Jerian, C.[Charles], and
Jain, R.C.[Ramesh C.],
Polynomial Methods for Structure from Motion,
PAMI(12), No. 12, December 1990, pp. 1150-1166.
IEEE DOI
BibRef
9012
Earlier:
ICCV88(197-206).
IEEE DOI
Motion, Structure. Perspective assumption.
Polynomial solution to the rotation problem with 8 (or more) point
pairs. The space is quantized and all possible tilt angles are
tried to find the best close one, then the amount of rotation
is generated.
BibRef
Kanatani, K.,
Analysis of 3-D Rotation Fitting,
PAMI(16), No. 5, May 1994, pp. 543-549.
IEEE DOI
BibRef
9405
Kanatani, K.,
Automatic Singularity Test for Motion Analysis by an
Information Criterion,
ECCV96(I:697-708).
Springer DOI
BibRef
9600
Aitken, V.C.,
Schwartz, H.M.,
A Comparison of Rotational Representations in Structure and
Motion Estimation for Maneuvering Objects,
IP(4), No. 4, April 1995, pp. 516-520.
IEEE DOI
BibRef
9504
Goryn, D.[Daniel],
Hein, S.[Soren],
On the Estimation of Rigid Body Rotation from Noisy Data,
PAMI(17), No. 12, December 1995, pp. 1219-1220.
IEEE DOI
BibRef
9512
Manmatha, R., and
Oliensis, J.,
Extracting Affine Deformations from Image Patches - I:
Finding Scale and Rotation,
CVPR93(754-755).
IEEE DOI
BibRef
9300
And:
Measuring the Affine Transform - I:
Recovering Scale and Rotation,
DARPA93(449-458). Two frames, find
the affine transformation between patches.
BibRef
Manmatha, R.,
A Framework for Recovering Affine Transforms Using Points,
Lines or Image Brightnesses,
CVPR94(141-146).
IEEE DOI
BibRef
9400
Manmatha, R.,
Measuring the Affine Transform Using Gaussian Filters,
ECCV94(B:159-164).
Springer DOI
BibRef
9400
Sawhney, H.S.,
Oliensis, J., and
Hanson, A.R.,
Image Description and 3-D Reconstruction from Image Trajectories
of Rotational Motion,
PAMI(15), No. 9, September 1993, pp. 885-898.
IEEE DOI
BibRef
9309
Earlier: A1, A2 Only:
Description and Interpretation of
Rotational Motion from Image Trajectories,
DARPA89(992-1003).
BibRef
And: A1, A2, A3:
Description and Reconstruction from Image Trajectories of
Rotational Motion,
ICCV90(494-498).
IEEE DOI Find the rotation and structure for a set of 3-D points rotating
around an arbitrary axis. Uses grouping of points rather than
matching (find a conic that fits a group, this gives a
certain 3-D structure).
BibRef
Sawhney, H.S.,
Hanson, A.R.,
Comparative Results of Some Motion Algorithms on Real Image Sequences,
DARPA90(307-313).
BibRef
9000
Ostuni, J.,
Dunn, S.,
Motion from Three Weak Perspective Images Using Image Rotation,
PAMI(18), No. 1, January 1996, pp. 64-69.
IEEE DOI Given 4 points in a pair of images, find the rotation. A linear system
is then generated to get the full rotation matricies.
BibRef
9601
Young, T.Y.,
Wang, Y.L.,
Analysis of Three-Dimensional Rotation and Linear Shape Changes,
PRL(2), 1984, pp. 239-242.
BibRef
8400
Xu, G.[Gang],
Sugimoto, N.[Noriko],
Linear Algorithm for Motion from Three Weak Perspective Images Using
Euler Angles,
PAMI(21), No. 1, January 1999, pp. 54-57.
IEEE DOI
Code, Motion. Code is available:
HTML Version. Determine the rotations and structure.
Uses epipolar geometry computations from:
See also Epipolar Geometry in Stereo, Motion, and Object Recognition: A Unified Approach. But see results in:
See also Motion Estimation With More Than Two Frames.
BibRef
9901
Xu, G.[Gang],
Terai, J.I.[Jun-Ichi],
Shum, H.Y.[Heung-Yeung],
A Linear Algorithm for Camera Self-Calibration, Motion and Structure
Recovery for Multi-Planar Scenes from Two Perspective Images,
CVPR00(II: 474-479).
IEEE DOI
0005
BibRef
Noumeir, R.[Rita],
Detecting three-dimensional rotation of an ellipsoid from its
orthographic projections,
PRL(20), No. 6. June 1999, pp. 585-590.
BibRef
9906
Weerasinghe, C.,
Yan, H.,
Ji, L.,
A fast method for estimation of object rotation function in MRI using a
similarity criterion among k-space overlap data,
SP(78), No. 2, 1999, pp. 215-230.
BibRef
9900
Mendonça, P.R.S.[Paulo R.S.],
Wong, K.Y.K.,
Cipolla, R.[Roberto],
Epipolar Geometry from Profiles under Circular Motion,
PAMI(23), No. 6, June 2001, pp. 604-616.
IEEE DOI
0106
Motion from contours (profiles). Object rotates on turntable, stationary
camera.
Exploit symmetry properties.
See also Camera Calibration from Symmetry.
See also Multiview Geometry: Profiles and Self-Calibration.
BibRef
Wong, K.Y.K.[Kwan-Yee Kenneth], and
Cipolla, R.[Roberto],
Reconstruction of Outdoor Sculptures from Silhouettes under
Approximate Circular Motion of an Uncalibrated Hand-Held Camera,
MVA02(459-462).
PDF File.
BibRef
0200
Earlier:
Structure and Motion from Silhouettes,
ICCV01(II: 217-222).
IEEE DOI
0106
BibRef
Wong, K.Y.K.[Kwan-Yee K.],
Mendonca, P.R.S.[Paulo R.S.],
Cipolla, R.[Roberto],
Structure and Motion Estimation from Apparent Contours under Circular
Motion,
IVC(20), No. 5-6, 15 April 2002, pp. 441-448.
Elsevier DOI
0204
See also Silhouette Coherence for Camera Calibration under Circular Motion.
BibRef
Wong, K.Y.K.,
Mendonca, P.R.S.,
Cipolla, R.,
Camera calibration from surfaces of revolution,
PAMI(25), No. 2, February 2003, pp. 147-161.
IEEE DOI
0301
BibRef
Earlier:
Camera Calibration from Symmetry,
ConferenceThe Mathematics of Surfaces IX, September 2000, pp. 214-226.
Cambridge, UK.
harmonic homology.
PDF File.
See also Silhouette Coherence for Camera Calibration under Circular Motion.
BibRef
Mendonca, P.R.S.,
Wong, K.Y.K.,
Cipolla, R.,
Camera Pose Estimation and Reconstruction from Image Profiles under
Circular Motion,
ECCV00(II: 864-877).
Springer DOI
Apparent Contours.
PDF File.
0003
BibRef
Mendonca, P.R.S.[Paulo R.S.],
Cipolla, R.[Roberto],
Estimation of Epipolar Geometry from Apparent Contours:
Affine and Circular Motion Cases,
CVPR99(I: 9-14).
IEEE DOI Circlular motion is for wide baseline cases only.
BibRef
9900
Mendonca, P.R.S.,
Wong, K.Y.K.,
Cipolla, R.,
Recovery of Circular Motion from Profiles of Surfaces,
VisionAlg99(151-167).
PDF File.
0101
Title in the abstract given as:
Circular motion recovery from image profiles (title is as given in
full paper)
Pages may be: 119-126.
BibRef
Wong, K.Y.K.,
Mendonca, P.R.S.,
Cipolla, R.,
Reconstruction and motion estimation from apparent contours under
circular motion,
BMVC99(I: 83-92).
PDF File.
Apparent Contours.
PDF File.
See also 1D Camera Geometry and Its Application to the Self-Calibration of Circular Motion Sequences.
BibRef
9900
Leduc, J.P.,
Spatiotemporal Wavelet Transforms for Digital Signal Analysis,
SP(60), No. 1, July 1997, pp. 23-41.
9709
BibRef
Leduc, J.P.[Jean-Pierre],
A Group-Theoretic Construction with Spatiotemporal Wavelets for the
Analysis of Rotational Motion,
JMIV(17), No. 3, November 2002, pp. 207-236.
DOI Link
0211
BibRef
Jiang, G.[Guang],
Tsui, H.T.[Hung-Tat],
Quan, L.[Long],
Zisserman, A.[Andrew],
Geometry of single axis motions using conic fitting,
PAMI(25), No. 10, October 2003, pp. 1343-1348.
IEEE Abstract.
0310
BibRef
Earlier:
Single Axis Geometry by Fitting Conics,
ECCV02(I: 537 ff.).
Springer DOI
0205
Fit a conic over the points in multiple views. E.g. 1 point in 5 views.
How does it compare to the earlier analysis resulting in 1 point in 5 frames
(
See also Motion Estimation With More Than Two Frames. or
See also Number of Solutions for Motion and Structure from Multiple Frame Correspondence. )?
BibRef
Jiang, G.[Guang],
Tsui, H.T.[Hung-Tat],
Quan, L.[Long], and
Liu, S.Q.[Shang-Qian],
Recovering the Geometry of Single Axis Motions by Conic Fitting,
CVPR01(I:293-298).
IEEE DOI
0110
From unknown rotations.
BibRef
Jiang, G.[Guang],
Quan, L.[Long],
Tsui, H.T.[Hung-Tat],
Circular Motion Geometry Using Minimal Data,
PAMI(26), No. 6, June 2004, pp. 721-731.
IEEE Abstract.
0404
BibRef
Earlier:
Circular motion geometry by minimal 2 points in 4 images,
ICCV03(221-227).
IEEE DOI
0311
Structure from turntable motion. 2 points in 4 images.
So, for rotation 1 point in 4 images was shown earlier.
See also Motion Estimation With More Than Two Frames.
BibRef
Jiang, G.[Guang],
Wei, Y.C.[Yi-Chen],
Quan, L.[Long],
Tsui, H.T.[Hung-Tat],
Shum, H.Y.[Heung Yeung],
Outward-Looking Circular Motion Analysis of Large Image Sequences,
PAMI(27), No. 2, February 2005, pp. 271-277.
IEEE Abstract.
0501
mounted video camera, moving in circular motion.
BibRef
Molnar, J.R.S.[Joseph R. S.],
Mutz, A.H.[Andrew H.],
Velocity-dependent dewarping of images,
US_Patent6,687,387, Feb 3, 2004
WWW Link. rotations
BibRef
0402
Feng, M.[Mu],
Reed, T.R.,
Motion Estimation in the 3-D Gabor Domain,
IP(16), No. 8, August 2007, pp. 2038-2047.
IEEE DOI
0709
BibRef
Earlier:
Detection and Estimation of Rotational Motions Using the 3-D Gabor
Representation,
ICIP05(I: 133-136).
IEEE DOI
0512
BibRef
Earlier:
Dense Motion Field Estimation by 3-D Gabor Representation,
ICIP04(IV: 2555-2558).
IEEE DOI
0505
BibRef
Cao, W.P.[Wan-Peng],
Che, R.S.[Ren-Sheng],
Ye, D.[Dong],
Estimation of the center of rotation and 3D motion parameters from
stereo sequence images and virtual validation using three-COMERO,
PRL(28), No. 13, 1 October 2007, pp. 1593-1599.
Elsevier DOI
0709
Motion model; Centers of rotation; Stereo sequences images; Virtual simulation
BibRef
Zhong, H.,
Hung, Y.S.,
Self-calibration from one circular motion sequence and two images,
PR(39), No. 9, September 2006, pp. 1672-1678.
Elsevier DOI Self-calibration; Circular motion; Circular projective reconstruction
0606
BibRef
Zhong, H.,
Hung, Y.S.,
Multi-stage 3D reconstruction under circular motion,
IVC(25), No. 11, 1 November 2007, pp. 1814-1823.
Elsevier DOI
0709
Multi-stage reconstruction; Circular motion; Circular projective reconstruction
BibRef
Thibault, Y.[Yohan],
Kenmochi, Y.[Yukiko],
Sugimoto, A.[Akihiro],
Computing upper and lower bounds of rotation angles from digital images,
PR(42), No. 8, August 2009, pp. 1708-1717.
Elsevier DOI
0904
BibRef
Earlier:
Computing Admissible Rotation Angles from Rotated Digital Images,
IWCIA08(xx-yy).
Springer DOI
0804
Discrete geometry; Rotation; Discrete rotation; Hinge angles;
Pythagorean angles; Admissible rotation angles
BibRef
Lee, J.M.[Jong-Min],
Kim, W.Y.[Whoi-Yul],
A Comparative Study of Rotation Angle Estimation Methods Based on
Complex Moments,
IEICE(E95-D), No. 5, May 2012, pp. 1485-1493.
WWW Link.
1202
BibRef
Althloothi, S.,
Mahoor, M.H.,
Voyles, R.M.,
A Robust Method for Rotation Estimation Using
Spherical Harmonics Representation,
IP(22), No. 6, 2013, pp. 2306-2316.
IEEE DOI
1307
3D object rotation estimation; unit quaternion vector;
Eigendecomposition
BibRef
Althloothi, S.[Salah],
Mahoor, M.H.[Mohammad H.],
Zhang, X.[Xiao],
Voyles, R.M.[Richard M.],
Human activity recognition using multi-features and multiple kernel
learning,
PR(47), No. 5, 2014, pp. 1800-1812.
Elsevier DOI
1402
Human activity recognition
See also Facial expression recognition using HessianMKL based multiclass-SVM.
BibRef
Chen, C.,
Ni, J.,
Shen, Z.,
Effective Estimation of Image Rotation Angle Using Spectral Method,
SPLetters(21), No. 7, July 2014, pp. 890-894.
IEEE DOI
1405
Digital images
BibRef
Jin, J.[Jing],
Zhao, L.N.[Ling-Na],
Xu, S.L.[Sheng-Li],
High-precision rotation angle measurement method based on monocular
vision,
JOSA-A(31), No. 7, July 2014, pp. 1401-1407.
DOI Link
1407
Three-dimensional sensing; Motion detection; Algorithms
BibRef
Benseddik, H.E.[Houssem-Eddine],
Hadj-Abdelkader, H.[Hicham],
Cherki, B.[Brahim],
Bouchafa, S.[Samia],
Direct method for rotation estimation from spherical images using 3D
mesh surfaces with SPHARM representation,
JVCIR(40, Part B), No. 1, 2016, pp. 708-720.
Elsevier DOI
1610
Rotation estimation
BibRef
Guan, B.[Banglei],
Yu, Q.F.[Qi-Feng],
Fraundorfer, F.[Friedrich],
Minimal solutions for the rotational alignment of IMU-camera systems
using homography constraints,
CVIU(170), 2018, pp. 79-91.
Elsevier DOI
1806
IMU-camera calibration, Rotational alignment, Minimal solution,
Homography constraint, Algebraic solution, Pure rotation
BibRef
Esteves, C.[Carlos],
Allen-Blanchette, C.[Christine],
Makadia, A.[Ameesh],
Daniilidis, K.[Kostas],
Learning SO(3) Equivariant Representations with Spherical CNNs,
IJCV(128), No. 3, March 2020, pp. 588-600.
Springer DOI
2003
BibRef
Earlier:
ECCV18(XIII: 54-70).
Springer DOI
1810
Code:
WWW Link.
BibRef
Wang, W.T.[Wan-Tian],
Zhu, Y.[Yong],
Tang, Z.Y.[Zi-Yue],
Chen, Y.C.[Yi-Chang],
Zhu, Z.B.[Zhen-Bo],
Sun, Y.J.[Yong-Jian],
Zhou, C.[Chang],
Efficient Rotational Angular Velocity Estimation of Rotor Target via
Modified Short-Time Fractional Fourier Transform,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Wang, W.T.[Wan-Tian],
Zhang, J.H.[Jia-Hao],
Wu, H.[Hao],
Meng, J.[Jin],
An Adaptive and Accurate Method for Rotational Angular Velocity
Estimation of Rotor Targets via Fourier Coefficient Interpolation,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Ciattaglia, G.[Gianluca],
Iadarola, G.[Grazia],
Senigagliesi, L.[Linda],
Spinsante, S.[Susanna],
Gambi, E.[Ennio],
UAV Propeller Rotational Speed Measurement through FMCW Radars,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Kuang, F.[Fa],
Zhao, Z.J.[Zun-Jin],
Xiong, B.S.[Bang-Shu],
Wang, L.[Lei],
Ou, Q.F.[Qiao-Feng],
Yu, L.[Lei],
A lightweight model for blade tip image enhancement in helicopter
rotor motion parameter measurement system,
SP:IC(113), 2023, pp. 116935.
Elsevier DOI
2303
Fast image enhancement, Lightweight model, Blade tip image, Helicopter rotor
BibRef
Duan, Y.[Yueqi],
Sun, H.[Haowen],
Yan, J.C.[Jun-Cheng],
Lu, J.W.[Ji-Wen],
Zhou, J.[Jie],
Learning Cross-Attention Point Transformer With Global Porous
Sampling,
IP(33), 2024, pp. 6283-6297.
IEEE DOI
2411
Point cloud compression, Transformers, Global Positioning System,
Convolution, Geometry, Feature extraction, Training data, Sun, Shape,
cross-attention
BibRef
Cerkezi, L.[Llukman],
Favaro, P.[Paolo],
Sparse 3D Reconstruction via Object-Centric Ray Sampling,
3DV24(432-441)
IEEE DOI Code:
WWW Link.
2408
360-degree calibrated camera rig.
Training, Surface reconstruction, Codes, Lighting, Cameras,
Rendering (computer graphics), 3D reconstruction, Sparsity
BibRef
Delattre, F.[Fabien],
Dirnfeld, D.[David],
Nguyen, P.[Phat],
Scarano, S.[Stephen],
Jones, M.J.[Michael J.],
Miraldo, P.[Pedro],
Learned-Miller, E.[Erik],
Robust Frame-to-Frame Camera Rotation Estimation in Crowded Scenes,
ICCV23(9718-9728)
IEEE DOI Code:
WWW Link.
2401
BibRef
Cheng, Z.[Zezhou],
Gadelha, M.[Matheus],
Maji, S.[Subhransu],
Accidental Turntables: Learning 3D Pose by Watching Objects Turn,
R6D23(2105-2114)
IEEE DOI
2401
BibRef
Liu, Y.L.[Yu-Lin],
Liu, H.R.[Hao-Ran],
Yin, Y.[Yingda],
Wang, Y.[Yang],
Chen, B.Q.[Bao-Quan],
Wang, H.[He],
Delving into Discrete Normalizing Flows on SO(3) Manifold for
Probabilistic Rotation Modeling,
CVPR23(21264-21273)
IEEE DOI
2309
BibRef
Peng, L.Z.[Liang-Zu],
Fazlyab, M.[Mahyar],
Vidal, R.[René],
Semidefinite Relaxations of Truncated Least-Squares in Robust Rotation
Search: Tight or Not,
ECCV22(XXIII:673-691).
Springer DOI
2211
BibRef
Li, Y.Y.[Yan-Yan],
Tombari, F.[Federico],
E-Graph: Minimal Solution for Rigid Rotation with Extensibility Graphs,
ECCV22(XXII:306-322).
Springer DOI
2211
BibRef
Zhang, J.Y.[Jason Y.],
Ramanan, D.[Deva],
Tulsiani, S.[Shubham],
RelPose: Predicting Probabilistic Relative Rotation for Single Objects
in the Wild,
ECCV22(XXXI:592-611).
Springer DOI
2211
BibRef
Muhle, D.[Dominik],
Koestler, L.[Lukas],
Demmel, N.[Nikolaus],
Bernard, F.[Florian],
Cremers, D.[Daniel],
The Probabilistic Normal Epipolar Constraint for Frame-To-Frame
Rotation Optimization under Uncertain Feature Positions,
CVPR22(1809-1818)
IEEE DOI
2210
Uncertainty, Estimation, Probabilistic logic, Nonhomogeneous media,
Linear programming, Real-time systems, Pose estimation and tracking
BibRef
Mills, S.[Steven],
Relative Camera Rotation from a Single Oriented Correspondence,
IVCNZ21(1-6)
IEEE DOI
2201
BibRef
Yang, X.[Xue],
Hou, L.P.[Li-Ping],
Zhou, Y.[Yue],
Wang, W.T.[Wen-Tao],
Yan, J.C.[Jun-Chi],
Dense Label Encoding for Boundary Discontinuity Free Rotation
Detection,
CVPR21(15814-15824)
IEEE DOI
2111
Training, Visualization, Codes, Estimation, Detectors, Benchmark testing
BibRef
Cai, R.[Ruojin],
Hariharan, B.[Bharath],
Snavely, N.[Noah],
Averbuch-Elor, H.[Hadar],
Extreme Rotation Estimation using Dense Correlation Volumes,
CVPR21(14561-14570)
IEEE DOI
2111
Solid modeling, Correlation,
Computational modeling, Urban areas, Lighting, Training data
BibRef
Yang, H.[Heng],
Carlone, L.[Luca],
A Quaternion-Based Certifiably Optimal Solution to the Wahba Problem
With Outliers,
ICCV19(1665-1674)
IEEE DOI
2004
Rotation search.
computational complexity, concave programming,
convex programming, quadratic programming,
BibRef
Cariow, A.[Aleksandr],
Cariowa, G.[Galina],
Majorkowska-Mech, D.[Dorota],
A Fast Algorithm for Quaternion-Based 4D Rotation,
ICCVG18(28-37).
Springer DOI
1810
BibRef
Hartmann, W.[Wilfried],
Havlena, M.[Michal],
Schindler, K.[Konrad],
Visual Gyroscope for Accurate Orientation Estimation,
WACV15(286-293)
IEEE DOI
1503
Accuracy. Estimate rotations.
BibRef
Kneip, L.[Laurent],
Lynen, S.[Simon],
Direct Optimization of Frame-to-Frame Rotation,
ICCV13(2352-2359)
IEEE DOI
1403
Geometric Vision; Relative Pose Computation
BibRef
Kneip, L.[Laurent],
Siegwart, R.[Roland],
Pollefeys, M.[Marc],
Finding the Exact Rotation between Two Images Independently of the
Translation,
ECCV12(VI: 696-709).
Springer DOI
1210
BibRef
Richard, A.[Aurélie],
Fuchs, L.[Laurent],
Charneau, S.[Sylvain],
An Algorithm to Decompose n-Dimensional Rotations into Planar Rotations,
CompIMAGE10(60-71).
Springer DOI
1006
Representations.
BibRef
Falcon, L.E.[Luis Eduardo],
Bayro-Corrochano, E.[Eduardo],
Radon Transform and Harmonical Analysis Using Lines for 3D Rotation
Estimation without Correpondences from Omnidirectional Vision,
OMNIVIS07(1-6).
IEEE DOI
0710
BibRef
Lennon, D.[Daire],
Harte, N.[Naomi],
Kokaram, A.[Anil],
Rotation Detection using the Curl Equation,
ICIP07(I: 473-476).
IEEE DOI
0709
Rotation only motions.
BibRef
Nagashima, S.[Sei],
Ito, K.[Koichi],
Aoki, T.[Takafumi],
Ishii, H.[Hideaki],
Kobayashi, K.[Koji],
A High-Accuracy Rotation Estimation Algorithm Based on 1D Phase-Only
Correlation,
ICIAR07(210-221).
Springer DOI
0708
BibRef
Scholz, I.[Ingo],
Niemann, H.[Heinrich],
Globally Consistent 3-D Reconstruction by Utilizing Loops in Camera
Movement,
DAGM04(471-479).
Springer DOI
0505
BibRef
Deutsch, B.[Benjamin],
Scholz, I.[Ingo],
Gräßl, C.[Christoph],
Niemann, H.[Heinrich],
Extending Light Fields using Object Tracking Techniques,
VMV04(109-116).
0411
BibRef
Schmidt, J.,
Niemann, H.,
Using Quaternions for Parametrizing 3-D Rotations in Unconstrained
Nonlinear Optimization,
VMV01(xx-yy).
PDF File.
0209
BibRef
Moriya, T.[Toshio],
Takeda, H.[Haruo],
Solving the Rotation-Estimation Problem by using the Perspective
Three-Point Algorithm,
CVPR00(I: 766-773).
IEEE DOI
0005
BibRef
Ohta, N.,
Kanatani, K.,
Optimal estimation of three-dimensional rotation
and reliability evaluation,
ECCV98(I: 175).
Springer DOI
See also Accuracy bounds and optimal computation of robot localization.
BibRef
9800
Rousso, B.,
Avidan, S.,
Shashua, A.,
Peleg, S.,
Robust Recovery of Camera Rotation from Three Frames,
CVPR96(796-802).
IEEE DOI
BibRef
9600
And:
ARPA96(851-856).
Three frames.
BibRef
Lu, J.P.[Ji-Ping],
Little, J.J.[James J.],
Geometric and Photometric Constraints for Surface Recovery,
CVPR96(694-700).
IEEE DOI Wire frame models.
BibRef
9600
Horswill, I.D., and
Thompson, W.B.,
Acceleration-Based Structure-from-Motion,
CVPR88(356-359).
IEEE DOI
Motion, Structure. Using acceleration find the rotation only (both velocity and
acceleration).
BibRef
8800
Imiya, A.,
Nakayama, Y.,
Yamamoto, Y.,
Reconstruction of rotatory moving image from projections,
ICPR88(II: 879-881).
IEEE DOI
8811
BibRef
Shariat, H.,
Shape From Rotation,
CVPR85(178-180).
Preliminary - specific to rotational motion.
BibRef
8500
Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Rotation Averaging .