Ausherman, D.A.,
Dwyer, III, S.J.,
Lodwick, G.S.,
Extraction of Connected Edges from Knee Radiographs,
TC(21), No. 7, July 1972, pp. 753-758.
BibRef
7207
Stindel, E.,
Udupa, J.K.,
Hirsch, B.E.,
Odhner, D.,
A characterization of the geometric architecture of the peritalar joint
complex via MRI, an aid to classification of foot type,
MedImg(18), No. 9, September 1999, pp. 753-763.
IEEE Top Reference.
0110
BibRef
Mahfouz, M.R.,
Hoff, W.A.,
Komistek, R.D.,
Dennis, D.A.,
A robust method for registration of three-dimensional knee implant
models to two-dimensional fluoroscopy images,
MedImg(22), No. 12, December 2003, pp. 1561-1574.
IEEE Abstract.
0401
BibRef
Yamazaki, T.,
Watanabe, T.,
Nakajima, Y.,
Sugamoto, K.,
Tomita, T.,
Yoshikawa, H.,
Tamura, S.,
Improvement of depth position in 2-D/3-D registration of knee implants
using single-plane fluoroscopy,
MedImg(23), No. 5, May 2004, pp. 602-612.
IEEE Abstract.
0406
BibRef
Folkesson, J.[Jenny],
Dam, E.B.[Erik B.],
Olsen, O.F.[Ole Fogh],
Pettersen, P.[Paola],
Christiansen, C.[Claus],
Segmenting Articular Cartilage Automatically Using a Voxel
Classification Approach,
MedImg(26), No. 1, January 2007, pp. 106-115.
IEEE DOI
0701
BibRef
Earlier: A1, A3, A4, A2, A5:
Combining Binary Classifiers for Automatic Cartilage Segmentation in
Knee MRI,
CVBIA05(230-239).
Springer DOI
0601
BibRef
Ramakrishna, B.,
Liu, W.M.[Wei-Min],
Saiprasad, G.,
Safdar, N.,
Chang, C.I.[Chein-I],
Siddiqui, K.,
Kim, W.,
Siegel, E.,
Chai, J.W.[Jyh-Wen],
Chen, C.C.C.,
Lee, S.K.[San-Kan],
An Automatic Computer-Aided Detection System for Meniscal Tears on
Magnetic Resonance Images,
MedImg(28), No. 8, August 2009, pp. 1308-1316.
IEEE DOI
0909
BibRef
Atmani, H.[Hakim],
Mérienne, F.[Frédéric],
Fofi, D.[David],
From medical data to simple virtual mock-up of scapulo-humeral joint,
ELCVIA(7), No. 3, 2008, pp. xx-yy.
DOI Link
0909
BibRef
Fripp, J.[Jurgen],
Crozier, S.[Stuart],
Warfield, S.K.[Simon K.],
Ourselin, S.[Sebastien],
Automatic Segmentation and Quantitative Analysis of the Articular
Cartilages From Magnetic Resonance Images of the Knee,
MedImg(29), No. 1, January 2010, pp. 55-64.
IEEE DOI
1001
BibRef
Earlier: A1, A3, A2, A4:
Automatic Segmentation of the Knee Bones using 3D Active Shape Models,
ICPR06(I: 167-170).
IEEE DOI
0609
BibRef
Fripp, J.[Jurgen],
Bourgeat, P.[Pierrick],
Mewes, A.J.U.[Andrea J.U.],
Warfield, S.K.[Simon K.],
Crozier, S.[Stuart],
Ourselin, S.[Sébastien],
3D Statistical Shape Models to Embed Spatial Relationship Information,
CVBIA05(51-60).
Springer DOI
0601
Shape model of knee to embed info in MRI data.
BibRef
Yin, Y.[Yin],
Zhang, X.M.[Xiang-Min],
Williams, R.,
Wu, X.D.[Xiao-Dong],
Anderson, D.D.,
Sonka, M.,
LOGISMOS: Layered Optimal Graph Image Segmentation of Multiple Objects
and Surfaces: Cartilage Segmentation in the Knee Joint,
MedImg(29), No. 12, December 2010, pp. 2023-2037.
IEEE DOI
1101
BibRef
Chen, B.L.[Bai-Liang],
Lambrou, T.[Tryphon],
Offiah, A.[Amaka],
Fry, M.[Martin],
Todd-Pokropek, A.[Andrew],
Combined MR imaging towards subject-specific knee contact analysis,
VC(27), No. 2, February 2011, pp. 121-128.
WWW Link.
1103
BibRef
Lee, S.[Soochahn],
Park, S.H.[Sang Hyun],
Shim, H.J.[Hack-Joon],
Yun, I.D.[Il Dong],
Lee, S.U.[Sang Uk],
Optimization of local shape and appearance probabilities for
segmentation of knee cartilage in 3-D MR images,
CVIU(115), No. 12, December 2011, pp. 1710-1720.
Elsevier DOI
1111
Segmentation; Medical image analysis; MRF optimization; Local shape
and appearance; Knee cartilage; Localized probabilities; Shape and
appearance priors
BibRef
Park, S.H.[Sang Hyun],
Lee, S.[Soochahn],
Yun, I.D.[Il Dong],
Lee, S.U.[Sang Uk],
Hierarchical MRF of globally consistent localized classifiers for 3D
medical image segmentation,
PR(46), No. 9, September 2013, pp. 2408-2419.
Elsevier DOI
1305
Segmentation; Hierarchical Markov random field; Medical image analysis;
Discrete optimization; Local and global prior
BibRef
Zhan, Y.,
Dewan, M.,
Harder, M.,
Krishnan, A.,
Zhou, X.S.,
Robust Automatic Knee MR Slice Positioning Through Redundant and
Hierarchical Anatomy Detection,
MedImg(30), No. 12, December 2011, pp. 2087-2100.
IEEE DOI
1112
BibRef
Harvey, A.K.,
Thompson, M.S.,
Cochlin, L.E.,
Raju, P.A.,
Cui, Z.,
Cornell, H.R.,
Hulley, P.A.,
Brady, M.,
Functional Imaging of Tendon,
BMVA(2009), No. 8, 2009, pp. 1-10.
PDF File.
1209
BibRef
Zhang, K.L.[Kun-Lei],
Lu, W.M.[Wen-Miao],
Marziliano, P.[Pina],
The unified extreme learning machines and discriminative random fields
for automatic knee cartilage and meniscus segmentation from
multi-contrast MR images,
MVA(24), No. 7, October 2013, pp. 1459-1472.
WWW Link.
1309
BibRef
Zhang, K.L.[Kun-Lei],
Deng, J.[Jun],
Lu, W.M.[Wen-Miao],
Segmenting human knee cartilage automatically from multi-contrast MR
images using support vector machines and discriminative random fields,
ICIP11(721-724).
IEEE DOI
1201
BibRef
Earlier: A1, A3, Only:
Automatic Human Knee Cartilage Segmentation from Multi-contrast MR
Images Using Extreme Learning Machines and Discriminative Random Fields,
MLMI11(335-343).
Springer DOI
1109
BibRef
Choi, H.F.[Hon Fai],
Chincisan, A.[Andra],
Becker, M.[Matthias],
Magnenat-Thalmann, N.[Nadia],
Multimodal composition of the digital patient:
a strategy for the knee articulation,
VC(30), No. 6-8, June 2014, pp. 739-749.
Springer DOI
1407
BibRef
Huang, C.,
Shan, L.,
Charles, H.C.,
Wirth, W.,
Niethammer, M.,
Zhu, H.,
Diseased Region Detection of Longitudinal Knee Magnetic Resonance
Imaging Data,
MedImg(34), No. 9, September 2015, pp. 1914-1927.
IEEE DOI
1509
Bones
BibRef
Turunen, M.J.,
Toyras, J.,
Kokkonen, H.T.,
Jurvelin, J.S.,
Quantitative Evaluation of Knee Subchondral Bone Mineral Density
Using Cone Beam Computed Tomography,
MedImg(34), No. 10, October 2015, pp. 2186-2190.
IEEE DOI
1511
bone
BibRef
Zheng, J.J.[Jing-Jie],
Ji, Z.Y.[Zhen-Yan],
Yu, K.D.[Kuang-Di],
An, Q.[Qin],
Guo, Z.M.[Zhi-Ming],
Wu, Z.[Zuyi],
A feature-based solution for 3D registration of CT and MRI images of
human knee,
SIViP(9), No. 8, November 2015, pp. 1815-1824.
Springer DOI
1511
BibRef
Faisal, A.,
Ng, S.C.[Siew-Cheok],
Goh, S.L.[Siew-Li],
George, J.,
Supriyanto, E.,
Lai, K.W.,
Multiple LREK Active Contours for Knee Meniscus Ultrasound Image
Segmentation,
MedImg(34), No. 10, October 2015, pp. 2162-2171.
IEEE DOI
1511
biomedical ultrasonics
BibRef
Constantinescu, M.A.M.,
Lee, S.L.,
Navkar, N.V.,
Yu, W.,
Al-Rawas, S.,
Abinahed, J.,
Zheng, G.,
Keegan, J.,
Al-Ansari, A.,
Jomaah, N.,
Landreau, P.,
Yang, G.Z.,
Constrained Statistical Modelling of Knee Flexion From Multi-Pose
Magnetic Resonance Imaging,
MedImg(35), No. 7, July 2016, pp. 1686-1695.
IEEE DOI
1608
biomechanics
BibRef
Flood, P.D.L.,
Banks, S.A.,
Automated Registration of 3-D Knee Implant Models to Fluoroscopic
Images Using Lipschitzian Optimization,
MedImg(37), No. 1, January 2018, pp. 326-335.
IEEE DOI
1801
bone, diagnostic radiography, edge detection, image registration,
image sequences, medical image processing, optimisation,
registration
BibRef
Kumar, D.[Dileep],
Gandhamal, A.[Akash],
Talbar, S.[Sanjay],
Hani, A.F.M.[Ahmad Fadzil Mohd],
Knee Articular Cartilage Segmentation from MR Images: A Review,
Surveys(51), No. 5, January 2019, pp. Article No 97.
DOI Link
1902
Survey, Knee, MRI.
BibRef
Iqbal, I.[Imran],
Shahzad, G.[Ghazala],
Rafiq, N.[Nida],
Mustafa, G.[Ghulam],
Ma, J.W.[Jin-Wen],
Deep learning-based automated detection of human knee joint's synovial
fluid from magnetic resonance images with transfer learning,
IET-IPR(14), No. 10, August 2020, pp. 1990-1998.
DOI Link
2008
BibRef
Ridhma,
Kaur, M.[Manvjeet],
Sofat, S.[Sanjeev],
Chouhan, D.K.[Devendra K.],
Review of automated segmentation approaches for knee images,
IET-IPR(15), No. 2, 2021, pp. 302-324.
DOI Link
2106
BibRef
Ridhma,
Kaur, M.[Manvjeet],
Sofat, S.[Sanjeev],
Chouhan, D.K.[Devendra K.],
Prakash, M.[Mahesh],
Automated measurement of sulcus angle on axial knee magnetic
resonance images,
IJIST(32), No. 1, 2022, pp. 251-265.
DOI Link
2201
deep learning, MRI, patellar dislocation, patellar instability,
residual network, sulcus angle
BibRef
Manna, S.[Siladittya],
Bhattacharya, S.[Saumik],
Pal, U.[Umapada],
Self-supervised representation learning for detection of ACL tear
injury in knee MR videos,
PRL(154), 2022, pp. 37-43.
Elsevier DOI
2202
Self-supervised, Pretext task, Downstream task, MR videos, ACL tear detection
BibRef
Mao, J.P.[Jian-Ping],
Men, P.[Peng],
Guo, H.[Hao],
An, J.[Jubai],
Region-based two-stage MRI bone tissue segmentation of the knee joint,
IET-IPR(16), No. 13, 2022, pp. 3458-3470.
DOI Link
2210
BibRef
Zhuang, Z.X.[Zi-Xu],
Si, L.P.[Li-Ping],
Wang, S.[Sheng],
Xuan, K.[Kai],
Ouyang, X.[Xi],
Zhan, Y.Q.[Yi-Qiang],
Xue, Z.[Zhong],
Zhang, L.[Lichi],
Shen, D.G.[Ding-Gang],
Yao, W.[Weiwu],
Wang, Q.[Qian],
Knee Cartilage Defect Assessment by Graph Representation and Surface
Convolution,
MedImg(42), No. 2, February 2023, pp. 368-379.
IEEE DOI
2302
Magnetic resonance imaging, Convolution, Diseases, Deep learning,
Bones, Shape, Cartilage defect classification, knee osteoarthritis,
surface convolution
BibRef
Sengar, S.S.[Sandeep Singh],
Meulengracht, C.[Christopher],
Boesen, M.P.[Mikael Ploug],
Overgaard, A.F.[Anders Føhrby],
Gudbergsen, H.[Henrik],
Nybing, J.D.[Janus Damm],
Perslev, M.[Mathias],
Dam, E.B.[Erik Bjørnager],
Multi-planar 3D knee MRI segmentation via UNet inspired architectures,
IJIST(33), No. 3, 2023, pp. 985-998.
DOI Link
2305
deep learning, full-scale skip connection, knee MRI,
multi-planar, segmentation, UNet
BibRef
Saini, D.[Deepak],
Khosla, A.[Ashima],
Chand, T.[Trilok],
Chouhan, D.K.[Devendra K.],
Prakash, M.[Mahesh],
Automated knee osteoarthritis severity classification using
three-stage preprocessing method and VGG16 architecture,
IJIST(33), No. 3, 2023, pp. 1028-1047.
DOI Link
2305
automated knee OA severity grading,
balanced contrast enhancement technique, knee-osteoarthritis,
VGG16
BibRef
Li, X.[Xiang],
Lv, S.[Songcen],
Li, M.[Minglei],
Zhang, J.[Jiusi],
Jiang, Y.C.[Yu-Chen],
Qin, Y.[Yong],
Luo, H.[Hao],
Yin, S.[Shen],
SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee
MRI Segmentation and Landmark Localization,
MedImg(42), No. 8, August 2023, pp. 2274-2285.
IEEE DOI
2308
Task analysis, Image segmentation, Location awareness, Ligaments,
Bones, Magnetic resonance imaging, Knee segmentation,
multi-task learning
BibRef
Yan, S.[Shi],
Ramazanian, T.[Taghi],
Sagheb, E.[Elham],
Fu, S.Y.[Sun-Yang],
Sohn, S.[Sunghwan],
Lewallen, D.G.[David G.],
Liu, H.F.[Hong-Fang],
Kremers, W.K.[Walter K.],
Chaudhary, V.[Vipin],
Taunton, M.[Michael],
Kremers, H.M.[Hilal Maradit],
Tafti, A.P.[Ahmad P.],
Deeptkaclassifier: Brand Classification of Total Knee Arthroplasty
Implants Using Explainable Deep Convolutional Neural Networks,
ISVC20(II:154-165).
Springer DOI
2103
BibRef
Tiulpin, A.,
Melekhov, I.,
Saarakkala, S.,
KNEEL: Knee Anatomical Landmark Localization Using Hourglass Networks,
VRMI19(352-361)
IEEE DOI
2004
belief networks, diseases, image resolution,
learning (artificial intelligence), medical image processing, Deep Learning
BibRef
Das, K.,
Bhowmik, M.K.,
Mukherjee, D.P.[D. Prasad],
Segmentation of Knee Thermograms for Detecting Inflammation,
ICIP19(1550-1554)
IEEE DOI
1910
Thermal Image, Consensus Segmentation, Variation of Information
BibRef
Tiulpin, A.[Aleksei],
Thevenot, J.[Jerome],
Rahtu, E.[Esa],
Saarakkala, S.[Simo],
A Novel Method for Automatic Localization of Joint Area on Knee Plain
Radiographs,
SCIA17(II: 290-301).
Springer DOI
1706
BibRef
Mezghani, N.,
Dunbar, M.,
Ouakrim, Y.,
Fuentes, A.,
Mitiche, A.,
Whynot, S.,
Richardson, G.,
Biomechanical signal classification of surgical and non-surgical
candidates for knee arthroplasty,
ISIVC16(287-290)
IEEE DOI
1704
Biomechanics
BibRef
Amami, A.,
Azouz, Z.B.,
Alouane, M. .T.H.[M. Turki-Hadj],
Weakly supervised 3D reconstruction of the knee joint from MR images
using a volumetric Active Appearance Model,
ICVNZ15(1-6)
IEEE DOI
1701
biomedical MRI
BibRef
Mezlini, H.,
Youssef, R.,
Bouhadoun, H.,
Budyn, E.,
Laredo, J.D.[J. Denis],
Ghalila, S.S.,
Chappard, C.,
High resolution volume quantification of the knee joint space based
on a semi-automatic segmentation of computed tomography images,
WSSIP15(157-161)
IEEE DOI
1603
bone
BibRef
Singh, V.[Vedpal],
Elamvazuthi, I.[Irraivan],
Jeoti, V.[Varun],
George, J.[John],
Swain, A.K.[Akshya Kumar],
Kumar, D.[Dileep],
3D Reconstruction of CFL Ligament Based on Ultrasonographic Images,
IVIC15(503-513).
Springer DOI
1511
BibRef
Liu, Q.[Qin],
Wang, Q.[Qian],
Zhang, L.[Lichi],
Gao, Y.Z.[Yao-Zong],
Shen, D.G.[Ding-Gang],
Multi-atlas Context Forests for Knee MR Image Segmentation,
MLMI15(186-193).
Springer DOI
1511
BibRef
Kusakunniran, W.[Worapan],
Dirakbussarakom, N.[Nattaporn],
Prachasri, N.[Nantawat],
Yangchaem, D.[Duangkamol],
Vanrenterghem, J.[Jos],
Robinson, M.[Mark],
Discriminating motion patterns of ACL reconstructed patients from
healthy individuals,
MVA15(447-450)
IEEE DOI
1507
Force; Hip; Joints; Knee; Niobium; Principal component analysis; Training
BibRef
Menon, P.G.[Prahlad G.],
Muller, J.H.[Jacobus H.],
Characterization of a Novel Imaging-Based Metric of Patellofemoral
Separation Using Computational Modeling,
CompIMAGE14(188-203).
Springer DOI
1407
BibRef
Wang, Q.[Quan],
Wu, D.[Dijia],
Lu, L.[Le],
Liu, M.[Meizhu],
Boyer, K.L.[Kim L.],
Zhou, S.H.K.[Shao-Hua Kevin],
Semantic Context Forests for Learning-Based Knee Cartilage Segmentation
in 3D MR Images,
MCV13(105-115).
Springer DOI
1405
BibRef
Hossain, M.M.,
Muhit, A.A.,
Pickering, M.R.,
Scarvell, J.,
Smith, P.,
A 3D-2D Image Registration Algorithm for Kinematic Analysis of the
Knee after Total Knee Arthroplasty (TKA),
DICTA13(1-6)
IEEE DOI
1402
computerised tomography
BibRef
Kong, Q.[Qi],
Wang, S.S.[Shao-Shan],
Yang, J.S.[Jiu-Shan],
Zou, R.Q.[Rui-Qi],
Huang, Y.[Yan],
Yin, Y.L.[Yi-Long],
Peng, J.L.[Jing-Liang],
Automatic measurement on CT images for patella dislocation diagnosis,
ICIP13(1130-1134)
IEEE DOI
1402
Active contours
BibRef
Lee, H.S.[Han-Sang],
Hong, H.[Helen],
Kim, J.[Junmo],
Anterior Cruciate Ligament Segmentation from Knee MR Images Using Graph
Cuts with Geometric and Probabilistic Shape Constraints,
ACCV12(II:305-315).
Springer DOI
1304
BibRef
Jopek, L.[Lukasz],
Babout, L.[Laurent],
Janaszewski, M.[Marcin],
A New Method to Segment X-Ray Microtomography Images of Lamellar
Titanium Alloy Based on Directional Filter Banks and Gray Level
Gradient,
ICCVG12(105-112).
Springer DOI
1210
BibRef
Akter, M.,
Lambert, A.J.,
Pickering, M.R.,
Scarvell, J.M.,
Smith, P.N.,
A 2D-3D Image Registration Algorithm Using Log-Polar Transforms for
Knee Kinematic Analysis,
DICTA12(1-8).
IEEE DOI
1303
BibRef
Masum, M.A.,
Lambert, A.J.,
Pickering, M.R.,
Scarvell, J.M.,
Smith, P.N.,
Precision Assessment of B-Mode Ultrasound for Non-Invasive Motion
Analysis of Knee Joints,
DICTA11(279-284).
IEEE DOI
1205
BibRef
Shan, L.[Liang],
Charles, C.[Cecil],
Niethammer, M.[Marc],
Automatic atlas-based three-label cartilage segmentation from MR knee
images,
MMBIA12(241-246).
IEEE DOI
1203
BibRef
Ramli, I.S.[Intan Syaherra],
Arshad, H.[Haslina],
Sulong, A.B.[Abu Bakar],
Yahaya, N.H.M.[Nor Hamdan Mohammed],
Haron, C.H.C.[Che Hassan Che],
Visualization of the Newly Designed Jig and Fixture for
Computer-Assisted Knee Replacement Surgery,
IVIC09(223-231).
Springer DOI
0911
BibRef
Yusof, S.F.[Siti Fairuz],
Sulaiman, R.[Riza],
Seng, L.T.[Lee Thian],
Kassim, A.Y.M.[Abdul Yazid Mohammed],
Abdullah, S.[Suhail],
Yusof, S.[Shahril],
Omar, M.[Masbah],
Hamid, H.A.[Hamzaini Abdul],
Development of Total Knee Replacement Digital Templating Software,
IVIC09(180-190).
Springer DOI
0911
BibRef
Seisler, A.R.,
Sheehan, F.T.,
A Visualization Tool to convey Quantitative in vivo, 3D Knee Joint
Kinematics,
AIPR06(18-18).
IEEE DOI
0610
BibRef
Impoco, G.[Gaetano],
Level Set Segmentation of Knee Bones Using Normal Profile Models,
MIRAGE09(195-206).
Springer DOI
0905
BibRef
Hermans, J.,
Bellemans, J.,
Maes, F.,
Vandermeulen, D.,
Suetens, P.,
A statistical framework for the registration of 3D knee implant
components to single-plane X-ray images,
MMBIA08(1-8).
IEEE DOI
0806
BibRef
Hermans, J.,
Bellemans, J.,
Vandermeulen, D.,
Suetens, P.,
A Statistical Approach to Determine Symmetrical Solutions for the
Registration of 3D Knee Implant Models to Sagittal Fluoroscopy Images,
MMBIA07(1-8).
IEEE DOI
0710
BibRef
Tsechpenakis, G.[Gabriel],
Wang, J.H.[Jian-Hua],
CRF-Based Segmentation of Human Tear Meniscus Obtained with Optical
Coherence Tomography,
ICIP07(V: 509-512).
IEEE DOI
0709
BibRef
Ardizzone, E.[Edoardo],
Pirrone, R.[Roberto],
Gambino, O.[Orazio],
Frequency Determined Homomorphic Unsharp Masking Algorithm on Knee MR
Images,
CIAP05(922-929).
Springer DOI
0509
BibRef
Hoff, W.A.,
Komistek, R.D.,
Dennis, D.A.,
Walker, S.,
Northcut, E., and
Spargo, K.,
Pose Estimation of Artificial Knee Implants in Fluoroscopy Images
Using a Template Matching Technique,
WACV96(181-186).
IEEE DOI
9609
BibRef
Dessenne, V.,
Lavallee, S.,
Julliard, R.,
Cinquin, P.,
Orti, R.,
Computer Assisted Knee Anterior Cruciate Ligament Reconstruction:
First Clinical Tests,
CVRMed95(XX-YY)
BibRef
9500
Zhi, H.,
Recognition system for automatic diagnosis of knee ligaments,
ICPR90(I: 597-602).
IEEE DOI
9006
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Medical Applications, Arthritis .