7.10.4 Hierarchical, Multi-Scale Texture Representations and Analysis

Chapter Contents (Back)
Multiscale. Hierarchical Texture. Multi-Scale Texture.

Roan, S.J., Aggarwal, J.K., Martin, W.N.,
Multiple Resolution Imagery and Texture Analysis,
PR(20), No. 1, 1987, pp. 17-31.
Elsevier DOI BibRef 8700

Kelly, P.A., Derin, H., Hartt, K.D.,
Adaptive Segmentation of Speckled Images Using a Hierarchical Random Field Model,
ASSP(36), 1988, pp. 1628-1641.
See also Modelling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields. BibRef 8800

Mobasseri, B.G.,
A Hierarchical Representation for Random Fields,
PRL(11), 1990, pp. 545-552. BibRef 9000
Earlier:
Expected complexity in hierarchical representations for random fields,
ICPR90(I: 508-512).
IEEE DOI 9006
BibRef

Seong, D.S., Kim, H.S., Park, K.H.,
Formal Definition and Entropy Calculation of Hierarchical Attributed Random Graph,
PRL(13), 1992, pp. 545-555. BibRef 9200

Irving, W.W., Fieguth, P.W., Willsky, A.S.,
An Overlapping Tree Approach to Multiscale Stochastic Modeling and Estimation,
IP(6), No. 11, November 1997, pp. 1517-1529.
IEEE DOI 9710
BibRef

Ho, T.T.[Terrence T.], Fieguth, P.W.[Paul W.], Willsky, A.S.[Alan S.],
Computationally efficient steadystate multiscale estimation for 1-d diffusion processes,
Automatica(37), 2001, pp. 325-340. BibRef 0100
Earlier:
Recursive Multiscale Estimation of Space-Time Random Fields,
ICIP99(II:867-870).
IEEE DOI BibRef

Fieguth, P.W.[Paul W.],
Hierarchical MCMC Sampling,
ICIAR04(I: 114-121).
Springer DOI 0409
BibRef
Earlier:
Hierarchical posterior sampling for images and random fields,
ICIP03(I: 821-824).
IEEE DOI 0312
BibRef

Liu, L.[Li], Fieguth, P.W.[Paul W.], Hu, D., Wei, Y., Kuang, G.Y.[Gang-Yao],
Fusing Sorted Random Projections for Robust Texture and Material Classification,
CirSysVideo(25), No. 3, March 2015, pp. 482-496.
IEEE DOI 1503
Databases BibRef

Liu, L.[Li], Fieguth, P.W.[Paul W.], Kuang, G.Y.[Gang-Yao], Zha, H.B.[Hong-Bin],
Sorted Random Projections for robust texture classification,
ICCV11(391-398).
IEEE DOI 1201
BibRef

Liu, L.[Li], Fieguth, P.W.[Paul W.],
Texture Classification from Random Features,
PAMI(34), No. 3, March 2012, pp. 574-586.
IEEE DOI 1201
BibRef

Liu, L., Long, Y., Fieguth, P.W., Lao, S., Zhao, G.,
BRINT: Binary Rotation Invariant and Noise Tolerant Texture Classification,
IP(23), No. 7, July 2014, pp. 3071-3084.
IEEE DOI 1407
Accuracy BibRef

Liu, L.[Li], Yang, B.[Bing], Fieguth, P.W.[Paul W.], Yang, Z.[Zheng], Wei, Y.M.[Ying-Mei],
BRINT: A binary rotation invariant and noise tolerant texture descriptor,
ICIP13(255-259)
IEEE DOI 1402
BibRef

Liu, L.[Li], Fieguth, P.W.[Paul W.], Kuang, G.Y.[Gang-Yao],
Combining sorted random features for texture classification,
ICIP11(833-836).
IEEE DOI 1201
BibRef

Luettgen, M.R., Willsky, A.S.,
Likelihood Calculation for a Class of Multiscale Stochastic-Models, with Application to Texture-Discrimination,
IP(4), No. 2, February 1995, pp. 194-207.
IEEE DOI BibRef 9502

Luettgen, M.R., Willsky, A.S., Allen, T.G., Tenney, R.R.,
Likelihood-based texture discrimination with multiscale stochastic models,
ICIP94(III: 451-455).
IEEE DOI 9411
BibRef

Luettgen, M.R.,
Likelihood Calculation for a Class of Multiscale Stochastic-Models, with Application to Texture-Discrimination: Correction,
IP(4), No. 5, May 1995, pp. 704-704.
IEEE Top Reference. BibRef 9505

Luettgen, M.R., Karl, W.C., Willsky, A.S., and Tenney, R.,
Multiscale representations of Markov random fields,
TSP(41), December 1993, No. 12, pp. 3377-3396. BibRef 9312

Luettgen, M.R., Willsky, A.S.,
Multiscale smoothing error models,
AC(40), No. 1, January 1995, pp. 173-175. BibRef 9501

Vanrell, M., Vitria, J., Roca, X.,
A Multidimensional-Scaling Approach to Explore the Behavior of a Texture-Perception Algorithm,
MVA(9), No. 5-6, 1997, pp. 262-271.
Springer DOI 9705
BibRef

Heine, J.J., Deans, S.R., Cullers, D.K., Stauduhar, R., Clarke, L.P.,
Multiresolution Probability Analysis of Gray-Scaled Images,
JOSA-A(15), No. 5, May 1998, pp. 1048-1058. 9805
BibRef

Heine, J.J.[John J.], Deans, S.R.[Stanley R.], Clarke, L.P.[Laurence P.],
Multiresolution probability analysis of random fields,
JOSA-A(16), No. 1, January 1999, pp. 6-16. BibRef 9901

Wang, J.P.,
Stochastic Relaxation on Partitions with Connected Components and Its Application to Image Segmentation,
PAMI(20), No. 6, June 1998, pp. 619-636.
IEEE DOI 9807
BibRef

Wang, J.P.,
Multiscale Markov Fields: Applications to the Segmentation of Textured Images and Film Fusion,
Ph.D.Thesis. Univ. Paris-Sud, 1994. BibRef 9400

Wang, L.[Lei], Liu, J.[Jun],
Texture classification using multiresolution Markov random field models,
PRL(20), No. 2, February 1999, pp. 171-182.
See also Feature Selection with Kernel Class Separability. BibRef 9902

Liu, H.Y.[Hai-Ying], Wang, L.[Lei],
Texture Classification Using Wavelet Decomposition with Markov Random Field Models,
ICPR98(Vol II: 1613-1615).
IEEE DOI 9808
BibRef

Xu, Y.X.[Yue-Xue], Zhang, S.J.[Sheng-Jia], Li, J.Y.[Jin-Yu], Liu, H.Y.[Hai-Ying], Zhu, H.C.[Hong-Chun],
Extracting Terrain Texture Features for Landform Classification Using Wavelet Decomposition,
IJGI(10), No. 10, 2021, pp. xx-yy.
DOI Link 2110
BibRef

Ceccarelli, M., Petrosino, A.,
A parallel fuzzy scale-space approach to the unsupervised texture separation,
PRL(23), No. 5, March 2002, pp. 557-567.
Elsevier DOI 0202
BibRef
Earlier: A2, A2:
A scale-space approach to preattentive texture discrimination,
CIAP99(162-167).
IEEE DOI 9909
BibRef

Li, S.T.[Shu-Tao], Shawe-Taylor, J.[John],
Comparison and fusion of multiresolution features for texture classification,
PRL(26), No. 5, April 2005, pp. 633-638.
Elsevier DOI 0501
BibRef

Lepistö, L.[Leena], Kunttu, I.[Iivari], Visa, A.[Ari],
Rock image classification based on k-nearest neighbour voting,
VISP(153), No. 4, August 2006, pp. 475-482.
DOI Link 0705
BibRef

Lepistö, L.[Leena], Kunttu, I.[Iivari], Autio, J.[Jorma], Rauhamaa, J., Visa, A.[Ari],
Classification of Non-Homogenous Images Using Classification Probability Vector,
ICIP05(I: 1173-1176).
IEEE DOI 0512
BibRef

Lepistö, L.[Leena], Kunttu, I.[Iivari], Autio, J.[Jorma], Visa, A.[Ari],
Multiresolution Texture Analysis of Surface Reflection Images,
SCIA03(4-10).
Springer DOI 0310
BibRef
And:
Classification of non-homogenous texture images by combining classifiers,
ICIP03(I: 981-984).
IEEE DOI 0312
BibRef
And:
Classification method for colored natural textures using gabor filtering,
CIAP03(397-401).
IEEE DOI 0310
BibRef

Mancas, M.[Matei], Gosselin, B.[Bernard], Macq, B.[Benoît],
Perceptual Image Representation,
JIVP(2007), 2007, pp. xx-yy.
DOI Link 0804
BibRef

Mancas, M., Mancas-Thillou, C., Gosselin, B., Macq, B.,
A Rarity-Based Visual Attention Map: Application to Texture Description,
ICIP06(445-448).
IEEE DOI 0610
BibRef

Blanc, R., da Costa, J.P.[Jean Pierre], Stitou, Y., Baylou, P.[Pierre], Germain, C.[Christian],
Assessment of Texture Stationarity Using the Asymptotic Behavior of the Empirical Mean and Variance,
IP(17), No. 9, September 2008, pp. 1481-1490.
IEEE DOI 0810
BibRef

Germain, C.[Christian], da Costa, J.P.[Jean Pierre], Baylou, P.[Pierre],
Multiscale Estimation of Textural Features. Application to the Characterization of Texture Anisotropy,
ICPR00(Vol III: 923-926).
IEEE DOI
IEEE DOI 0009
BibRef

Germain, C.[Christian], Baylou, P.[Pierre],
Multiscale Characterization of Texture Anistropy,
ICIP97(III: 193-196).
IEEE DOI 9710
BibRef

Nam, W.H.[Woon-Hyun], Han, B.H.[Bo-Hyung], Han, J.H.[Joon Hee],
Macrofeature layout selection for pedestrian localization and its acceleration using GPU,
CVIU(120), No. 1, 2014, pp. 46-58.
Elsevier DOI 1403
BibRef
Earlier:
Improving object localization using macrofeature layout selection,
VS11(1801-1808).
IEEE DOI 1201
macrofeature: mid-level feature encodes a set of low level features. Macrofeature selection. BibRef

Florindo, J.B.[Joao B.], Landini, G.[Gabriel], Bruno, O.M.[Odemir M.],
Three-dimensional connectivity index for texture recognition,
PRL(84), No. 1, 2016, pp. 239-244.
Elsevier DOI 1612
Local connectivity BibRef

Dong, Y.S.[Yong-Sheng], Feng, J.W.[Jin-Wang], Liang, L., Zheng, L.T.[Lin-Tao], Wu, Q.,
Multiscale Sampling Based Texture Image Classification,
SPLetters(24), No. 5, May 2017, pp. 614-618.
IEEE DOI 1704
image classification BibRef

Dong, Y.S.[Yong-Sheng], Feng, J.W.[Jin-Wang], Yang, C.L.[Chun-Lei], Wang, X.H.[Xiao-Hong], Zheng, L.T.[Lin-Tao], Pu, J.X.[Jie-Xin],
Multi-scale counting and difference representation for texture classification,
VC(34), No. 10, October 2018, pp. 1315-1324.
WWW Link. 1809
BibRef

Liu, C.X.[Chun-Xiao], Shao, H.[Huan], Wu, M.[Min], Zhou, Y.G.[Yang-Gang], Shao, Y.Q.[Ya-Qi], Wang, X.[Xun],
Multi-scale inherent variation features-based texture filtering,
VC(33), No. 6-8, June 2017, pp. 769-778.
Springer DOI 1706
BibRef

Silva, P.M.[Pedro M.], Florindo, J.B.[Joao B.],
Using down-sampling for multiscale analysis of texture images,
PRL(125), 2019, pp. 411-417.
Elsevier DOI 1909
Multiscale, Down-sampling, Texture image classification BibRef


Cui, J.L.[Jia-Li], Wu, Y.N.[Ying Nian], Han, T.[Tian],
Learning Hierarchical Features with Joint Latent Space Energy-Based Prior,
ICCV23(2218-2227)
IEEE DOI 2401
BibRef

Hu, Y.T.[Yu-Ting], Long, Z.L.[Zhi-Ling], Al Regib, G.[Ghassan],
Multi-Level Texture Encoding and Representation (Multer) Based on Deep Neural Networks,
ICIP19(4410-4414)
IEEE DOI 1910
Texture encoding and representation, multi-level, convolutional neural network (CNN), texture pooling, feature fusion BibRef

Haindl, M.[Michal], Vácha, P.[Pavel],
Scale Sensitivity of Textural Features,
CIARP16(84-92).
Springer DOI 1703
BibRef

Oxholm, G.[Geoffrey], Bariya, P.[Prabin], Nishino, K.[Ko],
The Scale of Geometric Texture,
ECCV12(I: 58-71).
Springer DOI 1210
BibRef

Lasmar, N.E.[Nour-Eddine], Stitou, Y.[Youssef], Berthoumieu, Y.[Yannick],
Multiscale skewed heavy tailed model for texture analysis,
ICIP09(2281-2284).
IEEE DOI 0911
BibRef

Wildenauer, H.[Horst], Micušík, B.[Branislav], Vincze, M.[Markus],
Efficient Texture Representation Using Multi-scale Regions,
ACCV07(I: 65-74).
Springer DOI 0711
BibRef

Gangeh, M.J.[Mehrdad J.], Ghodsi, A.[Ali], Kamel, M.S.[Mohamed S.],
Supervised Texture Classification Using a Novel Compression-Based Similarity Measure,
ICCVG12(379-386).
Springer DOI 1210
BibRef
Earlier:
Dictionary Learning in Texture Classification,
ICIAR11(I: 335-343).
Springer DOI 1106
BibRef

Gangeh, M.J.[Mehrdad J.], Shabani, A.H.[Amir H.], Kamel, M.S.[Mohamed S.],
Nonlinear Scale Space Theory in Texture Classification Using Multiple Classifier Systems,
ICIAR10(I: 147-156).
Springer DOI 1006
BibRef

Gangeh, M.J.[Mehrdad J.], ter Haar Romeny, B.M.[Bart M.], Eswaran, C.,
Scale-Space Texture Classification Using Combined Classifiers,
SCIA07(324-333).
Springer DOI 0706
BibRef

Raja, Y., Gong, S.,
Sparse Multiscale Local Binary Patterns,
BMVC06(II:799).
PDF File. 0609
BibRef

Lieng, E.[Erik],
Quadtree Decomposition Texture Analysis in Paper Formation Determination,
SCIA03(51-59).
Springer DOI 0310
BibRef

Galun, M.[Meirav], Sharon, E., Basri, R., Brandt, A.[Achi],
Texture segmentation by multiscale aggregation of filter responses and shape elements,
ICCV03(716-723).
IEEE DOI 0311
BibRef

Rikert, T.D.[Thomas D.], Jones, M.J.[Michael J.], Viola, P.A.[Paul A.],
A Cluster-based Statistical Model for Object Detection,
ICCV99(1046-1053).
IEEE DOI Joint occurence of local features at multiple scales. BibRef 9900

Viola, P.A.[Paul A.], Jones, M.J.,
Robust Real Time Object Detection,
SCTV01(xx-yy). 0106
BibRef

Li, J.[Jia], Gray, R.M.[Robert M.],
Image Classification Based on a Multiresolution Two Dimensional Hidden Markov Model,
ICIP99(I:348-352).
IEEE DOI BibRef 9900

de Bonet, J.S.[Jeremy S.], Viola, P.A.[Paul A.],
Texture Recognition Using a Non-parametric Multi-scale Statistical Model,
CVPR98(641-647).
IEEE DOI
PDF File. BibRef 9800

Teuner, A., Pichler, O., Conde, J., and Hofsticka, B.,
Orientation- and Scale- Invariant Recognition of Textures in Multi-Object Scenes,
ICIP97(III: 174-177).
IEEE DOI BibRef 9700

Matalas, I.,
A New Set of Multiscale Texture Features Based on B-Spline Image Approximation,
ICPR96(II: 810-814).
IEEE DOI 9608
(Imperial College of Science, UK) BibRef

Samarabandu, J., Acharya, R.,
Multi-resolution texture analysis of self-similar textures using hierarchical Gaussian Markov random field models,
ICIP94(III: 417-420).
IEEE DOI 9411
BibRef

Greenspan, H., Belongie, S., Goodman, R., Perona, P.,
Rotation invariant texture recognition using a steerable pyramid,
ICPR94(B:162-167).
IEEE DOI 9410
BibRef

Basu, M., Lin, Z.,
Multi-scale modeling of textures,
ICPR92(III:421-424).
IEEE DOI 9208
BibRef

Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Texture Synthesis .


Last update:Nov 26, 2024 at 16:40:19