Iridian,
Iris recognition systems.
WWW Link.
Vendor, Iris Recognition. Part of Viisage (
See also Viisage. ), which is part of
L-1 Identity Solutions (
See also L1 Identity Solutions. ).
IriTech,
2002.
Iris recognition systems.
WWW Link.
Vendor, Iris Recognition.
JIris Tech,
Iris recognition systems.
WWW Link.
Vendor, Iris Recognition.
LG Iris Access,
Iris recognition systems.
WWW Link.
Vendor, Iris Recognition.
Iri Scan,
Iris recognition systems.
WWW Link.
Vendor, Iris Recognition.
Nextgen ID,
Iris recognition systems.
WWW Link.
Vendor, Iris Recognition.
Panasonic,
2006.
Iris recognition systems.
WWW Link.
Vendor, Iris Recognition.
Securimetrics,
2006.
Iris recognition systems.
WWW Link.
Vendor, Iris Recognition. Part of
L-1 Identity Solutions (
See also L1 Identity Solutions. ).
UBIRIS database,
2007, Department of Computer Science, University of Beira Interior, Portugal.
WWW Link.
Dataset, Iris Images. The enhanced version is available only for the Iris Segmentation Contest.
241 subjects, 1877 images.
CASIA Iris Image Database,
2007, Chinese Academy of Sciences.
HTML Version.
Dataset, Iris Images. Various versions. Version 3.
60 subjects, 2400 images.
NIST ICE Iris Image Database,
2007, NIST.
WWW Link.
Dataset, Iris Images. 132 subjects, 2953 images.
For most recent info:
See also NIST IREX, Iris Exchange Datasets. and also
See also Iris Recognition Database.
AOptix Technoligies,
2007.
Iris recognition systems.
WWW Link.
Vendor, Iris Recognition. Initial work in astronomy.
Sensar,
Iris recognition systems.
HTML Version.
Vendor, Iris Recognition.
Retica,
1999.
Iris recognition systems.
WWW Link.
Vendor, Iris Recognition. More than just the iris. Combined iris and retina.
Smart Sensors Limited,
2003.
WWW Link.
Vendor, Iris Recognition. Spin off from University of Bath
See also University of of Bath.
Iris Recognition Database,
2007
HTML Version.
Dataset, Iris Images. Derived from University of Bath
See also University of of Bath. in association with
Smart Sensors Ltd.
See also Smart Sensors Limited. High resolution images, 20 each eye for 800 people.
Iris Recognition Database,
2009
HTML Version.
Dataset, Iris Images. ND-IRIS-0405. A superset of
ICE2005 and ICE2006 datasets.
(
See also NIST ICE Iris Image Database. )
64,980 iris images from 712 irises of 356 human subjects.
From the Notre Dame group.
See also University of Notre Dame. For more updates:
See also NIST IREX, Iris Exchange Datasets.
UTIRIS: University of Tehran IRIS Image Repository,
Online2014
WWW Link.
Dataset, Iris Images.
1407
Visible and Infrared.
BibRef
NIST IREX, Iris Exchange Datasets,
2020
WWW Link.
Dataset, Iris.
See also Iris Recognition Database.
Ernst, J.[Jan],
Iris Recognition Homepage,
Online Book2002.
0200
Iris recognition systems.
WWW Link.
Vendor, Iris Recognition. Includes vendors, patents, etc.
This is mostly out of date -- not realy updated since 2003.
BibRef
Wildes, R.P.,
Iris Recognition: An Emerging Biometric Technology,
PIEEE(85), No. 9, September 1997, pp. 1348-1363.
9710
Award Paper.
Survey, Iris Recognition. This paper won the 1999 Donald G. Fink award from IEEE for outstanding
survey.
BibRef
Wildes, R.P.[Richard P.],
Iris Recognition,
BSTDPE05(63095).
Survey, Iris Recognition.
BibRef
0500
Shen, W.C.,
Khanna, R.,
Prolog to Iris Recognition: An Emerging Biometric Technology,
PIEEE(85), No. 9, September 1997, pp. 1347-1347.
9710
BibRef
Musgrave, C.[Clyde],
Cambier, J.L.[James L.],
Iris imaging telephone security module and method,
US_Patent6,377,699, November 25, 1998.
WWW Link.
BibRef
9811
And:
US_Patent6,483,930, Nov 19, 2002
WWW Link.
BibRef
Musgrave, C.[Clyde],
Cambier, J.L.[James L.],
System and method of animal identification and
animal transaction authorization using iris patterns,
US_Patent6,424,727, Jul 23, 2002
WWW Link.
BibRef
0207
Cambier, J.L.[James L.],
Siedlarz, J.E.[John E.],
Portable authentication device and method using iris patterns,
US_Patent6,532,298, Mar 11, 2003
WWW Link.
BibRef
0303
Seal, C.H.[Christopher Henry],
Gifford, M.M.[Maurice Merrick],
McCartney, D.J.[David John],
Personal identification,
US_Patent6,333,988, December 2, 1998.
WWW Link.
BibRef
9812
And:
US_Patent6,309,069, November 24, 1998.
WWW Link.
BibRef
McHugh, J.T.[James Timothy],
Lee, J.H.[James Henry],
Kuhla, C.B.[Cletus Bonaventure],
Handheld iris imaging apparatus and method,
US_Patent6,289,113, November 25, 1998.
WWW Link.
BibRef
9811
Kim, D.H.[Dae Hoon],
Ryoo, J.S.[Jang Soo],
Iris Identification System and Method of Identifying a Person
Through Iris Recognition,
US_Patent6,247,813, November 4, 1999.
WWW Link.
BibRef
9911
Camus, T.A.,
Cahn von Seelen, U.M.,
Zhang, G.G.,
Venetianer, P.L.,
Salganicoff, M.,
Sensar: Secure(tm) Iris Identification System,
WACV98(254-255).
IEEE DOI
HTML Version.
9809
See also Sensar.
BibRef
Camus, T.A.[Theodore A.],
Chmielewski, Jr., T.A.[Thomas A.],
Image subtraction to remove ambient illumination,
US_Patent6,021,210, February 1, 2000.
WWW Link. Sensar patent.
BibRef
0002
Negin, M.[Michael],
Chmielewski, Jr., T.A.[Thomas A.],
Salganicoff, M.[Marcos],
Camus, T.A.[Theodore A.],
von Seelen, U.M.C.[Ulf M. Cahn],
Venetianer, P.L.[Péter L.],
Zhang, G.G.[Guanghua G.],
An Iris Biometric System for Public and Personal Use,
Computer(21), No. 2, February 2000, pp. 70-75.
0002
(From Sensar)
BibRef
Daugman, J.G.,
High Confidence Visual Recognition of Persons by a
Test of Statistical Independence,
PAMI(15), No. 11, November 1993, pp. 1148-1161.
IEEE DOI Analysis of the iris to generate an encoding that is then used
for recognition.
BibRef
9311
Daugman, J.G.[John G.],
Probing the Uniqueness and Randomness of IrisCodes:
Results From 200 Billion Iris Pair Comparisons,
PIEEE(94), No. 11, November 2006, pp. 1927-1935.
IEEE DOI
0611
BibRef
Daugman, J.G.[John G.],
Biometric personal identification system based on iris analysis,
US_Patent5,291,560, March 1, 1994.
WWW Link. Iri Scan inc.
BibRef
9403
Daugman, J.G.[John G.],
Statistical Richness of Visual Phase Information:
Update on Recognizing Persons by Iris Patterns,
IJCV(45), No. 1, October 2001, pp. 25-38.
DOI Link
0111
The underlying
recognition principle is the failure of a test of statistical
independence on texture phase structure as encoded by
multi-scale quadrature wavelets.
So far, no false matches.
BibRef
Daugman, J.G.,
How Iris Recognition Works,
CirSysVideo(14), No. 1, January 2004, pp. 21-30.
IEEE Abstract.
0402
BibRef
Earlier:
ICIP02(I: 33-36).
IEEE DOI
0210
Survey, Iris Recognition. Standard general description of Gabor filter technique.
BibRef
Daugman, J.G.[John G.],
The importance of being random: statistical principles of iris
recognition,
PR(36), No. 2, February 2003, pp. 279-291.
Elsevier DOI
0211
BibRef
Daugman, J.G.[John G.],
New Methods in Iris Recognition,
SMC-B(37), No. 5, October 2007, pp. 1167-1175.
IEEE DOI
0711
BibRef
Son, S.M.[Sam Mog],
Vehicular security access system,
US_Patent6,323,761, June 3, 2000.
WWW Link.
BibRef
0006
Mann, S.[Stewart],
Mann, L.M.[L. Maribel],
System and method for aircraft passenger check-in and
boarding using iris recognition,
US_Patent6,119,096, Sep 12, 2000
WWW Link.
BibRef
0009
Kawaguchi, T.[Tsuyoshi],
Rizon, M.[Mohamed],
Iris detection using intensity and edge information,
PR(36), No. 2, February 2003, pp. 549-562.
Elsevier DOI
0211
BibRef
Wayman, J.,
Jain, A.,
Maltoni, D.,
Maio, D., (Eds.)
Biometric Systems:
Technology, Design and Performance Evaluation,
Springer2005.
ISBN: 978-1-85233-596-0
Indexed as:
BibRef
0500
BSTDPE05
WWW Link.
Survey, Biometrics.
Buy this book: Biometric Systems: Technology, Design and Performance Evaluation
0905
Technology overviews, Iris recognition, face recognition, Speaker Verification,
Assessments of fingerprint and face recognition, system design and
integration, legal and privacy issues,
BibRef
Dobeš, M.[Michal], and
Machala, L.[Libor],
Iris Database,
Online2006
WWW Link.
Dataset, Iris Images.
The database used for:
See also Human eye localization using the modified Hough transform.
See also Human Eye Iris Recognition Using the Mutual Information.
BibRef
0600
Yoon, S.S.[Sung-Soo],
Choi, S.S.[Seung-Seok],
Cha, S.H.[Sung-Hyuk],
Lee, Y.B.[Yill-Byung],
Tappert, C.C.[Charles C.],
On the Individuality of the Iris Biometric,
GVIP(05), No. V5, 2005, pp. xx-yy
HTML Version.
BibRef
0500
And:
ICIAR05(1118-1124).
Springer DOI
0509
BibRef
Jang, J.[Jain],
Park, K.R.[Kang Ryoung],
Son, J.H.[Jin-Ho],
Lee, Y.B.[Yill-Byung],
A study on multi-unit iris recognition,
ICARCV04(II: 1244-1249).
IEEE DOI
0412
BibRef
Phillips, P.J.[P. Jonathon],
Bowyer, K.W.[Kevin W.],
Flynn, P.J.[Patrick J.],
Comments on the CASIA version 1.0 Iris Data Set,
PAMI(29), No. 10, October 2007, pp. 1869-1870.
IEEE DOI
0710
Survey, Iris Recognition.
See also CASIA Iris Image Database.
BibRef
Bowyer, K.W.[Kevin W.],
The results of the NICE.II Iris biometrics competition,
PRL(33), No. 8, 1 June 2012, pp. 965-969.
Elsevier DOI
1204
Biometrics; Iris biometrics; Performance evaluation
BibRef
Bowyer, K.W.[Kevin W.],
Hollingsworth, K.P.[Karen P.],
Flynn, P.J.[Patrick J.],
Image Understanding for Iris Biometrics: A survey,
CVIU(110), No. 2, May 2008, pp. 281-307.
Elsevier DOI
0804
Survey, Iris Recognition.
BibRef
Hollingsworth, K.P.[Karen P.],
Bowyer, K.W.[Kevin W.],
Flynn, P.J.[Patrick J.],
The Best Bits in an Iris Code,
PAMI(31), No. 6, June 2009, pp. 964-973.
IEEE DOI
0904
BibRef
Earlier:
All Iris Code Bits are Not Created Equal,
BTAS07(1-6).
IEEE DOI
0709
Evaluation to see which regions are most consistent and provide the
best information.
Primary technique for iris recogniton is a set of bits (iris code), where
each bit indicates whether a given texture filter at a given point is negative
or not.
Biometrics; Identity verification; Iris recognition; Texture analysis
BibRef
Hollingsworth, K.P.[Karen P.],
Bowyer, K.W.[Kevin W.],
Flynn, P.J.[Patrick J.],
Image Averaging for Improved Iris Recognition,
ICB09(1112-1121).
Springer DOI
0906
BibRef
Hollingsworth, K.P.[Karen P.],
Bowyer, K.W.[Kevin W.],
Flynn, P.J.[Patrick J.],
Improved Iris Recognition through Fusion of Hamming Distance and
Fragile Bit Distance,
PAMI(33), No. 12, December 2011, pp. 2465-2476.
IEEE DOI
1110
BibRef
Earlier:
Using fragile bit coincidence to improve iris recognition,
BTAS09(1-6).
IEEE DOI
0909
BibRef
And:
All Iris Filters are Not Created Equal,
BTAS08(1-6).
IEEE DOI
0809
Not all bits in the texture based code are equally consistent.
Fragile: changes across images.
BibRef
Newton, E.M.,
Phillips, P.J.,
Meta-Analysis of Third-Party Evaluations of Iris Recognition,
SMC-A(39), No. 1, January 2009, pp. 4-11.
IEEE DOI
0901
BibRef
Earlier:
BTAS07(1-4).
IEEE DOI
0709
See also Meta-analysis of Face Recognition Algorithms.
BibRef
Hollingsworth, K.P.[Karen P.],
Bowyer, K.W.[Kevin W.],
Flynn, P.J.[Patrick J.],
Pupil dilation degrades iris biometric performance,
CVIU(113), No. 1, January 2009, pp. 150-157.
Elsevier DOI
0812
Iris biometrics; Pupil dilation
See also Image Understanding for Iris Biometrics: A survey.
BibRef
Liu, X.M.[Xiao-Mei],
Bowyer, K.W.,
Flynn, P.J.,
Experimental Evaluation of Iris Recognition,
FRGC05(III: 158-158).
IEEE DOI
0507
BibRef
Ring, S.[Sarah],
Bowyer, K.W.[Kevin W.],
Detection of Iris Texture Distortions By Analyzing Iris Code Matching
Results,
BTAS08(1-6).
IEEE DOI
0809
BibRef
Kong, A.W.K.[Adams W.K.],
Zhang, D.[David],
Kamel, M.S.[Mohamed S.],
An Analysis of IrisCode,
IP(19), No. 2, February 2010, pp. 522-532.
IEEE DOI
1002
BibRef
And:
An Anatomy of IrisCode for Precise Phase Representation,
ICPR06(IV: 429-432).
IEEE DOI
0609
BibRef
Kong, A.W.K.[Adams Wai Kin],
A Statistical Analysis of IrisCode and Its Security Implications,
PAMI(37), No. 3, March 2015, pp. 513-528.
IEEE DOI
1502
Databases
BibRef
Kong, A.W.K.[Adams Wai Kin],
IrisCode Decompression Based on the Dependence between Its Bit Pairs,
PAMI(34), No. 3, March 2012, pp. 506-520.
IEEE DOI
1201
BibRef
Kong, A.W.K.[Adams Wai Kin],
Modeling IrisCode and Its Variants as Convex Polyhedral Cones and Its
Security Implications,
IP(22), No. 3, March 2013, pp. 1148-1160.
IEEE DOI
1302
BibRef
Proença, H.[Hugo],
Alexandre, L.A.[Luís A.],
Introduction to the Special Issue on the Recognition of Visible
Wavelength Iris Images Captured At-a-distance and On-the-move,
PRL(33), No. 8, 1 June 2012, pp. 963-964.
Elsevier DOI
1204
BibRef
Earlier:
Introduction to the Special Issue on the Segmentation of Visible
Wavelength Iris Images Captured At-a-distance and On-the-move,
IVC(28), No. 2, February 2010, pp. 213-214.
Elsevier DOI
1001
Issue introduction.
BibRef
Proenca, H.[Hugo],
Alexandre, L.A.[Luis A.],
Iris recognition: Analysis of the error rates regarding the accuracy of
the segmentation stage,
IVC(28), No. 1, Januray 2010, pp. 202-206.
Elsevier DOI
1001
Biometrics; Image segmentation; Iris recognition
BibRef
Ross, A.A.[Arun A.],
Iris Recognition: The Path Forward,
Computer(43), No. 2, February 2010, pp. 30-35.
IEEE DOI
1003
Survey, Iris Recognition.
BibRef
Ziauddin, S.[Sheikh],
Dailey, M.N.[Matthew N.],
Robust iris verification for key management,
PRL(31), No. 9, 1 July 2010, pp. 926-935.
Elsevier DOI
1004
BibRef
Earlier:
Iris recognition performance enhancement using weighted majority voting,
ICIP08(277-280).
IEEE DOI
0810
Iris verification; Biometric authentication; Error-correcting codes;
Reliable bit selection; One-sided masking; Biometric key generation
BibRef
Proenca, H.[Hugo],
Filipe, S.[Silvio],
Santos, R.[Ricardo],
Oliveira, J.[Joao],
Alexandre, L.A.[Luis A.],
The UBIRIS.v2: A Database of Visible Wavelength Iris Images Captured
On-the-Move and At-a-Distance,
PAMI(32), No. 8, August 2010, pp. 1529-1535.
IEEE DOI
1007
Dataset, Iris Recognition.
WWW Link. Visible wavelength, 4-8 meters distance, people moving.
BibRef
Kumar, A.[Ajay],
Passi, A.[Arun],
Comparison and combination of iris matchers for reliable personal
authentication,
PR(43), No. 3, March 2010, pp. 1016-1026.
Elsevier DOI
1001
BibRef
Earlier:
Comparison and combination of iris matchers for reliable personal
identification,
Biometrics08(1-7).
IEEE DOI
0806
BibRef
Earlier: A2, A1:
Improving Iris Identification using User Quality and Cohort Information,
Biometrics07(1-6).
IEEE DOI
0706
Iris; Biometrics; Personal authentication
BibRef
Tepper, M.[Mariano],
Muse, P.[Pablo],
Almansa, A.[Andres],
Mejail, M.[Marta],
Automatically finding clusters in normalized cuts,
PR(44), No. 7, July 2011, pp. 1372-1386.
Elsevier DOI
1103
Clustering; Normalized cuts; A contrario detection
BibRef
Tepper, M.[Mariano],
Musé, P.[Pablo],
Almansa, A.[Andrés],
Mejail, M.[Marta],
Finding contrasted and regular edges by a contrario detection of
periodic subsequences,
PR(47), No. 1, 2014, pp. 72-79.
Elsevier DOI
1310
BibRef
Earlier:
Finding Edges by a Contrario Detection of Periodic Subsequences,
CIARP12(773-780).
Springer DOI
1209
Topographic maps
BibRef
Mottalli, M.[Marcelo],
Tepper, M.[Mariano],
Mejail, M.[Marta],
A Contrario Detection of False Matches in Iris Recognition,
CIARP10(442-449).
Springer DOI
1011
BibRef
Mottalli, M.[Marcelo],
Mejail, M.[Marta],
Jacobo-Berlles, J.[Julio],
Flexible image segmentation and quality assessment for real-time iris
recognition,
ICIP09(1941-1944).
IEEE DOI
0911
BibRef
Rankin, D.M.,
Scotney, B.W.,
Morrow, P.J.,
Pierscionek, B.K.,
Iris recognition failure over time: The effects of texture,
PR(45), No. 1, January 2012, pp. 145-150.
Elsevier DOI
1109
Biometric identification; Iris; Pattern; Recognition; Texture
See also No change over time is shown in Rankin et al. Iris recognition failure over time: The effects of texture.
BibRef
Rankin, D.M.,
Scotney, B.W.,
Morrow, P.J.,
Pierscionek, B.K.,
Iris recognition: the need to recognise the iris as a dynamic
biological system: Response to Daugman and Downing,
PR(46), No. 2, February 2013, pp. 611-612.
Elsevier DOI
1210
Iris biometry; Texture classification; Temporal changes
BibRef
Rankin, D.M.,
Scotney, B.W.,
Morrow, P.J.,
McDowell, R.,
Pierscionek, B.K.,
Comparing and Improving Algorithms for Iris Recognition,
IMVIP09(99-104).
IEEE DOI
0909
BibRef
Bowyer, K.W.[Kevin W.],
Accuracy of Iris Recognition Systems Degrades with
Increase in Elapsed Time,
SPIE(Newsroom), October 4, 2012.
DOI Link
1210
Recent experimental results from two research groups show an increase
in iris recognition error rate with increased time since enrollment,
indicating a need for a re-enrollment scheme or new algorithms.
BibRef
Burge, M.J.[Mark J.],
Bowyer, K.W.[Kevin W.], (Eds.)
Handbook of Iris Recognition,
Springer2013.
ISBN 978-1-4471-4401-4.
Daugman, J.[John],
Downing, C.[Cathryn],
No change over time is shown in Rankin et al. 'Iris recognition failure
over time: The effects of texture',
PR(46), No. 2, February 2013, pp. 609-610.
Elsevier DOI
1210
See also Iris recognition failure over time: The effects of texture.
See also Iris recognition: the need to recognise the iris as a dynamic biological system: Response to Daugman and Downing.
BibRef
Rathgeb, C.[Christian],
Uhl, A.[Andreas],
Wild, P.[Peter],
Iris Biometrics:
From Segmentation to Template Security,
Springer2013.
ISBN: 978-1-4614-5570-7
Ghodrati, H.[Hamed],
Dehghani, M.J.[Mohammad Javad],
Danyali, H.[Habibolah],
A new accurate noise-removing approach for non-cooperative iris
recognition,
SIViP(8), No. 1, January 2014, pp. 1-10.
Springer DOI
1402
BibRef
Wayman, J.,
Book review: Handbook of Iris Recognition,
IET-Bio(3), No. 1, March 2014, pp. 41-43.
DOI Link
1406
BibRef
de Marsico, M.[Maria],
Nappi, M.[Michele],
Riccio, D.[Daniel],
Wechsler, H.[Harry],
Mobile Iris Challenge Evaluation (MICHE)-I, biometric iris dataset
and protocols,
PRL(57), No. 1, 2015, pp. 17-23.
Elsevier DOI
1505
Iris biometric
BibRef
de Marsico, M.[Maria],
Nappi, M.[Michele],
Proença, H.[Hugo],
Guest editorial introduction to the special executable issue on
'Mobile Iris CHallenge Evaluation part I (MICHE I),
PRL(57), No. 1, 2015, pp. 1-3.
Elsevier DOI
1505
BibRef
And:
Mobile Iris CHallenge Evaluation part II (MICHE II),
PRL(91), No. 1, 2017, pp. 1-2.
Elsevier DOI
1609
BibRef
de Marsico, M.[Maria],
Nappi, M.[Michele],
Proença, H.[Hugo],
Results from MICHE II-Mobile Iris CHallenge Evaluation II,
PRL(91), No. 1, 2017, pp. 3-10.
Elsevier DOI
1609
Mobile, iris, recognition
BibRef
Wild, P.,
Ferryman, J.M.,
Uhl, A.,
Impact of (segmentation) quality on long vs. short-timespan
assessments in iris recognition performance,
IET-Bio(4), No. 4, 2015, pp. 227-235.
DOI Link
1601
feature extraction
BibRef
Daugman, J.[John],
Downing, C.[Cathryn],
Searching for doppelgangers: assessing the universality of the
IrisCode impostors distribution,
IET-Bio(5), No. 2, 2016, pp. 65-75.
DOI Link
1606
image matching
BibRef
Karakaya, M.[Mahmut],
A study of how gaze angle affects the performance of iris recognition,
PRL(82, Part 2), No. 1, 2016, pp. 132-143.
Elsevier DOI
1609
Biometrics
BibRef
Othman, N.[Nadia],
Dorizzi, B.[Bernadette],
Garcia-Salicetti, S.[Sonia],
OSIRIS: An open source iris recognition software,
PRL(82, Part 2), No. 1, 2016, pp. 124-131.
Elsevier DOI
1609
Code, Iris Recognition. Iris recognition
BibRef
de Marsico, M.[Maria],
Petrosino, A.[Alfredo],
Ricciardi, S.[Stefano],
Iris recognition through machine learning techniques: A survey,
PRL(82, Part 2), No. 1, 2016, pp. 106-115.
Elsevier DOI
1609
Survey, Iris Recognition. Biometrics
BibRef
de Marsico, M.[Maria],
Frucci, M.[Maria],
Riccio, D.[Daniel],
An insight on eye biometrics,
PRL(82, Part 2), No. 1, 2016, pp. 89-91.
Elsevier DOI
1609
BibRef
Alonso-Fernandez, F.[Fernando],
Bigun, J.[Josef],
A survey on periocular biometrics research,
PRL(82, Part 2), No. 1, 2016, pp. 92-105.
Elsevier DOI
1609
Survey, Periocular Biometrics. Periocular
BibRef
Bergmüller, T.[Thomas],
Christopoulos, E.[Eleftherios],
Fehrenbach, K.[Kevin],
Schnöll, M.[Martin],
Uhl, A.[Andreas],
Recompression effects in iris recognition,
IVC(58), No. 1, 2017, pp. 142-157.
Elsevier DOI
1703
Iris recognition
BibRef
Zhang, K.[Kunai],
Huang, D.[Da],
Zhang, B.[Bob],
Zhang, D.[David],
Improving texture analysis performance in biometrics by adjusting
image sharpness,
PR(66), No. 1, 2017, pp. 16-25.
Elsevier DOI
1704
Image sharpness
BibRef
Nguyen, K.[Kien],
Fookes, C.[Clinton],
Jillela, R.[Raghavender],
Sridharan, S.[Sridha],
Ross, A.[Arun],
Long range iris recognition: A survey,
PR(72), No. 1, 2017, pp. 123-143.
Elsevier DOI
1708
Survey, Iris Recognition. Biometrics
BibRef
de Marsico, M.[Maria],
Nappi, M.[Michele],
Narducci, F.[Fabio],
Proença, H.[Hugo],
Insights into the results of MICHE I: Mobile Iris CHallenge
Evaluation,
PR(74), No. 1, 2018, pp. 286-304.
Elsevier DOI
1711
Mobile, Iris, Recognition
BibRef
Castrillón-Santana, M.,
de Marsico, M.[Maria],
Nappi, M.[Michele],
Narducci, F.[Fabio],
Proença, H.[Hugo],
Mobile Iris CHallenge Evaluation II:
Results from the ICPR competition,
ICPR16(149-154)
IEEE DOI
1705
Cameras, Image resolution, Iris recognition, Mobile communication,
Mobile, handsets
BibRef
Gorodnichy, D.O.[Dmitry O.],
Chumakov, M.P.[Michael P.],
Analysis of the effect of ageing, age, and other factors on iris
recognition performance using NEXUS scores dataset,
IET-Bio(8), No. 1, January 2019, pp. 29-39.
DOI Link
1901
BibRef
Kuehlkamp, A.,
Bowyer, K.W.,
Predicting Gender From Iris Texture May Be Harder Than It Seems,
WACV19(904-912)
IEEE DOI
1904
biometrics (access control), convolutional neural nets,
feature extraction, gender issues, image texture, iris recognition,
Machine learning
BibRef
Kumar, M.M.[Morampudi Mahesh],
Prasad, M.V.N.K.[Munaga V. N. K.],
Raju, U.S.N.,
BMIAE: blockchain-based multi-instance Iris authentication using
additive ElGamal homomorphic encryption,
IET-Bio(9), No. 4, July 2020, pp. 165-177.
DOI Link
2006
BibRef
Morampudi, M.K.[Mahesh Kumar],
Prasad, M.V.N.K.[Munaga V. N. K.],
Undi, S.N.R.[Surya Narayana Raju],
SviaB: Secure and verifiable multi-instance iris remote
authentication using blockchain,
IET-Bio(11), No. 1, 2022, pp. 35-50.
DOI Link
2112
BibRef
Omelina, L.[Lubos],
Goga, J.[Jozef],
Pavlovicova, J.[Jarmila],
Oravec, M.[Milos],
Jansen, B.[Bart],
A survey of iris datasets,
IVC(108), 2021, pp. 104109.
Elsevier DOI
2104
Survey, Iris Reognition.
Dataset, Iris Recognition. Biometrics, Iris recognition, Iris datasets, Human iris
BibRef
Li, Y.H.[Yung-Hui],
Aslam, M.S.[Muhammad Saqlain],
Harfiya, L.N.[Latifa Nabila],
Chang, C.C.[Ching-Chun],
Conditional Wasserstein Generative Adversarial Networks for Rebalancing
Iris Image Datasets,
IEICE(E104-D), No. 9, September 2021, pp. 1450-1458.
WWW Link.
2109
BibRef
Nguyen, K.[Kien],
Proenca, H.[Hugo],
Alonso-Fernandez, F.[Fernando],
Deep Learning for Iris Recognition: A Survey,
Surveys(56), No. 9, April 2024, pp. 223.
DOI Link
2405
Survey, Iris Recognition. Iris recognition, deep learning, neural networks
BibRef
Yáñez, C.[Claudio],
Tapia, J.E.[Juan E.],
Perez, C.A.[Claudio A.],
Busch, C.[Christoph],
Impact of Occlusion Masks on Gender Classification from Iris Texture,
IET-Bio(2024), No. 1, 2024, pp. 8526857.
DOI Link
2405
BibRef
Matveev, I.A.,
Novik, V.P.,
Dependency of Optimal Parameters of the Iris Template On Image Quality
And Border Detection Error,
PTVSBB17(251-255).
DOI Link
1805
BibRef
Kuehlkamp, A.,
Bowyer, K.W.,
An analysis of 1-to-first matching in iris recognition,
WACV16(1-8)
IEEE DOI
1606
Computer science
BibRef
Ortiz, E.[Estefan],
Bowyer, K.W.[Kevin W.],
Exploratory analysis of an operational iris recognition dataset from
a CBSA border-crossing application,
Biometrics15(34-41)
IEEE DOI
1510
Aging
BibRef
García-Vázquez, M.S.[Mireya S.],
Garea-Llano, E.[Eduardo],
Colores-Vargas, J.M.[Juan M.],
Zamudio-Fuentes, L.M.[Luis M.],
Ramírez-Acosta, A.A.[Alejandro A.],
A Comparative Study of Robust Segmentation Algorithms for Iris
Verification System of High Reliability,
MCPR15(156-165).
Springer DOI
1506
BibRef
Harder, S.[Stine],
Christoffersen, S.R.[Susanne R.],
Johansen, P.[Peter],
Børsting, C.[Claus],
Morling, N.[Niels],
What Genes Tell about Iris Appearance,
MCVM12(244-253).
Springer DOI
1305
BibRef
Sazonova, N.,
Hua, F.,
Liu, X.,
Remus, J.,
Ross, A.,
Hornak, L.,
Schuckers, S.,
A study on quality-adjusted impact of time lapse on iris recognition,
SPIE(8371), 2012, pp. 83711W.
DOI Link
1210
BibRef
Hofbauer, H.[Heinz],
Rathgeb, C.[Christian],
Uhl, A.[Andreas],
Wild, P.[Peter],
Iris Recognition in Image Domain: Quality-metric Based Comparators,
ISVC12(II: 1-10).
Springer DOI
1209
BibRef
Mehrotra, H.[Hunny],
Vatsa, M.[Mayank],
Singh, R.[Richa],
Majhi, B.[Banshidhar],
Biometric match score fusion using RVM:
A case study in multi-unit iris recognition,
Biometrics12(65-70).
IEEE DOI
1207
BibRef
Dong, J.[Jing],
Tan, T.N.[Tie-Niu],
Effects of watermarking on iris recognition performance,
ICARCV08(1156-1161).
IEEE DOI
1109
BibRef
Connaughton, R.[Ryan],
Sgroi, A.[Amanda],
Bowyer, K.W.[Kevin W.],
Flynn, P.J.[Patrick J.],
A cross-sensor evaluation of three commercial iris cameras for iris
biometrics,
Biometrics11(90-97).
IEEE DOI
1106
BibRef
Mellakh, A.[Anouar],
Chaari, A.[Anis],
Guerfi, S.[Souhila],
Dhose, J.[Johan],
Colineau, J.[Joseph],
Lelandais, S.[Sylvie],
Petrovska-Delacrètaz, D.[Dijana],
Dorizzi, B.[Bernadette],
2D Face Recognition in the IV2 Evaluation Campaign,
ACIVS09(24-32).
Springer DOI
0909
BibRef
Petrovska-Delacretaz, D.,
Lelandais, S.,
Colineau, J.,
Chen, L.M.,
Dorizzi, B.,
Ardabilian, M.,
Krichen, E.,
Mellakh, M.A.,
Chaari, A.,
Guerfi, S.,
d'Hose, J.,
Ben Amor, B.[Boulbaba],
The IV2 Multimodal Biometric Database (Including Iris, 2D, 3D,
Stereoscopic, and Talking Face Data), and the IV2-2007 Evaluation
Campaign,
BTAS08(1-7).
IEEE DOI
0809
Dataset, Iris Recognition.
BibRef
Tome-Gonzalez, P.,
Alonso-Fernandez, F.,
Ortega-Garcia, J.,
On the Effects of Time Variability in Iris Recognition,
BTAS08(1-6).
IEEE DOI
0809
BibRef
Phillips, P.J.[P. Jonathon],
Bowyer, K.W.[Kevin W.],
Flynn, P.J.[Patrick J.],
Liu, X.M.[Xiao-Mei],
Scruggs, W.T.[W. Todd],
The Iris Challenge Evaluation 2005,
BTAS08(1-8).
IEEE DOI
0809
BibRef
Hollingsworth, K.P.[Karen P.],
Bowyer, K.W.[Kevin W.],
Flynn, P.J.[Patrick J.],
The Importance of Small Pupils:
A Study of How Pupil Dilation Affects Iris Biometrics,
BTAS08(1-6).
IEEE DOI
0809
BibRef
Matschitsch, S.[Stefan],
Tschinder, M.[Martin],
Uhl, A.[Andreas],
Comparison of Compression Algorithms' Impact on Iris Recognition
Accuracy,
ICB07(232-241).
Springer DOI
0708
BibRef
Proenca, H.[Hugo],
Alexandre, L.A.[Luis A.],
The NICE.I: Noisy Iris Challenge Evaluation - Part I,
BTAS07(1-4).
IEEE DOI
0709
BibRef
Thornton, J.[Jason],
Savvides, M.[Marios],
Kumar, B.V.K.,
An Evaluation of Iris Pattern Representations,
BTAS07(1-6).
IEEE DOI
0709
BibRef
Smith, K.N.,
Pauca, V.P.,
Ross, A.,
Torgersen, T.,
King, M.C.,
Extended Evaluation of Simulated Wavefront Coding Technology in Iris
Recognition,
BTAS07(1-7).
IEEE DOI
0709
BibRef
Chapter on Face Recognition, Detection, Tracking, Gesture Recognition, Fingerprints, Biometrics continues in
Retinal Identification Systems and Tecniques .