21.7.4.6 Medical Applications, Knee Joints

Chapter Contents (Back)
Knee Joints. Skeletal.
See also Medical Applications, Arthritis.

Ausherman, D.A., Dwyer, III, S.J., Lodwick, G.S.,
Extraction of Connected Edges from Knee Radiographs,
TC(21), No. 7, July 1972, pp. 753-758. BibRef 7207

Stindel, E., Udupa, J.K., Hirsch, B.E., Odhner, D.,
A characterization of the geometric architecture of the peritalar joint complex via MRI, an aid to classification of foot type,
MedImg(18), No. 9, September 1999, pp. 753-763.
IEEE Top Reference. 0110
BibRef

Mahfouz, M.R., Hoff, W.A., Komistek, R.D., Dennis, D.A.,
A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images,
MedImg(22), No. 12, December 2003, pp. 1561-1574.
IEEE Abstract. 0401
BibRef

Yamazaki, T., Watanabe, T., Nakajima, Y., Sugamoto, K., Tomita, T., Yoshikawa, H., Tamura, S.,
Improvement of depth position in 2-D/3-D registration of knee implants using single-plane fluoroscopy,
MedImg(23), No. 5, May 2004, pp. 602-612.
IEEE Abstract. 0406
BibRef

Folkesson, J.[Jenny], Dam, E.B.[Erik B.], Olsen, O.F.[Ole Fogh], Pettersen, P.[Paola], Christiansen, C.[Claus],
Segmenting Articular Cartilage Automatically Using a Voxel Classification Approach,
MedImg(26), No. 1, January 2007, pp. 106-115.
IEEE DOI 0701
BibRef
Earlier: A1, A3, A4, A2, A5:
Combining Binary Classifiers for Automatic Cartilage Segmentation in Knee MRI,
CVBIA05(230-239).
Springer DOI 0601
BibRef

Ramakrishna, B., Liu, W.M.[Wei-Min], Saiprasad, G., Safdar, N., Chang, C.I.[Chein-I], Siddiqui, K., Kim, W., Siegel, E., Chai, J.W.[Jyh-Wen], Chen, C.C.C., Lee, S.K.[San-Kan],
An Automatic Computer-Aided Detection System for Meniscal Tears on Magnetic Resonance Images,
MedImg(28), No. 8, August 2009, pp. 1308-1316.
IEEE DOI 0909
BibRef

Atmani, H.[Hakim], Mérienne, F.[Frédéric], Fofi, D.[David],
From medical data to simple virtual mock-up of scapulo-humeral joint,
ELCVIA(7), No. 3, 2008, pp. xx-yy.
DOI Link 0909
BibRef

Fripp, J.[Jurgen], Crozier, S.[Stuart], Warfield, S.K.[Simon K.], Ourselin, S.[Sebastien],
Automatic Segmentation and Quantitative Analysis of the Articular Cartilages From Magnetic Resonance Images of the Knee,
MedImg(29), No. 1, January 2010, pp. 55-64.
IEEE DOI 1001
BibRef
Earlier: A1, A3, A2, A4:
Automatic Segmentation of the Knee Bones using 3D Active Shape Models,
ICPR06(I: 167-170).
IEEE DOI 0609
BibRef

Fripp, J.[Jurgen], Bourgeat, P.[Pierrick], Mewes, A.J.U.[Andrea J.U.], Warfield, S.K.[Simon K.], Crozier, S.[Stuart], Ourselin, S.[Sébastien],
3D Statistical Shape Models to Embed Spatial Relationship Information,
CVBIA05(51-60).
Springer DOI 0601
Shape model of knee to embed info in MRI data. BibRef

Yin, Y.[Yin], Zhang, X.M.[Xiang-Min], Williams, R., Wu, X.D.[Xiao-Dong], Anderson, D.D., Sonka, M.,
LOGISMOS: Layered Optimal Graph Image Segmentation of Multiple Objects and Surfaces: Cartilage Segmentation in the Knee Joint,
MedImg(29), No. 12, December 2010, pp. 2023-2037.
IEEE DOI 1101
BibRef

Chen, B.L.[Bai-Liang], Lambrou, T.[Tryphon], Offiah, A.[Amaka], Fry, M.[Martin], Todd-Pokropek, A.[Andrew],
Combined MR imaging towards subject-specific knee contact analysis,
VC(27), No. 2, February 2011, pp. 121-128.
WWW Link. 1103
BibRef

Lee, S.[Soochahn], Park, S.H.[Sang Hyun], Shim, H.J.[Hack-Joon], Yun, I.D.[Il Dong], Lee, S.U.[Sang Uk],
Optimization of local shape and appearance probabilities for segmentation of knee cartilage in 3-D MR images,
CVIU(115), No. 12, December 2011, pp. 1710-1720.
Elsevier DOI 1111
Segmentation; Medical image analysis; MRF optimization; Local shape and appearance; Knee cartilage; Localized probabilities; Shape and appearance priors BibRef

Park, S.H.[Sang Hyun], Lee, S.[Soochahn], Yun, I.D.[Il Dong], Lee, S.U.[Sang Uk],
Hierarchical MRF of globally consistent localized classifiers for 3D medical image segmentation,
PR(46), No. 9, September 2013, pp. 2408-2419.
Elsevier DOI 1305
Segmentation; Hierarchical Markov random field; Medical image analysis; Discrete optimization; Local and global prior BibRef

Zhan, Y., Dewan, M., Harder, M., Krishnan, A., Zhou, X.S.,
Robust Automatic Knee MR Slice Positioning Through Redundant and Hierarchical Anatomy Detection,
MedImg(30), No. 12, December 2011, pp. 2087-2100.
IEEE DOI 1112
BibRef

Harvey, A.K., Thompson, M.S., Cochlin, L.E., Raju, P.A., Cui, Z., Cornell, H.R., Hulley, P.A., Brady, M.,
Functional Imaging of Tendon,
BMVA(2009), No. 8, 2009, pp. 1-10.
PDF File. 1209
BibRef

Zhang, K.L.[Kun-Lei], Lu, W.M.[Wen-Miao], Marziliano, P.[Pina],
The unified extreme learning machines and discriminative random fields for automatic knee cartilage and meniscus segmentation from multi-contrast MR images,
MVA(24), No. 7, October 2013, pp. 1459-1472.
WWW Link. 1309
BibRef

Zhang, K.L.[Kun-Lei], Deng, J.[Jun], Lu, W.M.[Wen-Miao],
Segmenting human knee cartilage automatically from multi-contrast MR images using support vector machines and discriminative random fields,
ICIP11(721-724).
IEEE DOI 1201
BibRef
Earlier: A1, A3, Only:
Automatic Human Knee Cartilage Segmentation from Multi-contrast MR Images Using Extreme Learning Machines and Discriminative Random Fields,
MLMI11(335-343).
Springer DOI 1109
BibRef

Choi, H.F.[Hon Fai], Chincisan, A.[Andra], Becker, M.[Matthias], Magnenat-Thalmann, N.[Nadia],
Multimodal composition of the digital patient: a strategy for the knee articulation,
VC(30), No. 6-8, June 2014, pp. 739-749.
Springer DOI 1407
BibRef

Huang, C., Shan, L., Charles, H.C., Wirth, W., Niethammer, M., Zhu, H.,
Diseased Region Detection of Longitudinal Knee Magnetic Resonance Imaging Data,
MedImg(34), No. 9, September 2015, pp. 1914-1927.
IEEE DOI 1509
Bones BibRef

Turunen, M.J., Toyras, J., Kokkonen, H.T., Jurvelin, J.S.,
Quantitative Evaluation of Knee Subchondral Bone Mineral Density Using Cone Beam Computed Tomography,
MedImg(34), No. 10, October 2015, pp. 2186-2190.
IEEE DOI 1511
bone BibRef

Zheng, J.J.[Jing-Jie], Ji, Z.Y.[Zhen-Yan], Yu, K.D.[Kuang-Di], An, Q.[Qin], Guo, Z.M.[Zhi-Ming], Wu, Z.[Zuyi],
A feature-based solution for 3D registration of CT and MRI images of human knee,
SIViP(9), No. 8, November 2015, pp. 1815-1824.
Springer DOI 1511
BibRef

Faisal, A., Ng, S.C.[Siew-Cheok], Goh, S.L.[Siew-Li], George, J., Supriyanto, E., Lai, K.W.,
Multiple LREK Active Contours for Knee Meniscus Ultrasound Image Segmentation,
MedImg(34), No. 10, October 2015, pp. 2162-2171.
IEEE DOI 1511
biomedical ultrasonics BibRef

Constantinescu, M.A.M., Lee, S.L., Navkar, N.V., Yu, W., Al-Rawas, S., Abinahed, J., Zheng, G., Keegan, J., Al-Ansari, A., Jomaah, N., Landreau, P., Yang, G.Z.,
Constrained Statistical Modelling of Knee Flexion From Multi-Pose Magnetic Resonance Imaging,
MedImg(35), No. 7, July 2016, pp. 1686-1695.
IEEE DOI 1608
biomechanics BibRef

Flood, P.D.L., Banks, S.A.,
Automated Registration of 3-D Knee Implant Models to Fluoroscopic Images Using Lipschitzian Optimization,
MedImg(37), No. 1, January 2018, pp. 326-335.
IEEE DOI 1801
bone, diagnostic radiography, edge detection, image registration, image sequences, medical image processing, optimisation, registration BibRef

Kumar, D.[Dileep], Gandhamal, A.[Akash], Talbar, S.[Sanjay], Hani, A.F.M.[Ahmad Fadzil Mohd],
Knee Articular Cartilage Segmentation from MR Images: A Review,
Surveys(51), No. 5, January 2019, pp. Article No 97.
DOI Link 1902
Survey, Knee, MRI. BibRef

Iqbal, I.[Imran], Shahzad, G.[Ghazala], Rafiq, N.[Nida], Mustafa, G.[Ghulam], Ma, J.W.[Jin-Wen],
Deep learning-based automated detection of human knee joint's synovial fluid from magnetic resonance images with transfer learning,
IET-IPR(14), No. 10, August 2020, pp. 1990-1998.
DOI Link 2008
BibRef

Ridhma, Kaur, M.[Manvjeet], Sofat, S.[Sanjeev], Chouhan, D.K.[Devendra K.],
Review of automated segmentation approaches for knee images,
IET-IPR(15), No. 2, 2021, pp. 302-324.
DOI Link 2106
BibRef

Ridhma, Kaur, M.[Manvjeet], Sofat, S.[Sanjeev], Chouhan, D.K.[Devendra K.], Prakash, M.[Mahesh],
Automated measurement of sulcus angle on axial knee magnetic resonance images,
IJIST(32), No. 1, 2022, pp. 251-265.
DOI Link 2201
deep learning, MRI, patellar dislocation, patellar instability, residual network, sulcus angle BibRef

Manna, S.[Siladittya], Bhattacharya, S.[Saumik], Pal, U.[Umapada],
Self-supervised representation learning for detection of ACL tear injury in knee MR videos,
PRL(154), 2022, pp. 37-43.
Elsevier DOI 2202
Self-supervised, Pretext task, Downstream task, MR videos, ACL tear detection BibRef

Mao, J.P.[Jian-Ping], Men, P.[Peng], Guo, H.[Hao], An, J.[Jubai],
Region-based two-stage MRI bone tissue segmentation of the knee joint,
IET-IPR(16), No. 13, 2022, pp. 3458-3470.
DOI Link 2210
BibRef

Zhuang, Z.X.[Zi-Xu], Si, L.P.[Li-Ping], Wang, S.[Sheng], Xuan, K.[Kai], Ouyang, X.[Xi], Zhan, Y.Q.[Yi-Qiang], Xue, Z.[Zhong], Zhang, L.[Lichi], Shen, D.G.[Ding-Gang], Yao, W.[Weiwu], Wang, Q.[Qian],
Knee Cartilage Defect Assessment by Graph Representation and Surface Convolution,
MedImg(42), No. 2, February 2023, pp. 368-379.
IEEE DOI 2302
Magnetic resonance imaging, Convolution, Diseases, Deep learning, Bones, Shape, Cartilage defect classification, knee osteoarthritis, surface convolution BibRef

Sengar, S.S.[Sandeep Singh], Meulengracht, C.[Christopher], Boesen, M.P.[Mikael Ploug], Overgaard, A.F.[Anders Føhrby], Gudbergsen, H.[Henrik], Nybing, J.D.[Janus Damm], Perslev, M.[Mathias], Dam, E.B.[Erik Bjørnager],
Multi-planar 3D knee MRI segmentation via UNet inspired architectures,
IJIST(33), No. 3, 2023, pp. 985-998.
DOI Link 2305
deep learning, full-scale skip connection, knee MRI, multi-planar, segmentation, UNet BibRef

Saini, D.[Deepak], Khosla, A.[Ashima], Chand, T.[Trilok], Chouhan, D.K.[Devendra K.], Prakash, M.[Mahesh],
Automated knee osteoarthritis severity classification using three-stage preprocessing method and VGG16 architecture,
IJIST(33), No. 3, 2023, pp. 1028-1047.
DOI Link 2305
automated knee OA severity grading, balanced contrast enhancement technique, knee-osteoarthritis, VGG16 BibRef

Li, X.[Xiang], Lv, S.[Songcen], Li, M.[Minglei], Zhang, J.[Jiusi], Jiang, Y.C.[Yu-Chen], Qin, Y.[Yong], Luo, H.[Hao], Yin, S.[Shen],
SDMT: Spatial Dependence Multi-Task Transformer Network for 3D Knee MRI Segmentation and Landmark Localization,
MedImg(42), No. 8, August 2023, pp. 2274-2285.
IEEE DOI 2308
Task analysis, Image segmentation, Location awareness, Ligaments, Bones, Magnetic resonance imaging, Knee segmentation, multi-task learning BibRef


Howes, M.[Michael], Bajger, M.[Mariusz], Lee, G.[Gobert], Bucci, F.[Francesca], Martelli, S.[Saulo],
Texture enhanced Statistical Region Merging with application to automatic knee bones segmentation from CT,
DICTA21(01-08)
IEEE DOI 2201
Image segmentation, Computed tomography, Digital images, Merging, Bones, Solids, Probabilistic logic, statistical region merging, CT BibRef

Yan, S.[Shi], Ramazanian, T.[Taghi], Sagheb, E.[Elham], Fu, S.Y.[Sun-Yang], Sohn, S.[Sunghwan], Lewallen, D.G.[David G.], Liu, H.F.[Hong-Fang], Kremers, W.K.[Walter K.], Chaudhary, V.[Vipin], Taunton, M.[Michael], Kremers, H.M.[Hilal Maradit], Tafti, A.P.[Ahmad P.],
Deeptkaclassifier: Brand Classification of Total Knee Arthroplasty Implants Using Explainable Deep Convolutional Neural Networks,
ISVC20(II:154-165).
Springer DOI 2103
BibRef

Tiulpin, A., Melekhov, I., Saarakkala, S.,
KNEEL: Knee Anatomical Landmark Localization Using Hourglass Networks,
VRMI19(352-361)
IEEE DOI 2004
belief networks, diseases, image resolution, learning (artificial intelligence), medical image processing, Deep Learning BibRef

Das, K., Bhowmik, M.K., Mukherjee, D.P.[D. Prasad],
Segmentation of Knee Thermograms for Detecting Inflammation,
ICIP19(1550-1554)
IEEE DOI 1910
Thermal Image, Consensus Segmentation, Variation of Information BibRef

Tiulpin, A.[Aleksei], Thevenot, J.[Jerome], Rahtu, E.[Esa], Saarakkala, S.[Simo],
A Novel Method for Automatic Localization of Joint Area on Knee Plain Radiographs,
SCIA17(II: 290-301).
Springer DOI 1706
BibRef

Mezghani, N., Dunbar, M., Ouakrim, Y., Fuentes, A., Mitiche, A., Whynot, S., Richardson, G.,
Biomechanical signal classification of surgical and non-surgical candidates for knee arthroplasty,
ISIVC16(287-290)
IEEE DOI 1704
Biomechanics BibRef

Amami, A., Azouz, Z.B., Alouane, M. .T.H.[M. Turki-Hadj],
Weakly supervised 3D reconstruction of the knee joint from MR images using a volumetric Active Appearance Model,
ICVNZ15(1-6)
IEEE DOI 1701
biomedical MRI BibRef

Mezlini, H., Youssef, R., Bouhadoun, H., Budyn, E., Laredo, J.D.[J. Denis], Ghalila, S.S., Chappard, C.,
High resolution volume quantification of the knee joint space based on a semi-automatic segmentation of computed tomography images,
WSSIP15(157-161)
IEEE DOI 1603
bone BibRef

Singh, V.[Vedpal], Elamvazuthi, I.[Irraivan], Jeoti, V.[Varun], George, J.[John], Swain, A.K.[Akshya Kumar], Kumar, D.[Dileep],
3D Reconstruction of CFL Ligament Based on Ultrasonographic Images,
IVIC15(503-513).
Springer DOI 1511
BibRef

Liu, Q.[Qin], Wang, Q.[Qian], Zhang, L.[Lichi], Gao, Y.Z.[Yao-Zong], Shen, D.G.[Ding-Gang],
Multi-atlas Context Forests for Knee MR Image Segmentation,
MLMI15(186-193).
Springer DOI 1511
BibRef

Kusakunniran, W.[Worapan], Dirakbussarakom, N.[Nattaporn], Prachasri, N.[Nantawat], Yangchaem, D.[Duangkamol], Vanrenterghem, J.[Jos], Robinson, M.[Mark],
Discriminating motion patterns of ACL reconstructed patients from healthy individuals,
MVA15(447-450)
IEEE DOI 1507
Force; Hip; Joints; Knee; Niobium; Principal component analysis; Training BibRef

Menon, P.G.[Prahlad G.], Muller, J.H.[Jacobus H.],
Characterization of a Novel Imaging-Based Metric of Patellofemoral Separation Using Computational Modeling,
CompIMAGE14(188-203).
Springer DOI 1407
BibRef

Wang, Q.[Quan], Wu, D.[Dijia], Lu, L.[Le], Liu, M.[Meizhu], Boyer, K.L.[Kim L.], Zhou, S.H.K.[Shao-Hua Kevin],
Semantic Context Forests for Learning-Based Knee Cartilage Segmentation in 3D MR Images,
MCV13(105-115).
Springer DOI 1405
BibRef

Hossain, M.M., Muhit, A.A., Pickering, M.R., Scarvell, J., Smith, P.,
A 3D-2D Image Registration Algorithm for Kinematic Analysis of the Knee after Total Knee Arthroplasty (TKA),
DICTA13(1-6)
IEEE DOI 1402
computerised tomography BibRef

Kong, Q.[Qi], Wang, S.S.[Shao-Shan], Yang, J.S.[Jiu-Shan], Zou, R.Q.[Rui-Qi], Huang, Y.[Yan], Yin, Y.L.[Yi-Long], Peng, J.L.[Jing-Liang],
Automatic measurement on CT images for patella dislocation diagnosis,
ICIP13(1130-1134)
IEEE DOI 1402
Active contours BibRef

Lee, H.S.[Han-Sang], Hong, H.[Helen], Kim, J.[Junmo],
Anterior Cruciate Ligament Segmentation from Knee MR Images Using Graph Cuts with Geometric and Probabilistic Shape Constraints,
ACCV12(II:305-315).
Springer DOI 1304
BibRef

Jopek, L.[Lukasz], Babout, L.[Laurent], Janaszewski, M.[Marcin],
A New Method to Segment X-Ray Microtomography Images of Lamellar Titanium Alloy Based on Directional Filter Banks and Gray Level Gradient,
ICCVG12(105-112).
Springer DOI 1210
BibRef

Akter, M., Lambert, A.J., Pickering, M.R., Scarvell, J.M., Smith, P.N.,
A 2D-3D Image Registration Algorithm Using Log-Polar Transforms for Knee Kinematic Analysis,
DICTA12(1-8).
IEEE DOI 1303
BibRef

Masum, M.A., Lambert, A.J., Pickering, M.R., Scarvell, J.M., Smith, P.N.,
Precision Assessment of B-Mode Ultrasound for Non-Invasive Motion Analysis of Knee Joints,
DICTA11(279-284).
IEEE DOI 1205
BibRef

Shan, L.[Liang], Charles, C.[Cecil], Niethammer, M.[Marc],
Automatic atlas-based three-label cartilage segmentation from MR knee images,
MMBIA12(241-246).
IEEE DOI 1203
BibRef

Ramli, I.S.[Intan Syaherra], Arshad, H.[Haslina], Sulong, A.B.[Abu Bakar], Yahaya, N.H.M.[Nor Hamdan Mohammed], Haron, C.H.C.[Che Hassan Che],
Visualization of the Newly Designed Jig and Fixture for Computer-Assisted Knee Replacement Surgery,
IVIC09(223-231).
Springer DOI 0911
BibRef

Yusof, S.F.[Siti Fairuz], Sulaiman, R.[Riza], Seng, L.T.[Lee Thian], Kassim, A.Y.M.[Abdul Yazid Mohammed], Abdullah, S.[Suhail], Yusof, S.[Shahril], Omar, M.[Masbah], Hamid, H.A.[Hamzaini Abdul],
Development of Total Knee Replacement Digital Templating Software,
IVIC09(180-190).
Springer DOI 0911
BibRef

Seisler, A.R., Sheehan, F.T.,
A Visualization Tool to convey Quantitative in vivo, 3D Knee Joint Kinematics,
AIPR06(18-18).
IEEE DOI 0610
BibRef

Impoco, G.[Gaetano],
Level Set Segmentation of Knee Bones Using Normal Profile Models,
MIRAGE09(195-206).
Springer DOI 0905
BibRef

Hermans, J., Bellemans, J., Maes, F., Vandermeulen, D., Suetens, P.,
A statistical framework for the registration of 3D knee implant components to single-plane X-ray images,
MMBIA08(1-8).
IEEE DOI 0806
BibRef

Hermans, J., Bellemans, J., Vandermeulen, D., Suetens, P.,
A Statistical Approach to Determine Symmetrical Solutions for the Registration of 3D Knee Implant Models to Sagittal Fluoroscopy Images,
MMBIA07(1-8).
IEEE DOI 0710
BibRef

Tsechpenakis, G.[Gabriel], Wang, J.H.[Jian-Hua],
CRF-Based Segmentation of Human Tear Meniscus Obtained with Optical Coherence Tomography,
ICIP07(V: 509-512).
IEEE DOI 0709
BibRef

Ardizzone, E.[Edoardo], Pirrone, R.[Roberto], Gambino, O.[Orazio],
Frequency Determined Homomorphic Unsharp Masking Algorithm on Knee MR Images,
CIAP05(922-929).
Springer DOI 0509
BibRef

Hoff, W.A., Komistek, R.D., Dennis, D.A., Walker, S., Northcut, E., and Spargo, K.,
Pose Estimation of Artificial Knee Implants in Fluoroscopy Images Using a Template Matching Technique,
WACV96(181-186).
IEEE DOI 9609
BibRef

Dessenne, V., Lavallee, S., Julliard, R., Cinquin, P., Orti, R.,
Computer Assisted Knee Anterior Cruciate Ligament Reconstruction: First Clinical Tests,
CVRMed95(XX-YY) BibRef 9500

Zhi, H.,
Recognition system for automatic diagnosis of knee ligaments,
ICPR90(I: 597-602).
IEEE DOI 9006
BibRef

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Medical Applications, Arthritis .


Last update:Nov 26, 2024 at 16:40:19