

14 for each variable Vi that is adjacent to Vj such that Di is multivalued do

15 B:= empty; vSubscript:= 1;
16 if firstAdjacent then (* update Darrays[j] and accumulate B *)

17 while vSubscript ≤ dCard do

18 v:= Darrays[j, vSubscript];

19 if v in Dsets[j] then B:= B +Mj
i [v]; vSubscript:= vSubscript + 1

20 else swapOut(j, vSubscript, v, dCard)

21 end if;
22 end while;

23 firstAdjacent:= false;

24 else (* Darrays[j] is up-to-date, so only accumulate B *)
25 while vSubscript ≤ dCard do

26 B:= B +Mj
i [Darrays[j, vSubscript]]; vSubscript:= vSubscript + 1

27 end while;
28 end if;

29 B:= Dsets[i] * B; (* B := {u ∈ Di|u is supported in Dj } *)

30 if Dsets[i] 6= B then (* Di will be reduced *)
31 if B = 0 then wij := wij + 1; consistent:= false; return end if
32 Dsets[i]:= B; (* reducing domain Di *)
33 if (i 6∈ queue) then insert i into queue end if;

34 end if;

35 end for;
36 end if;

37 Dcards[j]:= dCard;
38 until queue is empty;
39 consistent:= true;

end reduce

Fig. 32. A bit-vector cumulative reduction implementation of procedure reduce with array repre-

sentation of domains.

Dcards[j] = 1. With pop-stack restoration, we can simply insert the fragment shown
in Figure 34, with its Line 8 deleted, between Lines 37 and 38 in Figure 32. Line 8
is deleted because Darrays[k] will be updated when k is removed from the queue.

With cumulative reduction and incremental restoration, if removing u would
empty Dk, then for each variable, i, in the queue, we insert into Dsets[i] all the
values now in Darrays[i], to make these mutually consistent. This correction is a
disadvantage of cumulative reduction.

With forward checking, Line 2 in Figure 33 becomes

ACM Journal Name, Vol. 15, No. 1, January 2011.

56 · Julian Ullmann

procedure forwardCheck(in j, v : integer; in out Dsets: array of bit-vectors;

out consistent: boolean);
input: j identifies the variable that has just been instantiated;

v is the value that has been assigned to j by elective instantiation;

Bit matrices are accessed via global variables;
input and output: Dsets is an array of bit-vectors representing domains;

Dcards is an array of domain cardinalities;

Darrays is an array of arrays that represent domains;
output: consistent = (no domain is empty);

begin

1 for each variable Vi adjacent to Vj that has not been electively instantiated do

2 Dsets[i]:= Dsets[i] ∗Mj
i [v]; (* Di := Di ∩ {u ∈ Di|u is supported by v ∈ Dj} *)

3 if Dsets[i] = 0 then wij := wij + 1; consistent:= false; return end if;

4 end for
5 consistent:= true;

6 for each variable Vi adjacent to Vj that has not been electively instantiated do

(* update Darrays and Dcards *)
7 uSubscript:= 1; dCard:= Dcards[i];

8 while uSubscript ≤ dCard do (* for each value in Darrays[i] *)

9 u := Darrays[i, uSubscript];
10 if u in Dsets[i] then uSubscript:= uSubscript + 1

11 else swapOut(i, uSubscript, u, dCard)
12 end if

13 end while;

14 Dcards[i]:= dCard;
15 end for

end forwardCheck;

Fig. 33. Forward checking with array representation of domains.

1 if Dcards[j] = 1 then (* Dj is single-valued *)
2 let u be the single value in Dj ;

3 for each k such that Dk is multivalued do

4 if (k 6= j) and (u ∈ Dsets[k]) then
5 if Dcards[k] = 1 then (* removing u would empty Dk *)

consistent:= false; return
end if;

6 remove u from Dsets[k]; Dcards[k]:= Dcards[k] - 1;

7 if k 6∈ queue then insert k into queue end if;
(* subsequently Dk may be found single-valued when k is removed from queue *)

8 find u in Darrays[k]; swap u out of Darrays[k];

9 end if
10 end for

11 end if

Fig. 34. Fragment inserted between Lines 3 and 4 in Fig 31 to enforce the allDifferent constraint

when pop-stack or incremental domain restoration is used with direct reduction.

Dsets[i]:= Dsets[i] ∗M j
i [v]− {v};

so the value v of Vj is removed from domains of all uninstantiated variables that
are adjacent to Vj . Furthermore, with pop-stack restoration, the amended forward
checking procedure ends by removing v from all Dk such that k 6= j, Vk is not
electively instantiated, and Vk is not adjacent to Vj (because adjacent domains have
already been processed). If this empties Dk then the procedure returns consistent =
false. Otherwise, v is found in, and swapped out of, Darrays[k]. As in the previous
section, serial search for v is unwelcome in forward checking, which is intended
to be a quick-and-cheap procedure. With incremental restoration, further work is
required, as before, to make Dsets, Darrays and Dcards mutually consistent when

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 57

the procedure returns consistent = false.

C. RELATIONSHIP BETWEEN FOCUS SEARCH AND PARTITION SEARCH

This article is primarily concerned with constraints between pairs of variables. In
problems where there are constraints between more than two variables, the con-
straints are said to be non-binary. A set of variables that are together subject to a
constraint constitute the scope of that constraint; the arity of the constraint is the
number of variables in its scope.

Focus search belongs to a family of algorithms that also includes partition search
for non-binary constraint satisfaction [Ullmann 2007]. Like focus search, partition
search employs a static instantiation sequence31 and avoids save/restore. However,
partition search uses a tabular representation of constraints: this means that the
constraint on any given scope is represented by an explicit relational table of tuples.
At the time when a set Yi of variables have already been instantiated, partition
search works with a scope Sj that maximally overlaps Yi. Let Sbj be the set of

variables in Sj that are not in Yi. Let T bj be the set of tuples on Sbj such that each

tuple in T bj is part of a tuple on Sj

—that satisfies the constraint on Sj and

—matches instantiated values of variables in Yi at this time.

Partition search instantiates Sbj to successive tuples in T bj , which are obtained by
accessing a data structure such as a hash table or a trie.

Now suppose that, at this same time, there is another scope Sk that maximally
overlaps Yi, such that Sbk = Sbj . In this case, Sbj can in principle be instantiated to

successive tuples in T bj ∩ T bk ; but if |Sbj | > 1 then enumeration of this intersection
would take an unwelcome amount of time. Actually partition search would succes-
sively instantiate Sbj to each tuple in T bj , and then check whether the instantiated

tuple was also in T bk .
Again suppose that a set Yi of variables have already been instantiated, and now

suppose also that every scope comprises exactly two variables. In this case T bj is a
set of values of a single variable; this set can be represented by a bit-vector. An
intersection such as T bj ∩ T bk is easily implemented by bitwise and. Focus search
employs this intersection, whereas partition search does not, which is why partition
search is useless with binary constraints. As explained previously, focus search
accesses a bit-vector such as M i

j [u] in a one-dimensional array using subscript u. A
one-dimensional array is inadequate when |Sj ∩ Yi| > 1.

Lines 1 through 4 of the focus search procedure reduce check the support of values
in domains of variables that have not yet been instantiated. Partition search only
checks consistency of values of instantiated variables.

Partition search takes account of the sequence of variables within each scope. To
avoid the cost of constant redirection during the search, partition search re-numbers
the variables and also the scopes. Re-numbering is unnecessary in focus search,
which imposes the chosen static sequence via arrays predecessor and successor.

D. TRILABEL SIGNATURE MATCHING

When a query graph is compared with hundreds of thousands of target graphs, the
first step in each of these comparisons is an attempt to match the query graph tril-
abel signature with the target trilabel signature. The trilabel signature comparison
process should be maximally efficient because it is usually executed a very large
number of times. For each query trilabel, minimal time should be spent searching
for a matching target trilabel.

31Also based on the maximum cardinality algorithm [Tarjan and Yannakakis 1984].

ACM Journal Name, Vol. 15, No. 1, January 2011.

58 · Julian Ullmann

Table XV. Examples of query and target trilabels.

Query Target

first second edge first second edge

vertex vertex label count vertex vertex label count

60 62 2 3 55 65 4 2

65 65 1 2 58 60 1 1
58 62 2 4
58 62 3 4

60 62 2 3
60 63 4 1
60 65 3 3
60 69 5 4

64 64 1 1
65 65 1 1
65 66 4 3

68 72 3 3

Let nλ be the number of distinct vertex labels that may occur anywhere in the
set of target graphs. We represent each distinct vertex label by a unique ordinal
in the range 1, . . . , nλ. These representative ordinals are chosen so that if vertex
label Li is more frequent than vertex label Lj , then the ordinal that represents
Li is greater than the ordinal that represents Lj . The frequency of a vertex label
is proportional to the total number of its occurrences in the entire set of target
graphs. We take the liberty of not distinguishing between a vertex label and the
ordinal that represents it. Sorting vertex labels into increasing order means sorting
vertex labels into increasing order of their representative ordinal.

Every trilabel is a triple 〈vertexOneLabel, vertexTwoLabel, edgeLabel〉 sorted so
that vertexOneLabel≤ vertexTwoLabel, which means that vertexOneLabel is not
more frequent than vertexTwoLabel. We process trilabels in sequence of increasing
frequency, because failure is more likely earlier than later in this sequence. More
specifically, trilabels are always processed in the lexicographic sequence illustrated
in Table XV.

In the example in Table XV, as soon as vertexOneLabels are compared, we see
that target trilabel 〈55, 65, 4〉 does not match query trilabel 〈60, 62, 2〉. Again, when
the vertexOneLabels are compared we see that target trilabel 〈58, 60, 1〉 does not
match query trilabel 〈60, 62, 2〉. After discovering this mismatch of vertexOneLabels,
we skip futile comparisons between query trilabel 〈60, 62, 2〉 and subsequent target
trilabels 〈58, 62, 2〉 and 〈58, 62, 3〉 that have vertexOneLabel = 58. Subsequently,
after discovering the match between query trilabel 〈60, 62, 2〉 and a target trilabel,
we skip futile comparisons of query trilabel 〈65, 65, 1〉 with further target trilabels
that have vertexOneLabel = 60.

We skip futile comparisons by storing each signature in its own individual two-
level structure that is similar to a de la Briandais [1959] trie. For each signature,
the first level of the trie is the head, and the second level is the body. The head is
an array of records that have two fields:

—vertexOneLabel,

—the number of trilabels in this signature that have this vertexOneLabel for the
first vertex.

The body is an array of records that have three fields:

—vertexTwoLabel

—edgeLabel

—number of occurrences of this trilabel in this signature.

In the body there is one record corresponding 1:1 to each trilabel in the signature.
For the query in Table XV, the head is

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 59

Table XVI. Head and body of target signature.

head - body

first nbOf - second edge

vertex trilabels - vertex label count

55 1 - 65 4 2

58 3 - 60 1 1
60 4 - 62 2 4
64 1 - 62 3 4

65 2 - 62 2 3
68 1 - 63 4 1

- 65 3 3
- 69 5 4

- 64 1 1
- 65 1 1
- 66 4 3

- 72 3 3

60 1

65 1

and the body is

62 2 3

65 1 2

The number 3 at the right end of the first line in the body signifies that the trilabel
〈60, 62, 2〉 occurs three times in the query graph. Similarly, the number 2 in the
next line signifies that the trilabel 〈65, 65, 1〉 occurs twice in the query graph. Table
XVI shows the head and body of the target signature in Table XV.

Figure 35 is a transcription of our signature matching procedure. For our exam-
ple this procedure visits the first three records in the target head, seeking firstVer-
texLabel = 60. The procedure skips the first four records in the target body, because
these are associated with firstVertexLabel < 60. After finding the matching trilabel
〈60, 62, 2〉, the procedure visits the next two records in the target head, seeking
firstVertexLabel = 65, and skips four records in the target body that are associ-
ated with firstVertexLabel < 65. The procedure terminates as soon as it finds the
matching trilabel 〈65, 65, 1〉.

If the example is amended so that the first query trilabel is now 〈54, 62, 2〉, the
first iteration of the loop at Lines 7 through 19 returns false at Line 14 in Figure 35,
when no body records have been visited. If, instead, the first query trilabel is now
changed to 〈56, 62, 2〉, the second iteration of the loop at Lines 7 through 19 returns
false at Line 14, when no body records have been visited. If, instead, the first query
trilabel is changed to 〈60, 61, 2〉, the procedure returns false at Line 28 when just
one query body record and one target body record have been visited. For signatures
that do not match, the procedure is intended to return false as soon as possible.
For our initial example where the query signature is (〈60, 62, 2〉, 〈65, 65, 1〉), the
procedure returns true without visiting the last two target trilabels.

Hundreds of thousands of target signatures cannot all reside in fast memory.
Reading successive target signatures in turn individually from disk would take too
long because of latency. Instead, we store target signatures on disk within big pages,
each holding many target signatures. We ensure that each target signature is wholly
within a single page. Here a page is a fixed-size block of, for example, 20,000 bytes.
When a page is read from disk it looks like an array of bytes. We do not copy
successive target signatures from this into the array-of-records structure described
above. Instead, our signature matching procedure works with target signatures
directly in array-of-bytes form in the page buffer, to save time. Figure 35 is a
transcription in the sense that it has the target signature in array-of-records form,
because this is easier to understand. This procedure does, however, work with the

ACM Journal Name, Vol. 15, No. 1, January 2011.

60 · Julian Ullmann

procedure signatureMatches(): boolean;

input: Query and target signatures in array-of-records form;
output: Return true iff every query trilabel matches a different target trilabel;

begin

1 targetHeadSubscript:= 1; targetBodySubscript:= 1; queryBodySubscript:= 1;
2 for queryHeadSubscript:= 1 to qNbFirstLabels do

3 with queryHead[queryHeadSubscript] do

4 qFirst:= firstVertexLabel; qNbTuples:= nbTuples;
5 end with;

6 queryBodyEndSubscript:= queryBodySubscript + qNbTuples;

7 loop (* seeking target firstVertexLabel = qFirst *)
8 if target[targetHeadSubscript].firstVertexLabel = qFirst then (* found *)

9 tNbTuples:= target[targetHeadSubscript].nbTuples;

10 if tNbTuples < qNbTuples then return false end if;
11 targetHeadSubscript:= targetHeadSubscript + 1; exit;

12 end if;

13 if (target[targetHeadSubscript].firstVertexLabel > qFirst) or
14 (targetHeadSubscript = tNbFirstLabels) then return false

15 else
16 targetBodySubscript:= targetBodySubscript + tNbTuples;

17 targetHeadSubscript:= targetHeadSubscript + 1

18 end if
19 end loop;

20 loop (* for each entry in query body that has this qFirst *)

21 with queryBody[queryBodySubscript] do
22 qSecond:= secondVertexLabel; qEdge:= edgeLabel; qCount:= count;

23 end with;

24 loop (* seek matching entry in target body *)
25 with targetBody[targetBodySubscript] do

26 tSecond:= secondVertexLabel; tEdge:= edgeLabel; tCount:= count;

27 end with;
28 if tSecond > qSecond then return false end if;

29 if (tSecond < qSecond) or (tEdge < qEdge) then
30 if tNbTuples = 1 then return false (* because no more tSeconds for tFirst *)

31 else tNbTuples:= tNbTuples - 1; targetBodySubscript:= targetBodySubscript + 1;

32 end if
33 elsif (tEdge > qEdge) or (qCount > tCount) then return false

34 else (* match has been found in target body *)

35 targetBodySubscript:= targetBodySubscript + 1;
36 tNbTuples:= tNbTuples - 1; exit

37 end if;

38 end loop; (*loop over target body *)
39 queryBodySubscript:= queryBodySubscript + 1;

40 if queryBodySubscript = queryBodyEndSubscript then exit end if;
41 if tNbTuples = 0 then return false end if;
42 end loop;
43 targetBodySubscript:= targetBodySubscript + tNbTuples;
44 end for; (* for query head subscript *)

45 return true

end signatureMatches

Fig. 35. Transcription of a signature matching procedure.

query signature in array-of-records form.

ACKNOWLEDGMENTS

The author wishes to thank Peter Willett for providing molecular advice, John
Holliday for providing sample queries, and the reviewers for valuable comments,
suggestions and guidance.

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 61

REFERENCES

Aardal, K. I., van Hoesel, S. P. M., Koster, A. M. C. A., Mannino, C., and Sassano, A.

2007. Models and solution techniques for frequency assignment problems. Annals of Operations
Research 153, 1, 79–129.

Artymiuk, P. J., Spriggs, R. V., and Willett, P. 2005. Graph theoretic methods for the analy-
sis of structural relationships in biological macromolecules. J. Am. Soc. Inf. Sci. Technol. 56, 5,

518–528.

Bandyopadhyay, D., Huan, J., Prins, J., Snoeyink, J., Wang, W., and Tropsha, A. 2009.
Identification of family-specific residue packing motifs and their use for structure-based pro-

tein function prediction: I. method development. Journal of Computer-Aided Molecular De-
sign 23, 11, 773–784.

Bessière, C. 2006. Constraint Propagation. Handbook of Constraint Propagation. El-

sevier, New York, NY, USA, Chapter 3. Eds: Rossi, F., van Beek, P., and Walsh, T.
http://www.lirmm.fr/∼bessiere/stock/TR06020.pdf.

Bessière, C., Meseguer, P., Freuder, E. C., and Larrosa, J. 2002. On forward checking for
non-binary constraint satisfaction. Artif. Intell. 141, 1, 205–224.

Bessière, C., Régin, J.-C., Yap, R. H. C., and Zhang, Y. 2005. An optimal coarse-grained arc
consistency algorithm. Artif. Intell. 165, 2, 165–185.

Bessière, C., Stergiou, K., and Walsh, T. 2008. Domain filtering consistencies for non-binary
constraints. Artif. Intell. 172, 6-7, 800–822.

Boussemart, F., Hemery, F., and Lecoutre, C. 2004. Revision ordering heuristics for
the constraint satisfaction problem. In Proc of the First International Workshop on

Constraint Propagation and Implementation (CPAI’2004) held widh CP’2004. 29–43.

http://www.cril.univ-artois.fr/∼lecoutre/research/publications/2004/CPW2004.pdf.

Boussemart, F., Hemery, F., Lecoutre, C., and Säıs, L. 2004. Boost-

ing systematic search by weighting constraints. In 16th Euro-
pean Conference on Artificial Intelligence (ECAI’2004). 146–150.

http://www.cril.univ-artois.fr/∼lecoutre/research/publications/2004/ECAI2004.pdf.

Boutselakis, H., Dimitropoulos, D., Fillon, J., Golovin, A., Henrick, K., Hussain, A., Ion-

ides, J., John, M., Keller, P. A., Krissinel, E., McNeil, P., Naim, A., Newman, R., Old-

field, T., Pineda, J., Rachedi, A., Copeland, J., Sitnov, A., Sobhany, S., Suarez-Uruena,
A., Swaminathan, J., Tagari, M., Tate, J., Tromm, S., Velankar, S., and Vranken, W.

2003. MSD: the European Bioinformatics Institute Macromolecular Structure Database. Nucleic

Acids Res. 31, 1, 458–462.

Briggs, P. and Torczon, L. 1993. An efficient representation for sparse sets. ACM Lett. Program.

Lang. Syst. 2, 1-4, 59–69.

Brown, N. 2009. Chemoinformatics—an introduction for computer scientists. ACM Comput.

Surv. 41, 2, 1–38.

Chang, C. C. and Lee, S. Y. 1991. Retrieval of similar pictures on pictorial databases. Pattern

Recogn. 24, 7, 675–681.

Cheng, J., Ke, Y., and Ng, W. 2009. Efficient query processing on graph databases. ACM Trans.

Database Syst. 34, 1, 1–48.

Cheng, K. C. and Yap, R. H. 2008. Maintaining arc consistency on ad-hoc r-ary constraints.
In 14th International Conference on Principles and Practice of Constraint Programming

(CP’2008). 509–523.

Cheng, K. C. and Yap, R. H. 2010. An mdd-based generalized arc consistency algorithm for

positive and negative table constraints and some global constraints. Constraints 15, 2, 265–304.

Chisholm, J. A. and Motherwell, S. 2004. A new algorithm for performing three-dimensional
searches of the cambridge structural database. Journal of Applied Crystallography 37, 331–334.

Chmeiss, A. and Säıs, L. 2004. Constraint satisfaction problems: Backtrack search revisited. In

ICTAI ’04: Proceedings of the 16th IEEE International Conference on Tools with Artificial
Intelligence. IEEE Computer Society, Washington, DC, USA, 252–257.

Chou, Y.-Y. and Shapiro, L. G. 1998. Probabilistic relational indexing. In Proceedings of

Fourteenth International Conference on Pattern Recognition. 1331–1335. Volume 2.

Conte, D., Foggia, P., Sansone, C., and Vento, M. 2004. Thirty years of graph matching in pat-
tern recognition. International Journal of Pattern Recognition and Artificial Intelligence 18, 3,
265–298.

Cook, S. A. 1971. The complexity of theorem-proving procedures. In Proc. 3rd ACM Symposium
on Theory of Computing. 151–158.

Cordella, L. P., Foggia, P., Sansone, C., and Vento, M. 2004. A (sub)graph isomorphism
algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and Machine

Intelligence 26, 10, 1367–1372.

ACM Journal Name, Vol. 15, No. 1, January 2011.

62 · Julian Ullmann

Corneil, D. and Kirkpatrick, D. 1980. A theoretical analysis of various heuristics for the graph

isomorphism problem. SIAM Journal on Computing 9, 2, 281–297.

Daylight Chemical Information Systems, Inc. 2007.
http://www.daylight.com/dayhtml/doc/theory/theory.finger.html. see Section 6.1.2.

de la Briandais, R. 1959. File searching using variable length keys. In Proc 1959 Western Joint

Computer Conference. 295–298.

Durand, P., Labarre, L., Meil, A., Divo, J.-L., Vandenbrouck, Y., Viari, A., and Wojcik,

J. 2006. Genolink: a graph-based querying and browsing system for investigating the function
of genes and proteins. Open access at http://www.biomedcentral.com/1471-2105/7/21.

Foggia, P., Sansone, C., and Vento, M. 2001. A performance comparison of five algorithms

for graph isomorphism. In Proceedings of the 3rd IAPR-TC15 Workshop on Graph based

Representation (GbR2001). http://www.amalfi.dis.unina.it/people/vento/lavori/gbr01bm.pdf.

Fowler, G., Haralick, R. M., Gray, F. G., Feustel, C., and Grinstead, C. 1983. Efficient
graph automorphism by vertex partitioning. Artif. Intell. 21, 1-2, 245–269.

Gent, I. P., Macintyre, E., Prosser, P., Smith, B. M., and Walsh, T. 2001. Random constraint

satisfaction: Flaws and structure. Constraints 6, 4, 345–372.

Giugno, R. and Shasha, D. 2002. Graphgrep: A fast and universal method for querying graphs.
Pattern Recognition, 16th International Conference on 2, 112–115.

Golomb, S. W. and Baumert, L. D. 1965. Backtrack programming. J. ACM 12, 4, 516–524.

Gomes, C. P., Selman, B., Crato, N., and Kautz, H. 2000. Heavy-tailed phenomena in satis-

fiability and constraint satisfaction problems. J. Autom. Reason. 24, 1-2, 67–100.

Haralick, R. M. and Elliott, G. 1980. Increasing tree search efficiency for constraint satisfaction

problems. Artificial Intelligence 14, 263–313.

Hassan, T. 2009. User-guided wrapping of pdf documents using graph matching techniques. In
10th International Conference on Document Analysis and Recognition. IEEE Computer Society,

Los Alamitos, CA, USA, 631–635.

Hopcroft, J. E. and karp, R. M. 1973. An n5/2 algorithm for maximum matchings in bipartite

graphs. SIAM Journal on Computing 2, 4, 225–231.

Hulubei, T. and O’Sullivan, B. 2006. The impact of search heuristics on heavy-tailed behaviour.
Constraints 11, 2-3, 159–178.

Jiang, H., Wang, H., Yu, P. S., and Zhou, S. 2007. GString: A novel approach for efficient

search in graph databases. In International Conference on Data Engineering. IEEE Computer

Society, Los Alamitos, CA, USA, 566–575.

Klukas, C., Koschützki, D., and Schreiber, F. 2005. Graph pattern analysis with pattern-
gravisto. J. Graph Algorithms Appl. 9, 1, 19–29.

Knuth, D. E. 2000. Dancing links. in Millennial Perspectives in Computer Science, Eds: Davies,

J., Roscoe, W. and Jim Woodcock, J. Palgrave, Houndmills, Basingstoke, Hampshire, UK,

187–214.

Kohler, E., Morris, R., and Chen, B. 2002. Programming language optimizations for modular
router configurations. In ASPLOS-X: Proceedings of the 10th international conference on

Architectural support for programming languages and operating systems. ACM, New York, NY,
USA, 251–263.

Larrosa, J. and Valiente, G. 2002. Constraint satisfaction algorithms for graph pattern match-

ing. Mathematical. Structures in Comp. Sci. 12, 4, 403–422.

Leach, A. R. and Gillet, V. J. 2003. An Introduction to Chemoinformatics. Kluwer Academic

Publishers, Dordrecht, The Netherlands.

Lecoutre, C. 2008. Optimization of simple tabular reduction for table constraints. In CP
’08: Proceedings of the 14th international conference on Principles and Practice of Constraint

Programming. Springer-Verlag, Berlin, Heidelberg, 128–143.

Lecoutre, C. 2009. Constraint Networks: techniques and algorithms. John Wiley and Sons,

Hoboken, NJ, USA.

Lecoutre, C. and Vion, J. 2008. Enforcing arc consistency using bitwise operations. Constraint
Programming Letters 2, 21–35.

Lynce, I. and Marques-Silva, J. P. 2003. An overview of backtrack search satisfiability algo-

rithms. Annals of Mathematics and Artificial Intelligence 37, 3, 307–326.

Mackworth, A. K. 1977. Consistency in networks of relations. Artificial Intelligence 8, 1, 99–118.

McGregor, J. J. 1979. Relational consistency algorithms and their application in finding sub-

graph and graph isomorphisms. Information Sciences 19, 229–250.

McKay, B. 2009. Nauty user’s guide (version 2.4). http://cs.anu.edu.au/∼bdm/nauty/nug.pdf.

Messmer, B. T. and Bunke, H. 2000. Efficient subgraph isomorphism detection: A decomposition
approach. IEEE Trans. on Knowl. and Data Eng. 12, 2, 307–323.

ACM Journal Name, Vol. 15, No. 1, January 2011.

Bit-vector Algorithms for Binary Constraint Satisfaction · 63

Naanaa, W. 2009. A domain decomposition algorithm for constraint satisfaction. J. Exp. Algo-

rithmics 13, 1.13–1.23.

Proschak, E., Wegner, J. K., Schüller, A., Schneider, G., and Fechner, U. 2007. Molec-
ular query language (mql)–a context-free grammar for substructure matching. J Chem Inf

Model 47, 2, 295–301.

Prosser, P. 1996. An empirical study of phase transitions in binary constraint satisfaction
problems. Artif. Intell. 81, 1-2, 81–109.

Sabin, D. and Freuder, E. 1994. Contradicting conventional wisdom in constraint satisfaction.

In Proceedings of the Second International Workshop on Principles and Practice of Constraint
Programming, PPCP’94, A. Borning, Ed. Lecture Notes in Computer Science, Volume 874,

Springer Verlag, 10–20.

Sabin, D. and Freuder, E. 1997. Understanding and improving the MAC algorithm. In Pro-

ceedings of CP’97, published as Principles and Practice of Constraint Programming, Lecture
Notes in Computer Science, Volume 1330/1997, G. Smolka, Ed. Springer Verlag, 167–181.

Schulte, C. 1999. Comparing trailing and copying for constraint programming. In Proceedings of

the 1999 international conference on Logic programming (ICLP’99). Massachusetts Institute
of Technology, Cambridge, MA, USA, 275–289.

Shang, H., Zhang, Y., Lin, X., and Yu, J. X. 2008. Taming verification hardness: an efficient

algorithm for testing subgraph isomorphism. In VLDB ’08: Proceedings of the 34th international

conference on very large data bases. VLDB Endowment, 364–375.

Shasha, D., Wang, J. T. L., and Giugno, R. 2002. Algorithmics and applications of tree

and graph searching. In PODS ’02: Proceedings of the twenty-first ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems. ACM, New York, NY, USA, 39–52.

Smith, B. M. and Dyer, M. 1996. Locating the phase transition in binary constraint satisfaction
problems. Artificial Intelligence 81, 155–181.

Solnon, C. 2010. AllDifferent-based filtering for subgraph isomorphism. Artif. Intell. 174, 12-13,

850–864.

Tarjan, R. and Yannakakis, M. 1984. Simple linear-time algorithms to test chordality of graphs,
test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs. SIAM J. on Com-

puting 13, 566–579.

Ullmann, J. R. 1965. Parallel recognition of idealized line characters. Kybernetik 2, 5,
221–226. http://www.visionbib.com/papers/1965/Kybernetik65.pdf; Short introduction:

http://www.visionbib.com/papers/1965/Kybintro.pdf.

Ullmann, J. R. 1976. An algorithm for subgraph isomorphism. J. ACM 23, 1, 31–42.

Ullmann, J. R. 1977. A binary n-gram technique for automatic correction of substitution, dele-
tion, insertion and reversal errors in words. Computer Journal 20, 2, 141–147.

Ullmann, J. R. 2007. Partition search for non-binary constraint satisfaction. Inf. Sci. 177, 18,

3639–3678.

Wallace, R. J. and Freuder, E. C. 1992. Ordering heuristics for arc consistency algorithms. In
AI/GI/VI 92: Proceedings of the Ninth Canadian Conference on Artificial Intelligence. 163–

169.

Willett, P. 1999. Matching of chemical and biological structures using subgraph and maximal
common subgraph isomorphism algorithms. Springer Verlag, New York, USA, 11–38. in Rational
Drug Design, Eds: Truhlar, D.G., Howe, W.J., Hopfinger, A.J., Blaney, J.D. and Dammkoehler,

R.

Willett, P. 2005. Chemoinformatics techniques for data mining in files of two-
dimensional and three-dimensional chemical molecules. In Proceedings of the Third Con-
ference on the Foundations of Information Science, M. Petitjean, Ed. MDPI, Basel.

http://www.mdpi.org/fis2005/proceedings.html.

Willett, P. 2008. From chemical documentation to chemoinformatics: 50 years of chemical
information science. J. Inf. Sci. 34, 4, 477–499.

Willett, P., Barnard, J. M., and Downs, G. M. 1998. Chemical similarity searching. Journal
of Chemical Information and Computer Sciences 38, 6, 983–996.

Yan, X., Yu, P. S., and Han, J. 2005. Graph indexing based on discriminative frequent structure

analysis. ACM Trans. Database Syst. 30, 4, 960–993.

Yan, X., Zhu, F., Yu, P. S., and Han, J. 2006. Feature-based similarity search in graph structures.

ACM Trans. Database Syst. 31, 4, 1418–1453.

Zampelli, S., Deville, Y., and Solnon, C. 2010. Solving subgraph isomorphism problems with
constraint programming. Constraints 15, 3, 327–353.

Zhang, S., Li, S., and Yang, J. 2009. Gaddi: distance index based subgraph matching in biolog-
ical networks. In EDBT ’09: Proceedings of the 12th International Conference on Extending
Database Technology. ACM, New York, NY, USA, 192–203.

ACM Journal Name, Vol. 15, No. 1, January 2011.

64 · Julian Ullmann

Zhao, P., Yu, J. X., and Yu, P. S. 2007. Graph indexing: tree + delta >= graph. In VLDB ’07:

Proceedings of the 33rd international conference on Very Large Data Bases. VLDB Endowment,
938–949.

Zobel, J., Moffat, A., and Ramamohanarao, K. 1998. Inverted files versus signature files for

text indexing. ACM Trans. Database Syst. 23, 4, 453–490.

Zou, L., Chen, L., Zhang, H., Lu, Y., and Lou, Q. 2008. Summarization graph indexing: Beyond
frequent structure-based approach. In Database Systems for Advanced Applications (DASFAA).

141–155.

ACM Journal Name, Vol. 15, No. 1, January 2011.

