22.5.3.7 Iris Recognition Systems, Systems, Evaluation, Comparison, Surveys

Chapter Contents (Back)
Biometrics. Iris Recognition. Survey, Iris Recognition.

Iridian,
Iris recognition systems.
WWW Link. Vendor, Iris Recognition. Part of Viisage (
See also Viisage. ), which is part of L-1 Identity Solutions (
See also L1 Identity Solutions. ).

IriTech,
2002. Iris recognition systems.
WWW Link. Vendor, Iris Recognition.

JIris Tech,
Iris recognition systems.
WWW Link. Vendor, Iris Recognition.

LG Iris Access,
Iris recognition systems.
WWW Link. Vendor, Iris Recognition.

Iri Scan,
Iris recognition systems.
WWW Link. Vendor, Iris Recognition.

Nextgen ID,
Iris recognition systems.
WWW Link. Vendor, Iris Recognition.

Panasonic,
2006. Iris recognition systems.
WWW Link. Vendor, Iris Recognition.

Securimetrics,
2006. Iris recognition systems.
WWW Link. Vendor, Iris Recognition. Part of L-1 Identity Solutions (
See also L1 Identity Solutions. ).

UBIRIS database,
2007, Department of Computer Science, University of Beira Interior, Portugal.
WWW Link. Dataset, Iris Images. The enhanced version is available only for the Iris Segmentation Contest. 241 subjects, 1877 images.

CASIA Iris Image Database,
2007, Chinese Academy of Sciences.
HTML Version. Dataset, Iris Images. Various versions. Version 3. 60 subjects, 2400 images.

NIST ICE Iris Image Database,
2007, NIST.
WWW Link. Dataset, Iris Images. 132 subjects, 2953 images. For most recent info:
See also NIST IREX, Iris Exchange Datasets. and also
See also Iris Recognition Database.

AOptix Technoligies,
2007. Iris recognition systems.
WWW Link. Vendor, Iris Recognition. Initial work in astronomy.

Sensar,
Iris recognition systems.
HTML Version. Vendor, Iris Recognition.

Retica,
1999. Iris recognition systems.
WWW Link. Vendor, Iris Recognition. More than just the iris. Combined iris and retina.

Smart Sensors Limited,
2003.
WWW Link. Vendor, Iris Recognition. Spin off from University of Bath
See also University of of Bath.

Iris Recognition Database,
2007
HTML Version. Dataset, Iris Images. Derived from University of Bath
See also University of of Bath. in association with Smart Sensors Ltd.
See also Smart Sensors Limited. High resolution images, 20 each eye for 800 people.

Iris Recognition Database,
2009
HTML Version. Dataset, Iris Images. ND-IRIS-0405. A superset of ICE2005 and ICE2006 datasets. (
See also NIST ICE Iris Image Database. ) 64,980 iris images from 712 irises of 356 human subjects. From the Notre Dame group.
See also University of Notre Dame. For more updates:
See also NIST IREX, Iris Exchange Datasets.

UTIRIS: University of Tehran IRIS Image Repository,
Online2014
WWW Link. Dataset, Iris Images. 1407
Visible and Infrared. BibRef

NIST IREX, Iris Exchange Datasets,
2020
WWW Link. Dataset, Iris.
See also Iris Recognition Database.

Ernst, J.[Jan],
Iris Recognition Homepage,
Online Book2002. 0200
Iris recognition systems.
WWW Link. Vendor, Iris Recognition. Includes vendors, patents, etc. This is mostly out of date -- not realy updated since 2003. BibRef

Wildes, R.P.,
Iris Recognition: An Emerging Biometric Technology,
PIEEE(85), No. 9, September 1997, pp. 1348-1363. 9710
Award Paper. Survey, Iris Recognition. This paper won the 1999 Donald G. Fink award from IEEE for outstanding survey. BibRef

Wildes, R.P.[Richard P.],
Iris Recognition,
BSTDPE05(63095). Survey, Iris Recognition. BibRef 0500

Shen, W.C., Khanna, R.,
Prolog to Iris Recognition: An Emerging Biometric Technology,
PIEEE(85), No. 9, September 1997, pp. 1347-1347. 9710
BibRef

Musgrave, C.[Clyde], Cambier, J.L.[James L.],
Iris imaging telephone security module and method,
US_Patent6,377,699, November 25, 1998.
WWW Link. BibRef 9811
And: US_Patent6,483,930, Nov 19, 2002
WWW Link. BibRef

Musgrave, C.[Clyde], Cambier, J.L.[James L.],
System and method of animal identification and animal transaction authorization using iris patterns,
US_Patent6,424,727, Jul 23, 2002
WWW Link. BibRef 0207

Cambier, J.L.[James L.], Siedlarz, J.E.[John E.],
Portable authentication device and method using iris patterns,
US_Patent6,532,298, Mar 11, 2003
WWW Link. BibRef 0303

Seal, C.H.[Christopher Henry], Gifford, M.M.[Maurice Merrick], McCartney, D.J.[David John],
Personal identification,
US_Patent6,333,988, December 2, 1998.
WWW Link. BibRef 9812
And: US_Patent6,309,069, November 24, 1998.
WWW Link. BibRef

McHugh, J.T.[James Timothy], Lee, J.H.[James Henry], Kuhla, C.B.[Cletus Bonaventure],
Handheld iris imaging apparatus and method,
US_Patent6,289,113, November 25, 1998.
WWW Link. BibRef 9811

Kim, D.H.[Dae Hoon], Ryoo, J.S.[Jang Soo],
Iris Identification System and Method of Identifying a Person Through Iris Recognition,
US_Patent6,247,813, November 4, 1999.
WWW Link. BibRef 9911

Camus, T.A., Cahn von Seelen, U.M., Zhang, G.G., Venetianer, P.L., Salganicoff, M.,
Sensar: Secure(tm) Iris Identification System,
WACV98(254-255).
IEEE DOI
HTML Version. 9809

See also Sensar. BibRef

Camus, T.A.[Theodore A.], Chmielewski, Jr., T.A.[Thomas A.],
Image subtraction to remove ambient illumination,
US_Patent6,021,210, February 1, 2000.
WWW Link. Sensar patent. BibRef 0002

Negin, M.[Michael], Chmielewski, Jr., T.A.[Thomas A.], Salganicoff, M.[Marcos], Camus, T.A.[Theodore A.], von Seelen, U.M.C.[Ulf M. Cahn], Venetianer, P.L.[Péter L.], Zhang, G.G.[Guanghua G.],
An Iris Biometric System for Public and Personal Use,
Computer(21), No. 2, February 2000, pp. 70-75. 0002
(From Sensar) BibRef

Daugman, J.G.,
High Confidence Visual Recognition of Persons by a Test of Statistical Independence,
PAMI(15), No. 11, November 1993, pp. 1148-1161.
IEEE DOI Analysis of the iris to generate an encoding that is then used for recognition. BibRef 9311

Daugman, J.G.[John G.],
Probing the Uniqueness and Randomness of IrisCodes: Results From 200 Billion Iris Pair Comparisons,
PIEEE(94), No. 11, November 2006, pp. 1927-1935.
IEEE DOI 0611
BibRef

Daugman, J.G.[John G.],
Biometric personal identification system based on iris analysis,
US_Patent5,291,560, March 1, 1994.
WWW Link. Iri Scan inc. BibRef 9403

Daugman, J.G.[John G.],
Statistical Richness of Visual Phase Information: Update on Recognizing Persons by Iris Patterns,
IJCV(45), No. 1, October 2001, pp. 25-38.
DOI Link 0111
The underlying recognition principle is the failure of a test of statistical independence on texture phase structure as encoded by multi-scale quadrature wavelets. So far, no false matches. BibRef

Daugman, J.G.,
How Iris Recognition Works,
CirSysVideo(14), No. 1, January 2004, pp. 21-30.
IEEE Abstract. 0402
BibRef
Earlier: ICIP02(I: 33-36).
IEEE DOI 0210
Survey, Iris Recognition. Standard general description of Gabor filter technique. BibRef

Daugman, J.G.[John G.],
The importance of being random: statistical principles of iris recognition,
PR(36), No. 2, February 2003, pp. 279-291.
Elsevier DOI 0211
BibRef

Daugman, J.G.[John G.],
New Methods in Iris Recognition,
SMC-B(37), No. 5, October 2007, pp. 1167-1175.
IEEE DOI 0711
BibRef

Son, S.M.[Sam Mog],
Vehicular security access system,
US_Patent6,323,761, June 3, 2000.
WWW Link. BibRef 0006

Mann, S.[Stewart], Mann, L.M.[L. Maribel],
System and method for aircraft passenger check-in and boarding using iris recognition,
US_Patent6,119,096, Sep 12, 2000
WWW Link. BibRef 0009

Kawaguchi, T.[Tsuyoshi], Rizon, M.[Mohamed],
Iris detection using intensity and edge information,
PR(36), No. 2, February 2003, pp. 549-562.
Elsevier DOI 0211
BibRef

Wayman, J., Jain, A., Maltoni, D., Maio, D., (Eds.)
Biometric Systems: Technology, Design and Performance Evaluation,
Springer2005. ISBN: 978-1-85233-596-0 Indexed as: BibRef 0500 BSTDPE05
WWW Link. Survey, Biometrics. Buy this book: Biometric Systems: Technology, Design and Performance Evaluation 0905
Technology overviews, Iris recognition, face recognition, Speaker Verification, Assessments of fingerprint and face recognition, system design and integration, legal and privacy issues, BibRef

Dobeš, M.[Michal], and Machala, L.[Libor],
Iris Database,
Online2006
WWW Link. Dataset, Iris Images. The database used for:
See also Human eye localization using the modified Hough transform.
See also Human Eye Iris Recognition Using the Mutual Information. BibRef 0600

Yoon, S.S.[Sung-Soo], Choi, S.S.[Seung-Seok], Cha, S.H.[Sung-Hyuk], Lee, Y.B.[Yill-Byung], Tappert, C.C.[Charles C.],
On the Individuality of the Iris Biometric,
GVIP(05), No. V5, 2005, pp. xx-yy
HTML Version. BibRef 0500
And: ICIAR05(1118-1124).
Springer DOI 0509
BibRef

Jang, J.[Jain], Park, K.R.[Kang Ryoung], Son, J.H.[Jin-Ho], Lee, Y.B.[Yill-Byung],
A study on multi-unit iris recognition,
ICARCV04(II: 1244-1249).
IEEE DOI 0412
BibRef

Phillips, P.J.[P. Jonathon], Bowyer, K.W.[Kevin W.], Flynn, P.J.[Patrick J.],
Comments on the CASIA version 1.0 Iris Data Set,
PAMI(29), No. 10, October 2007, pp. 1869-1870.
IEEE DOI 0710
Survey, Iris Recognition.
See also CASIA Iris Image Database. BibRef

Bowyer, K.W.[Kevin W.],
The results of the NICE.II Iris biometrics competition,
PRL(33), No. 8, 1 June 2012, pp. 965-969.
Elsevier DOI 1204
Biometrics; Iris biometrics; Performance evaluation BibRef

Bowyer, K.W.[Kevin W.], Hollingsworth, K.P.[Karen P.], Flynn, P.J.[Patrick J.],
Image Understanding for Iris Biometrics: A survey,
CVIU(110), No. 2, May 2008, pp. 281-307.
Elsevier DOI 0804
Survey, Iris Recognition. BibRef

Hollingsworth, K.P.[Karen P.], Bowyer, K.W.[Kevin W.], Flynn, P.J.[Patrick J.],
The Best Bits in an Iris Code,
PAMI(31), No. 6, June 2009, pp. 964-973.
IEEE DOI 0904
BibRef
Earlier:
All Iris Code Bits are Not Created Equal,
BTAS07(1-6).
IEEE DOI 0709
Evaluation to see which regions are most consistent and provide the best information. Primary technique for iris recogniton is a set of bits (iris code), where each bit indicates whether a given texture filter at a given point is negative or not. Biometrics; Identity verification; Iris recognition; Texture analysis BibRef

Hollingsworth, K.P.[Karen P.], Bowyer, K.W.[Kevin W.], Flynn, P.J.[Patrick J.],
Image Averaging for Improved Iris Recognition,
ICB09(1112-1121).
Springer DOI 0906
BibRef

Hollingsworth, K.P.[Karen P.], Bowyer, K.W.[Kevin W.], Flynn, P.J.[Patrick J.],
Improved Iris Recognition through Fusion of Hamming Distance and Fragile Bit Distance,
PAMI(33), No. 12, December 2011, pp. 2465-2476.
IEEE DOI 1110
BibRef
Earlier:
Using fragile bit coincidence to improve iris recognition,
BTAS09(1-6).
IEEE DOI 0909
BibRef
And:
All Iris Filters are Not Created Equal,
BTAS08(1-6).
IEEE DOI 0809
Not all bits in the texture based code are equally consistent. Fragile: changes across images. BibRef

Newton, E.M., Phillips, P.J.,
Meta-Analysis of Third-Party Evaluations of Iris Recognition,
SMC-A(39), No. 1, January 2009, pp. 4-11.
IEEE DOI 0901
BibRef
Earlier: BTAS07(1-4).
IEEE DOI 0709

See also Meta-analysis of Face Recognition Algorithms. BibRef

Hollingsworth, K.P.[Karen P.], Bowyer, K.W.[Kevin W.], Flynn, P.J.[Patrick J.],
Pupil dilation degrades iris biometric performance,
CVIU(113), No. 1, January 2009, pp. 150-157.
Elsevier DOI 0812
Iris biometrics; Pupil dilation
See also Image Understanding for Iris Biometrics: A survey. BibRef

Liu, X.M.[Xiao-Mei], Bowyer, K.W., Flynn, P.J.,
Experimental Evaluation of Iris Recognition,
FRGC05(III: 158-158).
IEEE DOI 0507
BibRef

Ring, S.[Sarah], Bowyer, K.W.[Kevin W.],
Detection of Iris Texture Distortions By Analyzing Iris Code Matching Results,
BTAS08(1-6).
IEEE DOI 0809
BibRef

Kong, A.W.K.[Adams W.K.], Zhang, D.[David], Kamel, M.S.[Mohamed S.],
An Analysis of IrisCode,
IP(19), No. 2, February 2010, pp. 522-532.
IEEE DOI 1002
BibRef
And:
An Anatomy of IrisCode for Precise Phase Representation,
ICPR06(IV: 429-432).
IEEE DOI 0609
BibRef

Kong, A.W.K.[Adams Wai Kin],
A Statistical Analysis of IrisCode and Its Security Implications,
PAMI(37), No. 3, March 2015, pp. 513-528.
IEEE DOI 1502
Databases BibRef

Kong, A.W.K.[Adams Wai Kin],
IrisCode Decompression Based on the Dependence between Its Bit Pairs,
PAMI(34), No. 3, March 2012, pp. 506-520.
IEEE DOI 1201
BibRef

Kong, A.W.K.[Adams Wai Kin],
Modeling IrisCode and Its Variants as Convex Polyhedral Cones and Its Security Implications,
IP(22), No. 3, March 2013, pp. 1148-1160.
IEEE DOI 1302
BibRef

Proença, H.[Hugo], Alexandre, L.A.[Luís A.],
Introduction to the Special Issue on the Recognition of Visible Wavelength Iris Images Captured At-a-distance and On-the-move,
PRL(33), No. 8, 1 June 2012, pp. 963-964.
Elsevier DOI 1204
BibRef
Earlier:
Introduction to the Special Issue on the Segmentation of Visible Wavelength Iris Images Captured At-a-distance and On-the-move,
IVC(28), No. 2, February 2010, pp. 213-214.
Elsevier DOI 1001
Issue introduction. BibRef

Proenca, H.[Hugo], Alexandre, L.A.[Luis A.],
Iris recognition: Analysis of the error rates regarding the accuracy of the segmentation stage,
IVC(28), No. 1, Januray 2010, pp. 202-206.
Elsevier DOI 1001
Biometrics; Image segmentation; Iris recognition BibRef

Ross, A.A.[Arun A.],
Iris Recognition: The Path Forward,
Computer(43), No. 2, February 2010, pp. 30-35.
IEEE DOI 1003
Survey, Iris Recognition. BibRef

Ziauddin, S.[Sheikh], Dailey, M.N.[Matthew N.],
Robust iris verification for key management,
PRL(31), No. 9, 1 July 2010, pp. 926-935.
Elsevier DOI 1004
BibRef
Earlier:
Iris recognition performance enhancement using weighted majority voting,
ICIP08(277-280).
IEEE DOI 0810
Iris verification; Biometric authentication; Error-correcting codes; Reliable bit selection; One-sided masking; Biometric key generation BibRef

Proenca, H.[Hugo], Filipe, S.[Silvio], Santos, R.[Ricardo], Oliveira, J.[Joao], Alexandre, L.A.[Luis A.],
The UBIRIS.v2: A Database of Visible Wavelength Iris Images Captured On-the-Move and At-a-Distance,
PAMI(32), No. 8, August 2010, pp. 1529-1535.
IEEE DOI 1007
Dataset, Iris Recognition.
WWW Link. Visible wavelength, 4-8 meters distance, people moving. BibRef

Kumar, A.[Ajay], Passi, A.[Arun],
Comparison and combination of iris matchers for reliable personal authentication,
PR(43), No. 3, March 2010, pp. 1016-1026.
Elsevier DOI 1001
BibRef
Earlier:
Comparison and combination of iris matchers for reliable personal identification,
Biometrics08(1-7).
IEEE DOI 0806
BibRef
Earlier: A2, A1:
Improving Iris Identification using User Quality and Cohort Information,
Biometrics07(1-6).
IEEE DOI 0706
Iris; Biometrics; Personal authentication BibRef

Tepper, M.[Mariano], Muse, P.[Pablo], Almansa, A.[Andres], Mejail, M.[Marta],
Automatically finding clusters in normalized cuts,
PR(44), No. 7, July 2011, pp. 1372-1386.
Elsevier DOI 1103
Clustering; Normalized cuts; A contrario detection BibRef

Tepper, M.[Mariano], Musé, P.[Pablo], Almansa, A.[Andrés], Mejail, M.[Marta],
Finding contrasted and regular edges by a contrario detection of periodic subsequences,
PR(47), No. 1, 2014, pp. 72-79.
Elsevier DOI 1310
BibRef
Earlier:
Finding Edges by a Contrario Detection of Periodic Subsequences,
CIARP12(773-780).
Springer DOI 1209
Topographic maps BibRef

Mottalli, M.[Marcelo], Tepper, M.[Mariano], Mejail, M.[Marta],
A Contrario Detection of False Matches in Iris Recognition,
CIARP10(442-449).
Springer DOI 1011
BibRef

Mottalli, M.[Marcelo], Mejail, M.[Marta], Jacobo-Berlles, J.[Julio],
Flexible image segmentation and quality assessment for real-time iris recognition,
ICIP09(1941-1944).
IEEE DOI 0911
BibRef

Rankin, D.M., Scotney, B.W., Morrow, P.J., Pierscionek, B.K.,
Iris recognition failure over time: The effects of texture,
PR(45), No. 1, January 2012, pp. 145-150.
Elsevier DOI 1109
Biometric identification; Iris; Pattern; Recognition; Texture
See also No change over time is shown in Rankin et al. Iris recognition failure over time: The effects of texture. BibRef

Rankin, D.M., Scotney, B.W., Morrow, P.J., Pierscionek, B.K.,
Iris recognition: the need to recognise the iris as a dynamic biological system: Response to Daugman and Downing,
PR(46), No. 2, February 2013, pp. 611-612.
Elsevier DOI 1210
Iris biometry; Texture classification; Temporal changes BibRef

Rankin, D.M., Scotney, B.W., Morrow, P.J., McDowell, R., Pierscionek, B.K.,
Comparing and Improving Algorithms for Iris Recognition,
IMVIP09(99-104).
IEEE DOI 0909
BibRef

Bowyer, K.W.[Kevin W.],
Accuracy of Iris Recognition Systems Degrades with Increase in Elapsed Time,
SPIE(Newsroom), October 4, 2012.
DOI Link 1210
Recent experimental results from two research groups show an increase in iris recognition error rate with increased time since enrollment, indicating a need for a re-enrollment scheme or new algorithms. BibRef

Burge, M.J.[Mark J.], Bowyer, K.W.[Kevin W.], (Eds.)
Handbook of Iris Recognition,
Springer2013. ISBN 978-1-4471-4401-4.


WWW Link. 1304
BibRef

Daugman, J.[John], Downing, C.[Cathryn],
No change over time is shown in Rankin et al. 'Iris recognition failure over time: The effects of texture',
PR(46), No. 2, February 2013, pp. 609-610.
Elsevier DOI 1210

See also Iris recognition failure over time: The effects of texture.
See also Iris recognition: the need to recognise the iris as a dynamic biological system: Response to Daugman and Downing. BibRef

Rathgeb, C.[Christian], Uhl, A.[Andreas], Wild, P.[Peter],
Iris Biometrics: From Segmentation to Template Security,
Springer2013. ISBN: 978-1-4614-5570-7


WWW Link. 1211
Code, Iris Recognition. Includes software. BibRef

Ghodrati, H.[Hamed], Dehghani, M.J.[Mohammad Javad], Danyali, H.[Habibolah],
A new accurate noise-removing approach for non-cooperative iris recognition,
SIViP(8), No. 1, January 2014, pp. 1-10.
Springer DOI 1402
BibRef

Wayman, J.,
Book review: Handbook of Iris Recognition,
IET-Bio(3), No. 1, March 2014, pp. 41-43.
DOI Link 1406
BibRef

de Marsico, M.[Maria], Nappi, M.[Michele], Riccio, D.[Daniel], Wechsler, H.[Harry],
Mobile Iris Challenge Evaluation (MICHE)-I, biometric iris dataset and protocols,
PRL(57), No. 1, 2015, pp. 17-23.
Elsevier DOI 1505
Iris biometric BibRef

de Marsico, M.[Maria], Nappi, M.[Michele], Proença, H.[Hugo],
Guest editorial introduction to the special executable issue on 'Mobile Iris CHallenge Evaluation part I (MICHE I),
PRL(57), No. 1, 2015, pp. 1-3.
Elsevier DOI 1505
BibRef
And:
Mobile Iris CHallenge Evaluation part II (MICHE II),
PRL(91), No. 1, 2017, pp. 1-2.
Elsevier DOI 1609
BibRef

de Marsico, M.[Maria], Nappi, M.[Michele], Proença, H.[Hugo],
Results from MICHE II-Mobile Iris CHallenge Evaluation II,
PRL(91), No. 1, 2017, pp. 3-10.
Elsevier DOI 1609
Mobile, iris, recognition BibRef

Wild, P., Ferryman, J.M., Uhl, A.,
Impact of (segmentation) quality on long vs. short-timespan assessments in iris recognition performance,
IET-Bio(4), No. 4, 2015, pp. 227-235.
DOI Link 1601
feature extraction BibRef

Daugman, J.[John], Downing, C.[Cathryn],
Searching for doppelgangers: assessing the universality of the IrisCode impostors distribution,
IET-Bio(5), No. 2, 2016, pp. 65-75.
DOI Link 1606
image matching BibRef

Karakaya, M.[Mahmut],
A study of how gaze angle affects the performance of iris recognition,
PRL(82, Part 2), No. 1, 2016, pp. 132-143.
Elsevier DOI 1609
Biometrics BibRef

Othman, N.[Nadia], Dorizzi, B.[Bernadette], Garcia-Salicetti, S.[Sonia],
OSIRIS: An open source iris recognition software,
PRL(82, Part 2), No. 1, 2016, pp. 124-131.
Elsevier DOI 1609
Code, Iris Recognition. Iris recognition BibRef

de Marsico, M.[Maria], Petrosino, A.[Alfredo], Ricciardi, S.[Stefano],
Iris recognition through machine learning techniques: A survey,
PRL(82, Part 2), No. 1, 2016, pp. 106-115.
Elsevier DOI 1609
Survey, Iris Recognition. Biometrics BibRef

de Marsico, M.[Maria], Frucci, M.[Maria], Riccio, D.[Daniel],
An insight on eye biometrics,
PRL(82, Part 2), No. 1, 2016, pp. 89-91.
Elsevier DOI 1609
BibRef

Alonso-Fernandez, F.[Fernando], Bigun, J.[Josef],
A survey on periocular biometrics research,
PRL(82, Part 2), No. 1, 2016, pp. 92-105.
Elsevier DOI 1609
Survey, Periocular Biometrics. Periocular BibRef

Bergmüller, T.[Thomas], Christopoulos, E.[Eleftherios], Fehrenbach, K.[Kevin], Schnöll, M.[Martin], Uhl, A.[Andreas],
Recompression effects in iris recognition,
IVC(58), No. 1, 2017, pp. 142-157.
Elsevier DOI 1703
Iris recognition BibRef

Zhang, K.[Kunai], Huang, D.[Da], Zhang, B.[Bob], Zhang, D.[David],
Improving texture analysis performance in biometrics by adjusting image sharpness,
PR(66), No. 1, 2017, pp. 16-25.
Elsevier DOI 1704
Image sharpness BibRef

Nguyen, K.[Kien], Fookes, C.[Clinton], Jillela, R.[Raghavender], Sridharan, S.[Sridha], Ross, A.[Arun],
Long range iris recognition: A survey,
PR(72), No. 1, 2017, pp. 123-143.
Elsevier DOI 1708
Survey, Iris Recognition. Biometrics BibRef

de Marsico, M.[Maria], Nappi, M.[Michele], Narducci, F.[Fabio], Proença, H.[Hugo],
Insights into the results of MICHE I: Mobile Iris CHallenge Evaluation,
PR(74), No. 1, 2018, pp. 286-304.
Elsevier DOI 1711
Mobile, Iris, Recognition BibRef

Castrillón-Santana, M., de Marsico, M.[Maria], Nappi, M.[Michele], Narducci, F.[Fabio], Proença, H.[Hugo],
Mobile Iris CHallenge Evaluation II: Results from the ICPR competition,
ICPR16(149-154)
IEEE DOI 1705
Cameras, Image resolution, Iris recognition, Mobile communication, Mobile, handsets BibRef

Gorodnichy, D.O.[Dmitry O.], Chumakov, M.P.[Michael P.],
Analysis of the effect of ageing, age, and other factors on iris recognition performance using NEXUS scores dataset,
IET-Bio(8), No. 1, January 2019, pp. 29-39.
DOI Link 1901
BibRef

Kuehlkamp, A., Bowyer, K.W.,
Predicting Gender From Iris Texture May Be Harder Than It Seems,
WACV19(904-912)
IEEE DOI 1904
biometrics (access control), convolutional neural nets, feature extraction, gender issues, image texture, iris recognition, Machine learning BibRef

Kumar, M.M.[Morampudi Mahesh], Prasad, M.V.N.K.[Munaga V. N. K.], Raju, U.S.N.,
BMIAE: blockchain-based multi-instance Iris authentication using additive ElGamal homomorphic encryption,
IET-Bio(9), No. 4, July 2020, pp. 165-177.
DOI Link 2006
BibRef

Morampudi, M.K.[Mahesh Kumar], Prasad, M.V.N.K.[Munaga V. N. K.], Undi, S.N.R.[Surya Narayana Raju],
SviaB: Secure and verifiable multi-instance iris remote authentication using blockchain,
IET-Bio(11), No. 1, 2022, pp. 35-50.
DOI Link 2112
BibRef

Omelina, L.[Lubos], Goga, J.[Jozef], Pavlovicova, J.[Jarmila], Oravec, M.[Milos], Jansen, B.[Bart],
A survey of iris datasets,
IVC(108), 2021, pp. 104109.
Elsevier DOI 2104
Survey, Iris Reognition. Dataset, Iris Recognition. Biometrics, Iris recognition, Iris datasets, Human iris BibRef

Li, Y.H.[Yung-Hui], Aslam, M.S.[Muhammad Saqlain], Harfiya, L.N.[Latifa Nabila], Chang, C.C.[Ching-Chun],
Conditional Wasserstein Generative Adversarial Networks for Rebalancing Iris Image Datasets,
IEICE(E104-D), No. 9, September 2021, pp. 1450-1458.
WWW Link. 2109
BibRef

Nguyen, K.[Kien], Proenca, H.[Hugo], Alonso-Fernandez, F.[Fernando],
Deep Learning for Iris Recognition: A Survey,
Surveys(56), No. 9, April 2024, pp. 223.
DOI Link 2405
Survey, Iris Recognition. Iris recognition, deep learning, neural networks BibRef

Yáñez, C.[Claudio], Tapia, J.E.[Juan E.], Perez, C.A.[Claudio A.], Busch, C.[Christoph],
Impact of Occlusion Masks on Gender Classification from Iris Texture,
IET-Bio(2024), No. 1, 2024, pp. 8526857.
DOI Link 2405
BibRef


Moreira, D., Trokielewicz, M., Czajka, A., Bowyer, K.W., Flynn, P.J.,
Performance of Humans in Iris Recognition: The Impact of Iris Condition and Annotation-Driven Verification,
WACV19(941-949)
IEEE DOI 1904
image classification, image matching, iris recognition, healthy iris, iris recognition algorithms, Software BibRef

Matveev, I.A., Novik, V.P.,
Dependency of Optimal Parameters of the Iris Template On Image Quality And Border Detection Error,
PTVSBB17(251-255).
DOI Link 1805
BibRef

Kuehlkamp, A., Bowyer, K.W.,
An analysis of 1-to-first matching in iris recognition,
WACV16(1-8)
IEEE DOI 1606
Computer science BibRef

Ortiz, E.[Estefan], Bowyer, K.W.[Kevin W.],
Exploratory analysis of an operational iris recognition dataset from a CBSA border-crossing application,
Biometrics15(34-41)
IEEE DOI 1510
Aging BibRef

García-Vázquez, M.S.[Mireya S.], Garea-Llano, E.[Eduardo], Colores-Vargas, J.M.[Juan M.], Zamudio-Fuentes, L.M.[Luis M.], Ramírez-Acosta, A.A.[Alejandro A.],
A Comparative Study of Robust Segmentation Algorithms for Iris Verification System of High Reliability,
MCPR15(156-165).
Springer DOI 1506
BibRef

Harder, S.[Stine], Christoffersen, S.R.[Susanne R.], Johansen, P.[Peter], Børsting, C.[Claus], Morling, N.[Niels],
What Genes Tell about Iris Appearance,
MCVM12(244-253).
Springer DOI 1305
BibRef

Sazonova, N., Hua, F., Liu, X., Remus, J., Ross, A., Hornak, L., Schuckers, S.,
A study on quality-adjusted impact of time lapse on iris recognition,
SPIE(8371), 2012, pp. 83711W.
DOI Link 1210
BibRef

Hofbauer, H.[Heinz], Rathgeb, C.[Christian], Uhl, A.[Andreas], Wild, P.[Peter],
Iris Recognition in Image Domain: Quality-metric Based Comparators,
ISVC12(II: 1-10).
Springer DOI 1209
BibRef

Mehrotra, H.[Hunny], Vatsa, M.[Mayank], Singh, R.[Richa], Majhi, B.[Banshidhar],
Biometric match score fusion using RVM: A case study in multi-unit iris recognition,
Biometrics12(65-70).
IEEE DOI 1207
BibRef

Dong, J.[Jing], Tan, T.N.[Tie-Niu],
Effects of watermarking on iris recognition performance,
ICARCV08(1156-1161).
IEEE DOI 1109
BibRef

Connaughton, R.[Ryan], Sgroi, A.[Amanda], Bowyer, K.W.[Kevin W.], Flynn, P.J.[Patrick J.],
A cross-sensor evaluation of three commercial iris cameras for iris biometrics,
Biometrics11(90-97).
IEEE DOI 1106
BibRef

Mellakh, A.[Anouar], Chaari, A.[Anis], Guerfi, S.[Souhila], Dhose, J.[Johan], Colineau, J.[Joseph], Lelandais, S.[Sylvie], Petrovska-Delacrètaz, D.[Dijana], Dorizzi, B.[Bernadette],
2D Face Recognition in the IV2 Evaluation Campaign,
ACIVS09(24-32).
Springer DOI 0909
BibRef

Petrovska-Delacretaz, D., Lelandais, S., Colineau, J., Chen, L.M., Dorizzi, B., Ardabilian, M., Krichen, E., Mellakh, M.A., Chaari, A., Guerfi, S., d'Hose, J., Ben Amor, B.[Boulbaba],
The IV2 Multimodal Biometric Database (Including Iris, 2D, 3D, Stereoscopic, and Talking Face Data), and the IV2-2007 Evaluation Campaign,
BTAS08(1-7).
IEEE DOI 0809
Dataset, Iris Recognition. BibRef

Tome-Gonzalez, P., Alonso-Fernandez, F., Ortega-Garcia, J.,
On the Effects of Time Variability in Iris Recognition,
BTAS08(1-6).
IEEE DOI 0809
BibRef

Phillips, P.J.[P. Jonathon], Bowyer, K.W.[Kevin W.], Flynn, P.J.[Patrick J.], Liu, X.M.[Xiao-Mei], Scruggs, W.T.[W. Todd],
The Iris Challenge Evaluation 2005,
BTAS08(1-8).
IEEE DOI 0809
BibRef

Hollingsworth, K.P.[Karen P.], Bowyer, K.W.[Kevin W.], Flynn, P.J.[Patrick J.],
The Importance of Small Pupils: A Study of How Pupil Dilation Affects Iris Biometrics,
BTAS08(1-6).
IEEE DOI 0809
BibRef

Matschitsch, S.[Stefan], Tschinder, M.[Martin], Uhl, A.[Andreas],
Comparison of Compression Algorithms' Impact on Iris Recognition Accuracy,
ICB07(232-241).
Springer DOI 0708
BibRef

Proenca, H.[Hugo], Alexandre, L.A.[Luis A.],
The NICE.I: Noisy Iris Challenge Evaluation - Part I,
BTAS07(1-4).
IEEE DOI 0709
BibRef

Thornton, J.[Jason], Savvides, M.[Marios], Kumar, B.V.K.,
An Evaluation of Iris Pattern Representations,
BTAS07(1-6).
IEEE DOI 0709
BibRef

Smith, K.N., Pauca, V.P., Ross, A., Torgersen, T., King, M.C.,
Extended Evaluation of Simulated Wavefront Coding Technology in Iris Recognition,
BTAS07(1-7).
IEEE DOI 0709
BibRef

Chapter on Face Recognition, Detection, Tracking, Gesture Recognition, Fingerprints, Biometrics continues in
Retinal Identification Systems and Tecniques .


Last update:Aug 28, 2024 at 16:02:19