2.14.4 F.4. Skeletons and distance

Chapter Contents (Back)

Eiter, T., Mannila, H.,
Distance Measures For Point Sets And Their Computation,
Acta Informatica(34), 1997, pp. 109-133. BibRef

Glassner, A.,
Going The Distance,
CG&A(171), 1997, pp. 78-84. BibRef

Tari, Z.S.G., Shah, J., Pien, H.,
Extraction Of Shape Skeletons From Grayscale Images,
CVIU(66), 1997, pp. 133-146. BibRef

Attali, D., Montanvert, A.,
Computing And Simplifying 2d And 3d Continuous Skeletons,
CVIU(67), 1997, pp. 261-273. BibRef

Lee, Y.H., Horng, S.J., Kau, T.W., Chen, Y.J.,
Parallel Computation Of The Euclidean Distance Transform On The Mesh Of Trees And The Hypercube Computer,
CVIU(68), 1997, pp. 109-119. BibRef

Eppstein, D., Paterson, M.S., Yao, F.F.,
On Nearest-Neighbor Graphs,
DCG(17), 1997, pp. 263-282. BibRef

Choi, H.I., Choi, S.W., Moon, H.P., Wee, N.S.,
New Algorithm For Medial Axis Transform Of Plane Domain,
GMIP(59), 1997, pp. 463-483. BibRef

Ablameyko, S.V., Arcelli, C., Sanniti di Baja, G.,
Hierarchical Decomposition Of Distance Labeled Skeletons,
IJPRAI(10), 1996, pp. 957-970. BibRef

Bhattacharya, P., Lu, X.,
A Width-Independent Sequential Thinning Algorithm,
IJPRAI(11), 1997, pp. 393-403. BibRef

Belogay, E., Cabrelli, C., Molter, U., Shonkwiler, R.,
Calculating The Hausdorff Distance Between Curves,
IPL(64), 1997, pp. 17-22. BibRef

Thompson, S.F., Rosenfeld, A.,
Growth Processes Based On 8-Neighbor Time Delays,
PR(30), 1997, pp. 321-337. BibRef

Zhang, Y.Y.,
Redundancy Of Parallel Thinning,
PRL(18), 1997, pp. 27-35. BibRef

Boxer, L.,
On Hausdorff-Like Metrics For Fuzzy Sets,
PRL(18), 1997, pp. 115-118. BibRef

Datta, A., Parui, S.K.,
Skeletons From Dot Patterns: A Neural Network Approach,
PRL(18), 1997, pp. 335-342. 54. BibRef

Cardoner, R., Thomas, F.,
Residuals + Directional Gaps = Skeletons, Prl 18,
1997 97(343-353). BibRef

Ong, C.J., Gilbert, E.C.,
Growth Distances: New Measures For Object Separation And Penetration,
T-RA(12), 1996, pp. 888-903. BibRef

Chen, D.Z., Szczerba, R.J., Uhran Jr., J.J.,
A Framed-Quadtree Approach For Determining Euclidean Shortest Paths In A 2-D Environment,
T-RA(13), 1997, pp. 668-681. BibRef

Cameron, S.,
A Comparison Of Two Fast Algorithms For Computing The Distance Between Convex Polyhedra,
T-RA(13), 1997, pp. 915-920. BibRef

Kapralski, A.,
Fast Massively Parallel Algorithms For Shortest Path Within Planar Figures,
VC(12), 1996, pp. 484-502. BibRef

Bzostek, A., Wolff, L.B.,
Medialness And Skeletonization For Object Registration And Shape Similarity,
IUW 97(1219-1222). BibRef

Cuisenaire, O., Macq, B.,
Applications Of The Region Growing Euclidean Distance Transform: Anisotropy And Skeletons,
ICIP(A), pp. 200-203. BibRef

Chapter on Rosenfeld Bibliography for 1997 continues in
F.5. Pattern .

Last update:Jun 7, 2018 at 10:14:50