Brunner, C.[Clemens],
Naeem, M.[Muhammad],
Leeb, R.[Robert],
Graimann, B.[Bernhard],
Pfurtscheller, G.[Gert],
Spatial filtering and selection of optimized components in four class
motor imagery EEG data using independent components analysis,
PRL(28), No. 8, 1 June 2007, pp. 957-964.
Elsevier DOI
0704
Spatial filtering; Independent components analysis (ICA);
Common spatial patterns (CSP); Principal components analysis (PCA);
Electroencephalogram (EEG); Brain-computer interface (BCI); Motor imagery
BibRef
Sun, S.L.[Shi-Liang],
Zhang, C.S.[Chang-Shui],
Zhang, D.[Dan],
An experimental evaluation of ensemble methods for EEG signal
classification,
PRL(28), No. 15, 1 November 2007, pp. 2157-2163.
Elsevier DOI
0711
Brain-computer interface (BCI); EEG signal classification;
Bagging; Boosting; Random subspace
BibRef
Zhong, M.J.[Ming-Jun],
Lotte, F.[Fabien],
Girolami, M.[Mark],
Lecuyer, A.[Anatole],
Classifying EEG for brain computer interfaces using Gaussian processes,
PRL(29), No. 3, 1 February 2008, pp. 354-359.
Elsevier DOI
0801
Gaussian process; Brain computer interfaces; Support vector machine; EEG
BibRef
Glyn-Davies, A.[Alex],
Girolami, M.[Mark],
Anomaly detection in streaming data with gaussian process based
stochastic differential equations,
PRL(153), 2022, pp. 254-260.
Elsevier DOI
2201
Anomaly detection, Stochastic differential equations,
Gaussian process, Bootstrapping, Streaming data
BibRef
Li, Y.Q.[Yuan-Qing],
Guan, C.T.[Cun-Tai],
Li, H.Q.[Hui-Qi],
Chin, Z.Y.[Zheng-Yang],
A self-training semi-supervised SVM algorithm and its application in an
EEG-based brain computer interface speller system,
PRL(29), No. 9, 1 July 2008, pp. 1285-1294.
Elsevier DOI
0711
Semi-supervised support vector machine (SVM); Model selection; Convergence;
Brain computer interface (BCI); Electroencephalogram (EEG)
BibRef
Lowne, D.R.,
Roberts, S.J.,
Garnett, R.,
Sequential non-stationary dynamic classification with sparse feedback,
PR(43), No. 3, March 2010, pp. 897-905.
Elsevier DOI
1001
Non-stationary dynamic classification; Sequential Bayesian learning;
Missing data; Medical signal analysis; Brain-computer interface
BibRef
Li, J.[Jie],
Zhang, L.Q.[Li-Qing],
Regularized tensor discriminant analysis for single trial EEG
classification in BCI,
PRL(31), No. 7, 1 May 2010, pp. 619-628.
Elsevier DOI
1004
Brain computer interfacing (BCI); Channel selection;
Electroencephalogram (EEG); Regularized tensor discriminant analysis
(RTDA); Single trial classification; Tensor factorization
BibRef
Kayikcioglu, T.[Temel],
Aydemir, O.[Onder],
A polynomial fitting and k-NN based approach for improving
classification of motor imagery BCI data,
PRL(31), No. 11, 1 August 2010, pp. 1207-1215.
Elsevier DOI
1008
Brain computer interface (BCI); Polynomial fitting; k-Nearest
neighbor; Electroencephalogram (EEG); Feature extraction;
Classification
BibRef
Cecotti, H.[Hubert],
Graeser, A.[Axel],
Convolutional Neural Networks for P300 Detection with Application to
Brain-Computer Interfaces,
PAMI(33), No. 3, March 2011, pp. 433-445.
IEEE DOI
1102
BibRef
Earlier:
Convolutional Neural Network with embedded Fourier Transform for EEG
classification,
ICPR08(1-4).
IEEE DOI
0812
To enable spelling out words.
BibRef
Cecotti, H.[Hubert],
A time-frequency convolutional neural network for the offline
classification of steady-state visual evoked potential responses,
PRL(32), No. 8, 1 June 2011, pp. 1145-1153.
Elsevier DOI
1101
Neural network; Convolution; Fourier transform; Spatial filters;
Steady-state visual evoked potential (SSVEP); Electroencephalogram
(EEG)
BibRef
Zhang, S.M.[Shao-Min],
Jiang, B.[Bo],
Zhu, J.M.[Jun-Ming],
Zhang, Q.S.[Qiao-Sheng],
Chen, W.D.[Wei-Dong],
Zheng, X.X.[Xiao-Xiang],
Zhao, T.[Ting],
A study on combining local field potential and single unit activity for
better neural decoding,
IJIST(21), No. 2, June 2011, pp. 165-172.
DOI Link
1101
brain-machine interface; local field potential;
single-unit activity; neural decoding; time-frequency domain
BibRef
Gouy-Pailler, C.[Cédric],
Sebag, M.[Michčle],
Larue, A.[Anthony],
Souloumiac, A.[Antoine],
Single trial variability in brain-computer interfaces based on motor
imagery: Learning in the presence of labeling noise,
IJIST(21), No. 2, June 2011, pp. 148-157.
DOI Link
1101
BibRef
Zhang, S.M.[Shao-Min],
Liao, Y.X.[Yu-Xi],
Zheng, X.X.[Xiao-Xiang],
Chen, W.D.[Wei-Dong],
Wang, Y.W.[Yi-Wen],
Decoding the nonstationary neural activity in motor cortex for brain
machine interfaces,
IJIST(21), No. 2, June 2011, pp. 158-164.
DOI Link
1101
BibRef
Suk, H.I.[Heung-Il],
Lee, S.W.[Seong-Whan],
Subject and class specific frequency bands selection for multiclass
motor imagery classification,
IJIST(21), No. 2, June 2011, pp. 123-130.
DOI Link
1101
brain-computer interface; frequency bands selection;
motor imagery classification; ERD/ERS; electroencephalography
BibRef
Kroeker, K.L.[Kirk L.],
Improving Brain-Computer Interfaces,
CACM(54), No. 10, October 2011, pp. 11-14.
DOI Link
1110
Researchers are demonstrating advances in restorative BCI systems that
are giving paralyzed individuals more effective ways to communicate,
move, and interact with their environment.
BibRef
Sasayama, T.[Teruyoshi],
Kobayashi, T.[Tetsuo],
Movement-Imagery Brain-Computer Interface: EEG Classification of Beta
Rhythm Synchronization Based on Cumulative Distribution Function,
IEICE(E94-D), No. 12, December 2011, pp. 2479-2486.
WWW Link.
1112
BibRef
Lee, P.L.,
Chang, H.C.,
Hsieh, T.Y.,
Deng, H.T.,
Sun, C.W.,
A Brain-Wave-Actuated Small Robot Car Using Ensemble Empirical Mode
Decomposition-Based Approach,
SMC-A(42), No. 5, September 2012, pp. 1053-1064.
IEEE DOI
1208
BibRef
van de Ville, D.[Dimitri],
Lee, S.W.[Seong-Whan],
Brain decoding: Opportunities and challenges for pattern recognition,
PR(45), No. 6, June 2012, pp. 2033-2034.
Elsevier DOI
1202
Brain decoding; Neuroimaging; Functional magnetic resonance imaging;
Electroencephalography; Brain-computer interface.
Special issue intro.
BibRef
Daly, I.[Ian],
Nasuto, S.J.[Slawomir J.],
Warwick, K.[Kevin],
Brain computer interface control via functional connectivity dynamics,
PR(45), No. 6, June 2012, pp. 2123-2136.
Elsevier DOI
1202
BCI; Phase synchronization; Functional connectivity; Complex networks;
Finger tapping; HMM
BibRef
Becedas, J.,
Brain-Machine Interfaces: Basis and Advances,
SMC-C(42), No. 6, November 2012, pp. 825-836.
IEEE DOI
1210
BibRef
Ang, K.K.[Kai Keng],
Chin, Z.Y.[Zheng Yang],
Zhang, H.H.[Hai-Hong],
Guan, C.T.[Cun-Tai],
Mutual information-based selection of optimal spatial-temporal patterns
for single-trial EEG-based BCIs,
PR(45), No. 6, June 2012, pp. 2137-2144.
Elsevier DOI
1202
Brain-computer interface (BCI); Electroencephalogram (EEG); Mutual
information; Feature selection; Bayesian classification
BibRef
van Erp, J.[Jan],
Lotte, F.[Fabien],
Tangermann, M.[Michael],
Brain-Computer Interfaces: Beyond Medical Applications,
Computer(45), No. 4, April 2012, pp. 26-34.
IEEE DOI
1204
BibRef
Escolano, C.,
Antelis, J.M.,
Minguez, J.,
A Telepresence Mobile Robot Controlled With a Noninvasive
Brain-Computer Interface,
SMC-B(42), No. 3, June 2012, pp. 793-804.
IEEE DOI
1202
BibRef
Suk, H.I.[Heung-Il],
Lee, S.W.[Seong-Whan],
A Novel Bayesian Framework for Discriminative Feature Extraction in
Brain-Computer Interfaces,
PAMI(35), No. 2, February 2013, pp. 286-299.
IEEE DOI
1301
EEG based interface. Learning.
BibRef
Bi, L.Z.[Lu-Zheng],
Fan, X.A.[Xin-An],
Liu, Y.[Yili],
EEG-Based Brain-Controlled Mobile Robots: A Survey,
HMS(43), No. 2, March 2013, pp. 161-176.
IEEE DOI
1303
Survey, BCI.
BibRef
Li, H.Q.[Hong-Qi],
Bi, L.Z.[Lu-Zheng],
Li, X.Y.[Xiao-Ya],
Gan, H.P.[Hong-Ping],
Robust Predictive Control for EEG-Based Brain-Robot Teleoperation,
ITS(25), No. 8, August 2024, pp. 9130-9140.
IEEE DOI
2408
Robots, Electroencephalography, Safety, Robot kinematics, Navigation,
Mobile robots, Robustness, Neurorobotics, robustness, safety
BibRef
Lee, K.Y.[Kyeong-Yeon],
Kim, S.[Sun],
Designing discriminative spatial filter vectors in motor imagery
brain-computer interface,
IJIST(23), No. 2, 2013, pp. 147-151.
DOI Link
1307
brain-computer interface, common spatial pattern,
feature selection, motor imagery classification, electroencephalography
BibRef
Wang, H.X.[Hai-Xian],
Discriminant and adaptive extensions to local temporal common spatial
patterns,
PRL(34), No. 10, 15 July 2013, pp. 1125-1129.
Elsevier DOI
1306
Common spatial patterns; Brain-computer interfaces (BCI);
Fisher criterion; Sparse representation
BibRef
Bi, L.,
Fan, X.A.,
Luo, N.,
Jie, K.,
Li, Y.,
Liu, Y.,
A Head-Up Display-Based P300 Brain-Computer Interface for
Destination Selection,
ITS(14), No. 4, 2013, pp. 1996-2001.
IEEE DOI
1312
Brain-computer interfaces
BibRef
Fan, X.,
Bi, L.,
Teng, T.,
Ding, H.,
Liu, Y.,
A Brain-Computer Interface-Based Vehicle Destination Selection System
Using P300 and SSVEP Signals,
ITS(16), No. 1, February 2015, pp. 274-283.
IEEE DOI
1502
Accuracy
BibRef
Dura-Bernal, S.[Salvador],
Chadderdon, G.L.[George L.],
Neymotin, S.A.[Samuel A.],
Francis, J.T.[Joseph T.],
Lytton, W.W.[William W.],
Towards a real-time interface between a biomimetic model of
sensorimotor cortex and a robotic arm,
PRL(36), No. 1, 2014, pp. 204-212.
Elsevier DOI
1312
Real-time interface
BibRef
Gandhi, V.,
Prasad, G.,
Coyle, D.,
Behera, L.,
McGinnity, T.M.,
EEG-Based Mobile Robot Control Through an Adaptive Brain-Robot
Interface,
SMCS(44), No. 9, September 2014, pp. 1278-1285.
IEEE DOI
1410
adaptive control
BibRef
Kakoty, N.M.[Nayan M.],
Hazarika, S.M.[Shyamanta M.],
Development of an electromyographic controlled biomimetic prosthetic
hand,
IJCVR(4), No. 1-2, 2014, pp. 115-133.
DOI Link
1403
BibRef
Kao, J.C.,
Stavisky, S.D.,
Sussillo, D.,
Nuyujukian, P.,
Shenoy, K.V.,
Information Systems Opportunities in Brain-Machine Interface Decoders,
PIEEE(102), No. 5, May 2014, pp. 666-682.
IEEE DOI
1405
Algorithm design and analysis
BibRef
Shi, Z.Z.[Zhong-Zhi],
Zhang, J.H.[Jian-Hua],
Yang, X.[Xi],
Ma, G.[Gang],
Qi, B.Y.[Bao-Yuan],
Yue, J.P.[Jin-Peng],
Computational Cognitive Models for Brain-Machine Collaborations,
IEEE_Int_Sys(29), No. 6, November 2014, pp. 24-31.
IEEE DOI
1502
brain-computer interfaces
BibRef
Lee, M.H.[Min-Ho],
Fazli, S.[Siamac],
Mehnert, J.[Jan],
Lee, S.W.[Seong-Whan],
Subject-dependent classification for robust idle state detection
using multi-modal neuroimaging and data-fusion techniques in BCI,
PR(48), No. 8, 2015, pp. 2725-2737.
Elsevier DOI
1505
Hybrid brain-computer interfacing
BibRef
Muller-Putz, G.,
del R Millan, J.,
Schalk, G.,
Muller, K.,
The Plurality of Human Brain-Computer Interfacing,
PIEEE(103), No. 6, June 2015, pp. 868-870.
IEEE DOI
1506
[Scanning the Issue].
Biomedical monitoring
BibRef
Lotte, F.,
Signal Processing Approaches to Minimize or Suppress Calibration Time
in Oscillatory Activity-Based Brain-Computer Interfaces,
PIEEE(103), No. 6, June 2015, pp. 871-890.
IEEE DOI
1506
brain-computer interfaces
BibRef
Fazli, S.,
Dahne, S.,
Samek, W.,
Bieszmann, F.,
Muller, K.R.,
Learning From More Than One Data Source: Data Fusion Techniques for
Sensorimotor Rhythm-Based Brain-Computer Interfaces,
PIEEE(103), No. 6, June 2015, pp. 891-906.
IEEE DOI
1506
brain-computer interfaces
BibRef
He, B.[Bin],
Baxter, B.,
Edelman, B.J.,
Cline, C.C.,
Ye, W.W.,
Noninvasive Brain-Computer Interfaces Based on Sensorimotor Rhythms,
PIEEE(103), No. 6, June 2015, pp. 907-925.
IEEE DOI
1506
brain-computer interfaces
BibRef
Muller-Putz, G.,
Leeb, R.,
Tangermann, M.,
Hohne, J.,
Kubler, A.,
Cincotti, F.,
Mattia, D.,
Rupp, R.,
Muller, K.R.,
Millan, J.D.[J. Del_R],
Towards Noninvasive Hybrid Brain-Computer Interfaces: Framework,
Practice, Clinical Application, and Beyond,
PIEEE(103), No. 6, June 2015, pp. 926-943.
IEEE DOI
1506
assisted living
BibRef
Leeb, R.,
Tonin, L.,
Rohm, M.,
Desideri, L.,
Carlson, T.,
del R Millan, J.,
Towards Independence: A BCI Telepresence Robot for People With Severe
Motor Disabilities,
PIEEE(103), No. 6, June 2015, pp. 969-982.
IEEE DOI
1506
brain-computer interfaces
BibRef
Peck, E.M.[Evan M.],
Carlin, E.[Emily],
Jacob, R.[Robert],
Designing Brain-Computer Interfaces for Attention-Aware Systems,
Computer(48), No. 10, October 2015, pp. 34-42.
IEEE DOI
1511
BCIs
BibRef
Cecotti, H.[Hubert],
Toward shift invariant detection of event-related potentials in
non-invasive brain-computer interface,
PRL(66), No. 1, 2015, pp. 127-134.
Elsevier DOI
1511
Event-related potentials (ERP)
BibRef
Lu, J.[Jie],
Mamun, K.A.[Khondaker A.],
Chau, T.[Tom],
Pattern classification to optimize the performance of Transcranial
Doppler Ultrasonography-based brain machine interface,
PRL(66), No. 1, 2015, pp. 135-143.
Elsevier DOI
1511
Transcranial Doppler (TCD) Ultrasonography
BibRef
Obeidat, Q.T.,
Campbell, T.A.,
Kong, J.,
Introducing the Edges Paradigm:
A P300 Brain-Computer Interface for Spelling Written Words,
HMS(45), No. 6, December 2015, pp. 727-738.
IEEE DOI
1512
Accuracy.
BibRef
Higger, M.,
Akcakaya, M.,
Nezamfar, H.,
La Mountain, G.,
Orhan, U.,
Erdogmus, D.,
A Bayesian Framework for Intent Detection and Stimulation Selection
in SSVEP BCIs,
SPLetters(22), No. 6, June 2015, pp. 743-747.
IEEE DOI
1411
Brain Computer Interfaces (BCI).
BibRef
Zhao, X.,
Chu, Y.,
Han, J.,
Zhang, Z.,
SSVEP-Based Brain-Computer Interface Controlled Functional Electrical
Stimulation System for Upper Extremity Rehabilitation,
SMCS(46), No. 7, July 2016, pp. 947-956.
IEEE DOI
1606
Electroencephalography
BibRef
Bhattacharyya, S.,
Shimoda, S.,
Hayashibe, M.,
A Synergetic Brain-Machine Interfacing Paradigm for Multi-DOF Robot
Control,
SMCS(46), No. 7, July 2016, pp. 957-968.
IEEE DOI
1606
Decoding
BibRef
Waytowich, N.R.,
Krusienski, D.J.,
Multiclass Steady-State Visual Evoked Potential Frequency Evaluation
Using Chirp-Modulated Stimuli,
HMS(46), No. 4, August 2016, pp. 593-600.
IEEE DOI
1608
brain-computer interfaces
BibRef
Handiru, V.S.,
Prasad, V.A.,
Optimized Bi-Objective EEG Channel Selection and Cross-Subject
Generalization With Brain-Computer Interfaces,
HMS(46), No. 6, December 2016, pp. 777-786.
IEEE DOI
1612
brain-computer interfaces
BibRef
Balducci, F.[Fabrizio],
Grana, C.[Costantino],
Cucchiara, R.[Rita],
Affective level design for a role-playing videogame evaluated by a
brain-computer interface and machine learning methods,
VC(33), No. 4, April 2017, pp. 413-427.
WWW Link.
1704
BibRef
Vourvopoulos, A.[Athanasios],
Bermudez i Badia, S.[Sergi],
Liarokapis, F.[Fotis],
EEG correlates of video game experience and user profile in
motor-imagery-based brain-computer interaction,
VC(33), No. 4, April 2017, pp. 533-546.
WWW Link.
1704
BibRef
Lee, C.C.,
Chuang, C.C.,
Yeng, C.H.,
Chen, Y.J.,
Lin, B.S.,
Noise Suppression by Minima Controlled Recursive Averaging for
SSVEP-Based BCIs With Single Channel,
SPLetters(24), No. 12, December 2017, pp. 1783-1787.
IEEE DOI
1712
amplitude estimation, brain-computer interfaces, diseases,
electroencephalography, medical signal processing,
steady-state visual evoked potentials
BibRef
Alt, M.T.,
Fiedler, E.,
Rudmann, L.,
Ordonez, J.S.,
Ruther, P.,
Stieglitz, T.,
Let There Be Light: Optoprobes for Neural Implants,
PIEEE(105), No. 1, January 2017, pp. 101-138.
IEEE DOI
1612
Biological tissues
BibRef
Maharbiz, M.M.,
Muller, R.,
Alon, E.,
Rabaey, J.M.,
Carmena, J.M.,
Reliable Next-Generation Cortical Interfaces for Chronic
Brain-Machine Interfaces and Neuroscience,
PIEEE(105), No. 1, January 2017, pp. 73-82.
IEEE DOI
1612
Electrodes
BibRef
Muraskin, J.,
Sherwin, J.,
Lieberman, G.,
Garcia, J.O.,
Verstynen, T.,
Vettel, J.M.,
Sajda, P.,
Fusing Multiple Neuroimaging Modalities to Assess Group Differences
in Perception-Action Coupling,
PIEEE(105), No. 1, January 2017, pp. 83-100.
IEEE DOI
1612
Couplings
BibRef
Ha, S.,
Akinin, A.,
Park, J.,
Kim, C.,
Wang, H.,
Maier, C.,
Mercier, P.P.,
Cauwenberghs, G.,
Silicon-Integrated High-Density Electrocortical Interfaces,
PIEEE(105), No. 1, January 2017, pp. 11-33.
IEEE DOI
1612
Biomedical monitoring
BibRef
Akay, M.,
Sajda, P.,
Micera, S.,
Carmena, J.M.,
Advanced Technologies for Brain Research,
PIEEE(105), No. 1, January 2017, pp. 8-10.
IEEE DOI
1612
BibRef
Dweiri, Y.M.,
Eggers, T.E.,
Gonzalez-Reyes, L.E.,
Drain, J.,
McCallum, G.A.,
Durand, D.M.,
Stable Detection of Movement Intent From Peripheral Nerves:
Chronic Study in Dogs,
PIEEE(105), No. 1, January 2017, pp. 50-65.
IEEE DOI
1612
Dogs
BibRef
Ohta, J.,
Ohta, Y.,
Takehara, H.,
Noda, T.,
Sasagawa, K.,
Tokuda, T.,
Haruta, M.,
Kobayashi, T.,
Akay, Y.M.,
Akay, M.,
Implantable Microimaging Device for Observing Brain Activities of
Rodents,
PIEEE(105), No. 1, January 2017, pp. 158-166.
IEEE DOI
1612
Brain
BibRef
Abdalsalam, E.[Eltaf],
Yusoff, M.Z.[Mohd Zuki],
Malik, A.[Aamir],
Kamel, N.S.[Nidal S.],
Mahmoud, D.[Dalia],
Modulation of sensorimotor rhythms for brain-computer interface using
motor imagery with online feedback,
SIViP(12), No. 3, March 2018, pp. 557-564.
Springer DOI
1804
BibRef
Mishuhina, V.,
Jiang, X.,
Feature Weighting and Regularization of Common Spatial Patterns in
EEG-Based Motor Imagery BCI,
SPLetters(25), No. 6, June 2018, pp. 783-787.
IEEE DOI
1806
brain-computer interfaces, electroencephalography,
feature extraction, feature selection, medical signal processing,
motor imagery (MI)
BibRef
Teng, T.,
Bi, L.,
Liu, Y.,
EEG-Based Detection of Driver Emergency Braking Intention for
Brain-Controlled Vehicles,
ITS(19), No. 6, June 2018, pp. 1766-1773.
IEEE DOI
1806
Brain modeling, Electroencephalography, Feature extraction,
Sensors, Testing, Training, Vehicles, Brain-controlled vehicle,
emergency braking intention
BibRef
Nourmohammadi, A.,
Jafari, M.,
Zander, T.O.,
A Survey on Unmanned Aerial Vehicle Remote Control Using
Brain-Computer Interface,
HMS(48), No. 4, August 2018, pp. 337-348.
IEEE DOI
1808
aircraft control, autonomous aerial vehicles,
brain-computer interfaces, feature extraction,
unmanned aerial vehicle (UAV)
BibRef
Hou, H.R.,
Meng, Q.H.,
Zeng, M.,
Sun, B.,
Improving Classification of Slow Cortical Potential Signals for BCI
Systems With Polynomial Fitting and Voting Support Vector Machine,
SPLetters(25), No. 2, February 2018, pp. 283-287.
IEEE DOI
1802
brain-computer interfaces, electroencephalography,
medical signal processing, signal classification,
wavelet decomposition (WD)
BibRef
Qu, J.,
Wang, F.,
Xia, Z.,
Yu, T.,
Xiao, J.,
Yu, Z.,
Gu, Z.,
Li, Y.,
A Novel Three-Dimensional P300 Speller Based on Stereo Visual Stimuli,
HMS(48), No. 4, August 2018, pp. 392-399.
IEEE DOI
1808
bioelectric potentials, brain-computer interfaces,
electroencephalography, medical signal processing,
three-dimensional (3-D)
BibRef
Özbeyaz, A.[Abdurrahman],
Arica, S.[Sami],
Familiar/unfamiliar face classification from EEG signals by utilizing
pairwise distant channels and distinctive time interval,
SIViP(12), No. 6, September 2018, pp. 1181-1188.
WWW Link.
1808
BibRef
Bablani, A.[Annushree],
Edla, D.R.[Damodar Reddy],
Tripathi, D.[Diwakar],
Cheruku, R.[Ramalingaswamy],
Survey on Brain-Computer Interface: An Emerging Computational
Intelligence Paradigm,
Surveys(51), No. 1, February 2019, pp. Article No 20.
DOI Link
1906
Survey, Brain-Computer Interface.
BibRef
Scudellari, M.,
Wanted: HI-RES, surgery-free brain interfaces: DARPA aims to develop
wearable devices that let soldiers communicate directly with machines,
Spectrum(56), No. 7, July 2019, pp. 9-10.
IEEE DOI
1907
BibRef
Bablani, A.[Annushree],
Edla, D.R.[Damodar Reddy],
Tripathi, D.[Diwakar],
Kuppili, V.[Venkatanareshbabu],
An efficient Concealed Information Test: EEG feature extraction and
ensemble classification for lie identification,
MVA(30), No. 5, July 2019, pp. 813-832.
Springer DOI
1907
BibRef
Zhang, D.,
Yao, L.,
Chen, K.,
Monaghan, J.,
A Convolutional Recurrent Attention Model for Subject-Independent EEG
Signal Analysis,
SPLetters(26), No. 5, May 2019, pp. 715-719.
IEEE DOI
1905
brain-computer interfaces, convolutional neural nets,
electroencephalography, medical signal processing,
deep learning
BibRef
van de Laar, B.,
Bos, D.P.O.,
Reuderink, B.,
Poel, M.,
Nijholt, A.,
How Much Control Is Enough? Influence of Unreliable Input on User
Experience,
Cyber(43), No. 6, 2013, pp. 1584-1592.
IEEE DOI
1312
brain-computer interfaces
BibRef
Zhang, S.L.[Shuai-Lei],
Wang, S.[Shuai],
Zheng, D.Z.[De-Zhi],
Zhu, K.[Kai],
Dai, M.X.[Meng-Xi],
A novel pattern with high-level commands for encoding motor
imagery-based brain computer interface,
PRL(125), 2019, pp. 28-34.
Elsevier DOI
1909
Brain-computer interface, Motor imagery, High-level commands,
Distinctiveness, Stability
BibRef
Ma, Z.[Zheng],
Cheng, J.[Jun],
Tao, D.P.[Da-Peng],
Online learning using projections onto shrinkage closed balls for
adaptive brain-computer interface,
PR(97), 2020, pp. 107017.
Elsevier DOI
1910
Online learning, Projections,
Wearable/portable brain computer interface, Biometrics
BibRef
Stegman, P.,
Crawford, C.S.,
Andujar, M.,
Nijholt, A.,
Gilbert, J.E.,
Brain-Computer Interface Software: A Review and Discussion,
HMS(50), No. 2, April 2020, pp. 101-115.
IEEE DOI
2004
Bibliometric, brain-computer interface (BCI), platforms,
signal processing, software
BibRef
Liu, X.,
Tao, X.,
Xu, M.,
Zhan, Y.,
Lu, J.,
An EEG-Based Study on Perception of Video Distortion Under Various
Content Motion Conditions,
MultMed(22), No. 4, April 2020, pp. 949-960.
IEEE DOI
2004
Distortion, Electroencephalography, Quality assessment,
Distortion measurement, Sensitivity, Visualization, AUC
BibRef
Kwak, N.,
Lee, S.,
Error Correction Regression Framework for Enhancing the Decoding
Accuracies of Ear-EEG Brain-Computer Interfaces,
Cyber(50), No. 8, August 2020, pp. 3654-3667.
IEEE DOI
2007
Electroencephalography, Decoding, Visualization, Electrodes, Ear,
Estimation, Brain modeling, Brain-computer interface (BCI),
steady-state visual evoked potential (SSVEP)
BibRef
Abiri, R.,
Borhani, S.,
Kilmarx, J.,
Esterwood, C.,
Jiang, Y.,
Zhao, X.,
A Usability Study of Low-Cost Wireless Brain-Computer Interface for
Cursor Control Using Online Linear Model,
HMS(50), No. 4, August 2020, pp. 287-297.
IEEE DOI
2007
Electroencephalography, Brain modeling, Training, Usability,
Kinematics, Controllability, Headphones,
usability
BibRef
King, J.T.,
Prasad, M.,
Tsai, T.,
Ming, Y.R.,
Lin, C.T.,
Influence of Time Pressure on Inhibitory Brain Control During
Emergency Driving,
SMCS(50), No. 11, November 2020, pp. 4408-4414.
IEEE DOI
1806
Electroencephalography, Task analysis, Stress, Automobiles, Brakes,
Brain modeling, Matlab, Electroencephalography (EEG),
time pressure
BibRef
Grissmann, S.,
Spüler, M.,
Faller, J.,
Krumpe, T.,
Zander, T.O.,
Kelava, A.,
Scharinger, C.,
Gerjets, P.,
Context Sensitivity of EEG-Based Workload Classification Under
Different Affective Valence,
AffCom(11), No. 2, April 2020, pp. 327-334.
IEEE DOI
2006
Electroencephalography, Brain-computer interfaces,
Adaptive systems, Brain-computer interface (BCI),
emoback
BibRef
Noorzadeh, S.,
Rivet, B.,
Jutten, C.,
3-D Interface for the P300 Speller BCI,
HMS(50), No. 6, December 2020, pp. 604-612.
IEEE DOI
2011
Keyboards, Stereo image processing, Performance evaluation,
Brain-computer interfaces, Ergonomics,
3-D virtual keyboard
BibRef
Landau, O.[Ofir],
Puzis, R.[Rami],
Nissim, N.[Nir],
Mind Your Mind: EEG-Based Brain-Computer Interfaces and Their
Security in Cyber Space,
Surveys(53), No. 1, February 2020, pp. xx-yy.
DOI Link
2006
security, cyber space, attack, privacy, EEG, detection,
Brain-computer interface
BibRef
Mishuhina, V.[Vasilisa],
Jiang, X.D.[Xu-Dong],
Complex common spatial patterns on time-frequency decomposed EEG for
brain-computer interface,
PR(115), 2021, pp. 107918.
Elsevier DOI
2104
Brain-computer interface, Common spatial patterns,
Electroencephalography, Motor imagery, Signal decomposition
BibRef
Hagengruber, A.,
Leipscher, U.,
Eskofier, B.M.,
Vogel, J.,
Electromyography for Teleoperated Tasks in Weightlessness,
HMS(51), No. 2, April 2021, pp. 130-140.
IEEE DOI
2103
Robots, Task analysis, Muscles, Electromyography,
Aerospace electronics, Training, Space missions,
weightlessness
BibRef
Robinson, N.,
Chester, T.W.J.,
KG, S.,
Use of Mobile EEG in Decoding Hand Movement Speed and Position,
HMS(51), No. 2, April 2021, pp. 120-129.
IEEE DOI
2103
Electroencephalography, Task analysis, Decoding,
Image reconstruction, Predictive models, Prediction algorithms,
movement speed and position
BibRef
Bernal, S.L.[Sergio Lopez],
Celdran, A.H.[Alberto Huertas],
Perez, G.M.[Gregorio Martinez],
Barros, M.T.[Michael Taynnan],
Balasubramaniam, S.[Sasitharan],
Security in Brain-Computer Interfaces: State-of-the-Art,
Opportunities, and Future Challenges,
Surveys(54), No. 1, January 2021, pp. xx-yy.
DOI Link
2104
Survey, Brain-Computer Interface. BCI, safety, cybersecurity, privacy, Brain-computer interfaces
BibRef
Wang, B.[Boyu],
Wong, C.M.[Chi Man],
Kang, Z.[Zhao],
Liu, F.[Feng],
Shui, C.J.[Chang-Jian],
Wan, F.[Feng],
Chen, C.L.P.[C. L. Philip],
Common Spatial Pattern Reformulated for Regularizations in
Brain-Computer Interfaces,
Cyber(51), No. 10, October 2021, pp. 5008-5020.
IEEE DOI
2110
Electroencephalography, Linear regression, Feature extraction,
Covariance matrices, Minimization, transfer learning
BibRef
Huang, H.Y.[Hai-Yun],
Xie, Q.Y.[Qiu-You],
Pan, J.H.[Jia-Hui],
He, Y.B.[Yan-Bin],
Wen, Z.F.[Zhen-Fu],
Yu, R.H.[Rong-Hao],
Li, Y.Q.[Yuan-Qing],
An EEG-Based Brain Computer Interface for Emotion Recognition and Its
Application in Patients with Disorder of Consciousness,
AffCom(12), No. 4, October 2021, pp. 832-842.
IEEE DOI
2112
Emotion recognition, Electroencephalography, Real-time systems,
Support vector machines, Brain-computer interfaces,
disorder of consciousness (DOC)
BibRef
Zhuang, J.Y.[Jia-Yu],
Geng, K.K.[Ke-Ke],
Yin, G.D.[Guo-Dong],
Ensemble Learning Based Brain-Computer Interface System for Ground
Vehicle Control,
SMCS(51), No. 9, September 2021, pp. 5392-5404.
IEEE DOI
2108
Electroencephalography, Feature extraction, Land vehicles, Testing,
Training, Electrodes, Brain-computer interface (BCI),
vehicle motion control
BibRef
Mahamune, R.[Rupesh],
Laskar, S.H.[Shahedul H.],
Classification of the four-class motor imagery signals using
continuous wavelet transform filter bank-based two-dimensional images,
IJIST(31), No. 4, 2021, pp. 2237-2248.
DOI Link
2112
brain computer interface, common spatial pattern,
continuous wavelet transform, convolutional neural network, motor imagery
BibRef
Agarwal, P.[Prabhakar],
Kumar, S.[Sandeep],
Electroencephalography based imagined alphabets classification using
spatial and time-domain features,
IJIST(32), No. 1, 2022, pp. 111-122.
DOI Link
2201
brain-computer interface, classification,
electroencephalogram, imagined alphabets
BibRef
Abibullaev, B.[Berdakh],
Zollanvari, A.[Amin],
A Systematic Deep Learning Model Selection for P300-Based
Brain-Computer Interfaces,
SMCS(52), No. 5, May 2022, pp. 2744-2756.
IEEE DOI
2205
Brain modeling, Deep learning, Feature extraction,
Electroencephalography, Visualization, Electrodes, Decoding,
P300 waves
BibRef
Liu, X.J.[Xue-Jie],
Kasmarik, K.[Kathryn],
Abbass, H.[Hussein],
Assessing Player Profiles of Achievement, Affiliation, and Power
Motivation Using Electroencephalography,
SMCS(52), No. 6, June 2022, pp. 3648-3658.
IEEE DOI
2206
Electroencephalography, Games, Psychology, Task analysis,
Brain modeling, Particle measurements, Labeling, Computer game,
player motivation
BibRef
Wang, Z.P.[Zhong-Peng],
He, B.B.[Bei-Bei],
Zhou, Y.J.[Yi-Jie],
Chen, L.[Long],
Gu, B.[Bin],
Liu, S.[Shuang],
Xu, M.[Minpeng],
He, F.[Feng],
Ming, D.[Dong],
Incorporating EEG and EMG Patterns to Evaluate BCI-Based Long-Term
Motor Training,
HMS(52), No. 4, August 2022, pp. 648-657.
IEEE DOI
2208
Electromyography, Electroencephalography, Training, Task analysis,
Electrodes, Couplings, Visualization, Brain-computer interface,
transfer entropy
BibRef
Fumanal-Idocin, J.[Javier],
Wang, Y.K.[Yu-Kai],
Lin, C.T.[Chin-Teng],
Fernández, J.[Javier],
Sanz, J.A.[José Antonio],
Bustince, H.[Humberto],
Motor-Imagery-Based Brain-Computer Interface Using Signal Derivation
and Aggregation Functions,
Cyber(52), No. 8, August 2022, pp. 7944-7955.
IEEE DOI
2208
Electroencephalography, Feature extraction, Decision making,
Rhythm, Data mining, Task analysis, Smart cities, signal processing
BibRef
Fumanal-Idocin, J.,
Vidaurre, C.,
Fernandez, J.,
Gómez, M.,
Andreu-Perez, J.,
Prasad, M.,
Bustince, H.,
Supervised penalty-based aggregation applied to motor-imagery based
brain-computer-interface,
PR(145), 2024, pp. 109924.
Elsevier DOI
2311
Brain-computer interface, Motor imagery, Penalty function,
Aggregation functions, Classification, Signal processing
BibRef
Kim, H.S.[Hyun-Seok],
Ahn, M.H.[Min-Hee],
Min, B.K.[Byoung-Kyong],
Deep-Learning-Based Automatic Selection of Fewest Channels for
Brain-Machine Interfaces,
Cyber(52), No. 9, September 2022, pp. 8668-8680.
IEEE DOI
2208
Electroencephalography, Decoding, Brain modeling,
Feature extraction, Task analysis, Deep learning,
electroencephalography (EEG)
BibRef
Shi, H.[Haonan],
Bi, L.Z.[Lu-Zheng],
Yang, Z.[Zhenge],
Fei, W.J.[Wei-Jie],
A Novel Control Framework of Brain-Controlled Vehicle Based on Fuzzy
Logic and Model Predictive Control,
ITS(23), No. 11, November 2022, pp. 21777-21789.
IEEE DOI
2212
Brain modeling, Adaptation models, Probabilistic logic, Vehicles,
Task analysis, Electroencephalography, Wheels, model predictive control
BibRef
Chang, E.[Edward],
This Implant Turns Brain Waves Into Words: A brain-computer interface
deciphers commands intended for the vocal tract,
Spectrum(60), No. 2, February 2023, pp. 20-25.
IEEE DOI
2302
Brain modeling, Implants, Touch sensitive screens, Clinical trials,
Text recognition, Brain-computer interfaces
BibRef
Mahamune, R.[Rupesh],
Laskar, S.H.[Shahedul H.],
An automatic channel selection method based on the standard deviation
of wavelet coefficients for motor imagery based brain-computer
interfacing,
IJIST(33), No. 2, 2023, pp. 714-728.
DOI Link
2303
brain computer interface, common spatial pattern,
continuous wavelet transform, convolutional neural network, motor imagery
BibRef
Meng, M.[Ming],
Dong, Z.C.[Zhi-Chao],
Gao, Y.[Yunyuan],
She, Q.S.[Qing-Shan],
Optimal channel and frequency band-based feature selection for motor
imagery electroencephalogram classification,
IJIST(33), No. 2, 2023, pp. 670-679.
DOI Link
2303
brain-computer interface, common spatial pattern,
electroencephalogram, motor imagery
BibRef
Spapé, M.[Michiel],
Davis, K.M.[Keith M.],
Kangassalo, L.[Lauri],
Ravaja, N.[Niklas],
Sovijärvi-Spapé, Z.[Zania],
Ruotsalo, T.[Tuukka],
Brain-Computer Interface for Generating Personally Attractive Images,
AffCom(14), No. 1, January 2023, pp. 637-649.
IEEE DOI
2303
Faces, Visualization, Generative adversarial networks,
Electroencephalography, Psychology, Brain modeling,
individual differences
BibRef
Wang, J.R.[Jia-Rong],
Bi, L.Z.[Lu-Zheng],
Fei, W.J.[Wei-Jie],
Multitask-Oriented Brain-Controlled Intelligent Vehicle Based on
Human-Machine Intelligence Integration,
SMCS(53), No. 4, April 2023, pp. 2510-2521.
IEEE DOI
2303
Electroencephalography, Task analysis, Decoding,
Feature extraction, Ash, Turning, Electrodes,
neural decoding
BibRef
Bernal, S.L.[Sergio López],
Celdrán, A.H.[Alberto Huertas],
Pérez, G.M.[Gregorio Martínez],
Eight Reasons to Prioritize Brain-Computer Interface Cybersecurity,
CACM(66), No. 4, April 2023, pp. 68-78.
DOI Link
2303
BibRef
Schiliro, F.[Francesco],
Moustafa, N.[Nour],
Razzak, I.[Imran],
Beheshti, A.[Amin],
DeepCog: A Trustworthy Deep Learning-Based Human Cognitive Privacy
Framework in Industrial Policing,
ITS(24), No. 7, July 2023, pp. 7485-7493.
IEEE DOI
2307
Electroencephalography, Brain modeling, Privacy,
Industrial Internet of Things, Data models, Data privacy,
industrial policing
BibRef
Kaur, M.[Manvir],
Upadhyay, R.[Rahul],
Kumar, V.[Vinay],
E-CNNet: Time-reassigned Multisynchrosqueezing transform-based deep
learning framework for MI-BCI task classification,
IJIST(33), No. 4, 2023, pp. 1406-1423.
DOI Link
2307
brain-computer interfaces (BCIs),
convolution neural network (CNN),
time-reassigned Multisynchrosqueezing transform (TMSST)
BibRef
Wu, L.[Le],
Liu, A.[Aiping],
Ward, R.K.[Rabab K.],
Wang, Z.J.[Z. Jane],
Chen, X.[Xun],
Signal Processing for Brain-Computer Interfaces:
A review and current perspectives,
SPMag(40), No. 5, July 2023, pp. 80-91.
IEEE DOI
2307
Affective computing, Signal processing, Clinical diagnosis,
Medical diagnostic imaging, Face recognition,
Biomedical signal processing
BibRef
Hernández-Álvarez, L.[Luis],
Barbierato, E.[Elena],
Caputo, S.[Stefano],
de Fuentes, J.M.[José María],
González-Manzano, L.[Lorena],
Encinas, L.H.[Luis Hernández],
Mucchi, L.[Lorenzo],
KeyEncoder: A secure and usable EEG-based cryptographic key
generation mechanism,
PRL(173), 2023, pp. 1-9.
Elsevier DOI
2310
Autoencoders, Discrete wavelet transform, Electroencephalogram,
Key generation, Privacy-preserving
BibRef
Wu, D.R.[Dong-Rui],
Lu, B.L.[Bao-Liang],
Hu, B.[Bin],
Zeng, Z.G.[Zhi-Gang],
Affective Brain-Computer Interfaces (aBCIs): A Tutorial,
PIEEE(111), No. 10, October 2023, pp. 1314-1332.
IEEE DOI
2310
BibRef
Chu, X.X.[Xing-Xing],
Yu, Y.[Yang],
Liu, K.X.[Kai-Xuan],
Ye, Z.[Zeqi],
Hu, D.[Dewen],
Zeng, L.L.[Ling-Li],
Multi-Brain Coding Expands the Instruction Set in SSVEP-Based
Brain-Computer Interfaces,
HMS(53), No. 5, October 2023, pp. 915-923.
IEEE DOI
2310
BibRef
Davis, K.M.[Keith M.],
Spape, M.[Michiel],
Ruotsalo, T.[Tuukka],
Contradicted by the Brain: Predicting Individual and Group
Preferences via Brain-Computer Interfacing,
AffCom(14), No. 4, October 2023, pp. 3094-3105.
IEEE DOI
2312
BibRef
Wankhade, M.M.[Megha M.],
Chorage, S.S.[Suvarna S.],
Optimized Neural Network with Refined Features for Categorization of
Motor Imaginary Signals,
IJIG(23), No. 6 2023, pp. 2350053.
DOI Link
2312
BibRef
Kolathod, M.J.T.[Muhamed Jishad Thrikkannoor],
Sanjay, M.,
Use of covariance matrix images for electroencephalography signal
classification for multiclass motor imagery-based brain computer
interface,
IJIST(34), No. 1, 2024, pp. e22935.
DOI Link
2401
AlexNet, BCI, brain-machine interface, CNN, covariance matrices,
EEG classification, transfer learning
BibRef
Shishavan, H.H.[Hossein Hamidi],
Behzadi, M.M.[Mohammad Mahdi],
Lohan, D.J.[Danny J.],
Dede, E.M.[Ercan M.],
Kim, I.[Insoo],
Closed-Loop Brain Machine Interface System for In-Vehicle Function
Controls Using Head-Up Display and Deep Learning Algorithm,
ITS(25), No. 7, July 2024, pp. 6594-6603.
IEEE DOI Code:
WWW Link.
2407
Electroencephalography, Visualization, Brain modeling,
Graphical user interfaces, Convolution, Calibration,
steady state visual evoked potentials (SSVEP)
BibRef
Huang, W.C.[Wei-Chen],
Guan, Z.J.[Zi-Jing],
Li, K.[Kendi],
Zhou, Y.J.[Ya-Jun],
Li, Y.Q.[Yuan-Qing],
An Affective Brain-Computer Interface Based on a Transfer Learning
Method,
AffCom(15), No. 3, July 2024, pp. 929-941.
IEEE DOI
2409
Electroencephalography, Emotion recognition, Brain modeling, Real-time systems,
Transfer learning, Task analysis, Calibration, neural pattern
BibRef
Mello, C.[Chad],
Weingart, T.[Troy],
Rudd, E.M.[Ethan M.],
Cross-Subject Deep Transfer Models for Evoked Potentials in
Brain-Computer Interface,
ICPR22(1062-1068)
IEEE DOI
2212
Deep learning, Transfer learning, Data collection, Benchmark testing,
Assistive technologies, Brain modeling, Brain-computer interfaces
BibRef
Lee, B.H.[Byeong-Hoo],
Cho, J.H.[Jeong-Hyun],
Kwon, B.H.[Byoung-Hee],
Lee, S.W.[Seong-Whan],
Factorization Approach for Sparse Spatio-Temporal Brain-Computer
Interface,
ICPR22(1090-1097)
IEEE DOI
2212
Training, Face recognition, Feature extraction, Brain modeling,
Electroencephalography, Brain-computer interfaces, Adversarial machine learning
BibRef
Davis, K.M.[Keith M.],
de la Torre-Ortiz, C.[Carlos],
Ruotsalo, T.[Tuukka],
Brain-Supervised Image Editing,
CVPR22(18459-18468)
IEEE DOI
2210
Semantics, Supervised learning, Inspection,
Generative adversarial networks, Electroencephalography, Vision + X
BibRef
Ma, X.[Xin],
Duan, Y.P.[Yi-Ping],
Hu, S.[Shuzhan],
Tao, X.M.[Xiao-Ming],
Ge, N.[Ning],
EEG Based Visual Classification With Multi-Feature Joint Learning,
ICIP21(264-268)
IEEE DOI
2201
Deep learning, Visualization, Time-frequency analysis,
Neuroscience, Feature extraction, Brain modeling,
Joint learning
BibRef
Orrú, G.[Giulia],
Micheletto, M.[Marco],
Terranova, F.[Fabio],
Marcialis, G.L.[Gian Luca],
Electroencephalography signal processing based on textural features
for monitoring the driver's state by a Brain-Computer Interface,
ICPR21(2853-2860)
IEEE DOI
2105
Time-frequency analysis, Protocols, Neural activity,
Signal processing algorithms, Signal processing,
Brain-computer interfaces
BibRef
Aznan, N.K.N.[Nik Khadijah Nik],
Atapour-Abarghouei, A.[Amir],
Bonner, S.[Stephen],
Connolly, J.D.[Jason D.],
Breckon, T.P.[Toby P.],
Leveraging Synthetic Subject Invariant EEG Signals for Zero
Calibration BCI,
ICPR21(10418-10425)
IEEE DOI
2105
Training, Visualization, Brain modeling, Electroencephalography,
Data models, Real-time systems, Calibration
BibRef
Fu, H.L.,
Fang, P.H.,
Chi, C.Y.,
Kuo, C.T.,
Liu, M.H.,
Hsu, H.M.,
Hsieh, C.H.,
Liang, S.F.,
Hsieh, S.,
Yang, C.T.,
Application of Brain-Computer Interface and Virtual Reality in
Advancing Cultural Experience,
VCIP20(351-354)
IEEE DOI
2102
brain-computer interfaces, electroencephalography,
medical signal processing, virtual reality, cultural experience
BibRef
Riyad, M.[Mouad],
Khalil, M.[Mohammed],
Adib, A.[Abdellah],
Incep-EEGNEt: A Convnet for Motor Imagery Decoding,
ICISP20(103-111).
Springer DOI
2009
BibRef
Tezza, D.[Dante],
Garcia, S.[Sarah],
Hossain, T.[Tamjid],
Andujar, M.[Marvin],
Brain eRacing: An Exploratory Study on Virtual Brain-Controlled Drones,
VAMR19(II:150-162).
Springer DOI
1909
BibRef
Vourvopoulos, A.[Athanasios],
Marin-Pardo, O.[Octavio],
Neureither, M.[Meghan],
Saldana, D.[David],
Jahng, E.[Esther],
Liew, S.L.[Sook-Lei],
Multimodal Head-Mounted Virtual-Reality Brain-Computer Interface for
Stroke Rehabilitation,
VAMR19(I:165-179).
Springer DOI
1909
BibRef
Martínez-Cagigal, V.[Víctor],
Santamaría-Vázquez, E.[Eduardo],
Hornero, R.[Roberto],
Controlling a Smartphone with Brain-Computer Interfaces:
A Preliminary Study,
AMDO18(34-43).
Springer DOI
1807
BibRef
Sharbaf, M.E.,
Fallah, A.,
Rashidi, S.,
Shrinkage estimator based common spatial pattern for multi-class
motor imagery classification by hybrid classifier,
IPRIA17(26-31)
IEEE DOI
1712
brain-computer interfaces, covariance matrices,
electroencephalography, feature extraction,
shrinkage estimator
BibRef
Liao, Q.H.[Qing-Hai],
Liu, M.[Ming],
Zhang, W.C.[Wen-Chong],
Shi, P.[Peng],
Visual Tracking and Servoing System for Experiment of Optogenetic
Control of Brain Activity,
CVS17(543-552).
Springer DOI
1711
BibRef
Camilleri, T.A.[Tracey A.],
Camilleri, K.P.[Kenneth P.],
Fabri, S.G.[Simon G.],
Segmentation and Labelling of EEG for Brain Computer Interfaces,
CAIP15(I:288-299).
Springer DOI
1511
BibRef
Lee, M.H.[Min-Ho],
Fazli, S.,
Mehnert, J.,
Lee, S.W.[Seong-Whan],
Improving the Performance of Brain-Computer Interface Using
Multi-modal Neuroimaging,
ACPR13(511-515)
IEEE DOI
1408
brain-computer interfaces
BibRef
Christopher, K.R.,
Kapur, A.,
Carnegie, D.A.,
Grimshaw, G.M.,
Implementing 3D visualizations of EEG signals in artistic
applications,
IVCNZ13(364-369)
IEEE DOI
1402
brain-computer interfaces
BibRef
Ouyang, W.J.[Wen-Jia],
Cashion, K.,
Asari, V.K.,
Electroencephelograph based brain machine interface for controlling a
robotic arm,
AIPR13(1-7)
IEEE DOI
1408
biomedical electrodes
BibRef
Durandau, G.[Guillaume],
Suleiman, W.[Wael],
Toward a Unified Framework for EMG Signals Processing and Controlling
an Exoskeleton,
CRV14(291-298)
IEEE DOI
1406
electromyography. EMG
Computational modeling
BibRef
Zhou, W.[Wei],
Yang, Y.[Ya],
Yu, Z.L.[Zhu-Liang],
Discriminative dictionary learning for EEG signal classification in
Brain-computer interface,
ICARCV12(1582-1585).
IEEE DOI
1304
BibRef
Satti, A.[Abdul],
Guan, C.T.[Cun-Tai],
Coyle, D.[Damien],
Prasad, G.[Girijesh],
A Covariate Shift Minimisation Method to Alleviate Non-stationarity
Effects for an Adaptive Brain-Computer Interface,
ICPR10(105-108).
IEEE DOI
1008
BibRef
Amcalar, A.[Armagan],
Cetin, M.[Mujdat],
Design, Implementation and Evaluation of a Real-Time P300-based
Brain-Computer Interface System,
ICPR10(117-120).
IEEE DOI
1008
BibRef
Ang, K.K.[Kai Keng],
Guan, C.T.[Cun-Tai],
Lee, K.[Kerry],
Lee, J.Q.[Jie Qi],
Nioka, S.[Shoko],
Chance, B.[Britton],
A Brain-Computer Interface for Mental Arithmetic Task from Single-Trial
Near-Infrared Spectroscopy Brain Signals,
ICPR10(3764-3767).
IEEE DOI
1008
BibRef
Argunsah, A.O.[Ali Ozgur],
Cetin, M.[Mujdat],
AR-PCA-HMM Approach for Sensorimotor Task Classification in EEG-based
Brain-Computer Interfaces,
ICPR10(113-116).
IEEE DOI
1008
BibRef
Yazdani, A.[Ashkan],
Vesin, J.M.[Jean-Marc],
Izzo, D.[Dario],
Ampatzis, C.[Christos],
Ebrahimi, T.[Touradj],
Implicit retrieval of salient images using Brain Computer Interface,
ICIP10(3169-3172).
IEEE DOI
1009
BibRef
Lu, S.J.[Shi-Jian],
Guan, C.T.[Cun-Tai],
Zhang, H.H.[Hai-Hong],
Subject-independent brain computer interface through boosting,
ICPR08(1-4).
IEEE DOI
0812
EEG classification
BibRef
Lotte, F.[Fabien],
Mouchere, H.[Harold],
Lecuyer, A.[Anatole],
Pattern rejection strategies for the design of self-paced EEG-based
Brain-Computer Interfaces,
ICPR08(1-5).
IEEE DOI
0812
BibRef
Kapoor, A.[Ashish],
Shenoy, P.[Pradeep],
Tan, D.[Desney],
Combining brain computer interfaces with vision for object
categorization,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Poli, R.[Riccardo],
Salvaris, M.[Mathew],
Cinel, C.[Caterina],
Evolutionary Synthesis of a Trajectory Integrator for an Analogue
Brain-Computer Interface Mouse,
EvoIASP11(214-223).
Springer DOI
1104
BibRef
Poli, R.[Riccardo],
Cinel, C.[Caterina],
Citi, L.[Luca],
Sepulveda, F.[Francisco],
Evolutionary Brain Computer Interfaces,
EvoIASP07(301-310).
Springer DOI
0704
BibRef
Millán, J.D.[José Del_R.],
Ferrez, P.W.[Pierre W.],
Galán, F.[Ferran],
Lew, E.[Eileen],
Chavarriaga, R.[Ricardo],
Non-invasive Brain-Actuated Interaction,
BVAI07(438-447).
Springer DOI
0710
BibRef
Liefhold, C.[Christian],
Grosse-Wentrup, M.[Moritz],
Gramann, K.[Klaus],
Buss, M.[Martin],
Comparison of Adaptive Spatial Filters with Heuristic and Optimized
Region of Interest for EEG Based Brain-Computer-Interfaces,
DAGM07(274-283).
Springer DOI
0709
BibRef
Song, X.M.[Xiao-Mu],
Iordanescu, G.[George],
Wyrwicz, A.M.[Alice M.],
One-class Machine Learning for Brain Activation Detection,
CVPR07(1-6).
IEEE DOI
0706
BibRef
Zhu, X.Y.[Xiao-Yuan],
Wu, J.K.[Jian-Kang],
Cheng, Y.M.[Yi-Min],
Wang, Y.X.[Yi-Xiao],
GMM-Based Classification Method for Continuous Prediction in
Brain-Computer Interface,
ICPR06(I: 1171-1174).
IEEE DOI
0609
BibRef
Zhang, H.H.[Hai-Hong],
Guan, C.T.[Cun-Tai],
A Kernel-based Signal Localization Method for NIRS Brain-computer
Interfaces,
ICPR06(I: 1158-1161).
IEEE DOI
0609
BibRef
Cheng, D.S.[Dong Seon],
d'Amato, V.,
Murino, V.,
Wavelet-based Processing of EEG Data for Brain-Computer Interfaces,
VHCI05(III: 74-74).
IEEE DOI
0507
BibRef
Xie, H.B.[Hong-Bo],
Huang, H.[Hai],
Wang, Z.Z.[Zhi-Zhong],
Multiple Feature Domains Information Fusion for Computer-Aided Clinical
Electromyography,
CAIP05(304).
Springer DOI
0509
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Multiple Sclerosis Detection and Analysis .