22.5.3.1 Shore Line Changes, Erosion

Chapter Contents (Back)
Classification. Shore Line. Coast. Change Detection. Temporal Analysis.

Chen, L.C., Rau, J.Y.,
Detection of shoreline changes for tideland areas using multi-temporal satellite images,
JRS(19), No. 17, November 1998, pp. 3383. BibRef 9811

Cowart, L., Corbett, D., Walsh, J.,
Shoreline Change along Sheltered Coastlines: Insights from the Neuse River Estuary, NC, USA,
RS(3), No. 7, July 2011, pp. 1516-1534.
DOI Link 1203
BibRef

Dewi, R.S.[Ratna Sari], Bijker, W.[Wietske], Stein, A.[Alfred], Marfai, M.A.[Muh Aris],
Fuzzy Classification for Shoreline Change Monitoring in a Part of the Northern Coastal Area of Java, Indonesia,
RS(8), No. 3, 2016, pp. 190.
DOI Link 1604
BibRef

Dewi, R.S.[Ratna Sari], Bijker, W.[Wietske], Stein, A.[Alfred],
Change Vector Analysis to Monitor the Changes in Fuzzy Shorelines,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link 1703
BibRef

Dewi, R.S.[Ratna Sari], Bijker, W.[Wietske], Stein, A.[Alfred],
Comparing Fuzzy Sets and Random Sets to Model the Uncertainty of Fuzzy Shorelines,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Dewi, R.S.[Ratna Sari], Bijker, W.[Wietske], Stein, A.[Alfred], Marfai, M.A.[Muh Aris],
Transferability and Upscaling of Fuzzy Classification for Shoreline Change over 30 Years,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link 1810
BibRef

Deng, Y.[Yue], Jiang, W.G.[Wei-Guo], Tang, Z.H.[Zheng-Hong], Li, J.H.[Jia-Hong], Lv, J.X.[Jin-Xia], Chen, Z.[Zheng], Jia, K.[Kai],
Spatio-Temporal Change of Lake Water Extent in Wuhan Urban Agglomeration Based on Landsat Images from 1987 to 2015,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link 1704
BibRef

Singh, A.[Alka], Behrangi, A.[Ali], Fisher, J.B.[Joshua B.], Reager, J.T.[John T.],
On the Desiccation of the South Aral Sea Observed from Spaceborne Missions,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Halls, J.N.[Joanne N.], Frishman, M.A.[Maria A.], Hawkes, A.D.[Andrea D.],
An Automated Model to Classify Barrier Island Geomorphology Using Lidar Data and Change Analysis (1998-2014),
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link 1808
BibRef

Amrouni, O.[Oula], Hzami, A.[Abderraouf], Heggy, E.[Essam],
Photogrammetric assessment of shoreline retreat in North Africa: Anthropogenic and natural drivers,
PandRS(157), 2019, pp. 73-92.
Elsevier DOI 1911
Shoreline retreat, Coastal dynamics, Littoral sedimentation, Seawater intrusion, Change detection, Land-use and groundwater BibRef

Kanwal, S.[Shamsa], Ding, X.L.[Xiao-Li], Sajjad, M.[Muhammad], Abbas, S.[Sawaid],
Three Decades of Coastal Changes in Sindh, Pakistan (1989-2018): A Geospatial Assessment,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link 2001
BibRef

Zhang, Y.X.[Yu-Xin], Hou, X.[Xiyong],
Characteristics of Coastline Changes on Southeast Asia Islands from 2000 to 2015,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link 2002
BibRef

Tian, H.Z.[Hong-Zhen], Xu, K.[Kai], Goes, J.I.[Joaquim I.], Liu, Q.P.[Qin-Ping], do Rosario Gomes, H.[Helga], Yang, M.M.[Meng-Meng],
Shoreline Changes Along the Coast of Mainland China: Time to Pause and Reflect?,
IJGI(9), No. 10, 2020, pp. xx-yy.
DOI Link 2010
BibRef

Fabris, M.[Massimo],
Monitoring the Coastal Changes of the Po River Delta (Northern Italy) since 1911 Using Archival Cartography, Multi-Temporal Aerial Photogrammetry and LiDAR Data: Implications for Coastline Changes in 2100 A.D.,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link 2102
BibRef

Terres de Lima, L.[Lucas], Fernández-Fernández, S.[Sandra], de Almeida Espinoza, J.M.[Jean Marcel], da Guia Albuquerque, M.[Miguel], Bernardes, C.[Cristina],
End Point Rate Tool for QGIS (EPR4Q): Validation Using DSAS and AMBUR,
IJGI(10), No. 3, 2021, pp. xx-yy.
DOI Link 2104
A tool for calculating the shoreline change. BibRef

Hao, Q.N.[Quang Nguyen], Takewaka, S.[Satoshi],
Shoreline Changes along Northern Ibaraki Coast after the Great East Japan Earthquake of 2011,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Zhu, Q.T.[Quan-Tao], Li, P.[Peng], Li, Z.H.[Zhen-Hong], Pu, S.[Sixun], Wu, X.[Xiao], Bi, N.S.[Nai-Shuang], Wang, H.J.[Hou-Jie],
Spatiotemporal Changes of Coastline over the Yellow River Delta in the Previous 40 Years with Optical and SAR Remote Sensing,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link 2105
BibRef

Chen, C.[Chen], Ma, H.X.[Hong-Xiang], Yao, G.[Guorun], Lv, N.[Ning], Yang, H.[Hua], Li, C.[Cong], Wan, S.H.[Shao-Hua],
Remote Sensing Image Augmentation Based on Text Description for Waterside Change Detection,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link 2105
BibRef

Caspell, M.[Meredith], Vasseur, L.[Liette],
Evaluating and Visualizing Drivers of Coastline Change: A Lake Ontario Case Study,
IJGI(10), No. 6, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Kaiser, S.[Soraya], Grosse, G.[Guido], Boike, J.[Julia], Langer, M.[Moritz],
Monitoring the Transformation of Arctic Landscapes: Automated Shoreline Change Detection of Lakes Using Very High Resolution Imagery,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link 2107
BibRef

Cabezas-Rabadán, C.[Carlos], Pardo-Pascual, J.E.[Josep E.], Palomar-Vázquez, J.[Jesus],
Characterizing the Relationship between the Sediment Grain Size and the Shoreline Variability Defined from Sentinel-2 Derived Shorelines,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link 2107
BibRef

Smith, K.E.L.[Kathryn E. L.], Terrano, J.F.[Joseph F.], Pitchford, J.L.[Jonathan L.], Archer, M.J.[Michael J.],
Coastal Wetland Shoreline Change Monitoring: A Comparison of Shorelines from High-Resolution WorldView Satellite Imagery, Aerial Imagery, and Field Surveys,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link 2108
BibRef

Sun, Z.P.[Zhi-Peng], Niu, X.J.[Xiao-Jing],
Variation Tendency of Coastline under Natural and Anthropogenic Disturbance around the Abandoned Yellow River Delta in 1984-2019,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Xia, J.S.[Ji-Sheng], Luan, G.[Guize], Zhao, F.[Fei], Peng, Z.Y.[Zhi-Yan], Song, L.[Lu], Tan, S.C.[Shu-Cheng], Zhao, Z.F.[Zhi-Fang],
Exploring the Spatial-Temporal Analysis of Coastline Changes Using Place Name Information on Hainan Island, China,
IJGI(10), No. 9, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Zhu, B.Z.[Bo-Zhong], Bai, Y.[Yan], He, X.Q.[Xian-Qiang], Chen, X.Y.[Xiao-Yan], Li, T.[Teng], Gong, F.[Fang],
Long-Term Changes in the Land-Ocean Ecological Environment in Small Island Countries in the South Pacific: A Fiji Vision,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Ding, Y.X.[Ya-Xin], Yang, X.M.[Xiao-Mei], Jin, H.L.[Hai-Liang], Wang, Z.H.[Zhi-Hua], Liu, Y.M.[Yue-Ming], Liu, B.[Bin], Zhang, J.Y.[Jun-Yao], Liu, X.L.[Xiao-Liang], Gao, K.[Ku], Meng, D.[Dan],
Monitoring Coastline Changes of the Malay Islands Based on Google Earth Engine and Dense Time-Series Remote Sensing Images,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link 2110
BibRef

Gray, P.C.[Patrick Clifton], Chamorro, D.F.[Diego F.], Ridge, J.T.[Justin T.], Kerner, H.R.[Hannah Rae], Ury, E.A.[Emily A.], Johnston, D.W.[David W.],
Temporally Generalizable Land Cover Classification: A Recurrent Convolutional Neural Network Unveils Major Coastal Change through Time,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link 2110
BibRef

Leibman, M.[Marina], Kizyakov, A.[Alexander], Zhdanova, Y.[Yekaterina], Sonyushkin, A.[Anton], Zimin, M.[Mikhail],
Coastal Retreat Due to Thermodenudation on the Yugorsky Peninsula, Russia during the Last Decade, Update since 2001-2010,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link 2110
BibRef

Mao, Y.J.[Yong-Jing.], Harris, D.L.[Daniel L.], Xie, Z.[Zunyi.], Phinn, S.[Stuart.],
Efficient measurement of large-scale decadal shoreline change with increased accuracy in tide-dominated coastal environments with Google Earth Engine,
PandRS(181), 2021, pp. 385-399.
Elsevier DOI 2110
Shoreline mapping, Remote sensing big data, Landsat, Google Earth Engine, Global shoreline monitoring BibRef

Wu, Q.[Qi], Miao, S.Q.[Shi-Qi], Huang, H.L.[Hai-Li], Guo, M.[Mao], Zhang, L.[Lei], Yang, L.[Lin], Zhou, C.H.[Cheng-Hu],
Quantitative Analysis on Coastline Changes of Yangtze River Delta Based on High Spatial Resolution Remote Sensing Images,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Ai, B.[Bin], Huang, K.[Ke], Zhao, J.[Jun], Sun, S.J.[Shao-Jie], Jian, Z.K.[Zhuo-Kai], Liu, X.D.[Xiao-Ding],
Comparison of Classification Algorithms for Detecting Typical Coastal Reclamation in Guangdong Province with Landsat 8 and Sentinel 2 Images,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Wang, J.[Juan], Li, D.L.[Dong-Ling], Cao, W.T.[Wen-Ting], Lou, X.L.[Xiu-Lin], Shi, A.[Aiqin], Zhang, H.G.[Hua-Guo],
Remote Sensing Analysis of Erosion in Arctic Coastal Areas of Alaska and Eastern Siberia,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Yang, M.Z.[Ming-Zheng], Zou, L.[Lei], Cai, H.[Heng], Qiang, Y.[Yi], Lin, B.B.[Bin-Bin], Zhou, B.[Bing], Abedin, J.[Joynal], Mandal, D.[Debayan],
Spatial-Temporal Land Loss Modeling and Simulation in a Vulnerable Coast: A Case Study in Coastal Louisiana,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Kanwal, S.[Shamsa], Ding, X.L.[Xiao-Li], Wu, S.B.[Song-Bo], Sajjad, M.[Muhammad],
Vertical Ground Displacements and Its Impact on Erosion along the Karachi Coastline, Pakistan,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Lappe, R.[Ronja], Ullmann, T.[Tobias], Bachofer, F.[Felix],
State of the Vietnamese Coast: Assessing Three Decades (1986 to 2021) of Coastline Dynamics Using the Landsat Archive,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Yao, Q.[Qiang], Cohen, M.C.L.[Marcelo Cancela Lisboa], Liu, K.B.[Kam-Biu], de Souza, A.V.[Adriana Vivan], Rodrigues, E.[Erika],
Nature versus Humans in Coastal Environmental Change: Assessing the Impacts of Hurricanes Zeta and Ida in the Context of Beach Nourishment Projects in the Mississippi River Delta,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Wang, H.B.[Hao-Bin], Xu, D.D.[Dan-Dan], Zhang, D.[Dong], Pu, Y.H.[Yi-Han], Luan, Z.Q.[Zhao-Qing],
Shoreline Dynamics of Chongming Island and Driving Factor Analysis Based on Landsat Images,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Philipp, M.[Marius], Dietz, A.[Andreas], Ullmann, T.[Tobias], Kuenzer, C.[Claudia],
Automated Extraction of Annual Erosion Rates for Arctic Permafrost Coasts Using Sentinel-1, Deep Learning, and Change Vector Analysis,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link 2208
BibRef


Pervez, W., Khan, S.A., Hussain, E., Amir, F., Maud, M.A.,
Evaluate the Capability of Landsat8 Operational Land Imager For Shoreline Change Detection/inland Water Studies,
GeomCultural17(145-152).
DOI Link 1805
BibRef
And:
Landsat-8 Operational Land Imager Change Detection Analysis,
Hannover17(607-612).
DOI Link 1805
BibRef

Hassan, M.I., Rahmat, N.H.,
The Effect of Coastline Changes to Local Community's Social-Economic,
GGT16(25-36).
DOI Link 1612
BibRef

Michalowska, K., Glowienka, E., Pekala, A.,
Spatial-temporal Detection Of Changes On The Southern Coast Of The Baltic Sea Based On Multitemporal Aerial Photographs,
ISPRS16(B2: 49-53).
DOI Link 1610
BibRef

Kaczynski, R., Rylko, A.,
Change Detection Of Lake Aba Samuel In Ethiopia,
ISPRS16(B8: 339-341).
DOI Link 1610
BibRef

Paz-Alberto, A.M.[Annie Melinda], Sison, M.J.M.[Melissa Joy M.], Bulaong, E.P.[Edmark Pablo], Pakaigue, M.A.[Marietta A.],
Remote Sensing Application Of The Geophysical Changes In The Coastlines And Rivers Of Zambales, Philippines,
ISPRS16(B8: 379-386).
DOI Link 1610
BibRef

Cermáková, I., Komárková, J., Sedlák, P.,
Using UAV to Detect Shoreline Changes: Case Study: Pohranov Pond, Czech Republic,
ISPRS16(B1: 803-808).
DOI Link 1610
BibRef

Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Sea Level Measurement and Change, Satellite Altimetric Data .


Last update:Sep 1, 2022 at 11:00:56