15.8.5 H.5. Distance, skeletons, paths, etc.

Chapter Contents (Back)

Toussaint, G.T., Bhattacharya, B.K.,
Optimal Algorithms For Computing The Minimum Distance Between Two Finite Planar Sets,
PRL(2), 1983, pp. 79-82. BibRef

Pasian, F., Santin, P.,
Shape Information Extraction In Noisy Environments,
PRL(2), 1983, pp. 109-116. BibRef

Sternberg, S.R.,
Esoteric Iterative Algorithms,
DIA(84), pp. 60-68. BibRef

Lantuejoul, C., Maisonneuve, F.,
Geodesic Methods In Quantitative Image Analysis,
PR(17), 1984, pp. 177-187. BibRef

Aurenhammer, F., Edelsbrunner, H.,
An Optimal Algorithm For Constructing The Weighted Voronoi Diagram In The Plane,
PR(17), 1984, pp. 251-257. BibRef

Naccache, N.J., Shinghal, R.,
An Investigation Into The Skeletonization Approach Of Hilditch,
PR(17), 1984, pp. 279-284. BibRef

Yamashita, M., Honda, N.,
Distance Functions Defined By Variable Neighborhood Sequences,
PR(17), 1984, pp. 509-513. BibRef

Allison, D.C.S., Noga, M.T.,
The L(1) Traveling Salesman Problem,
IPL(18), 1984, pp. 195-199. BibRef

Ohya, T., Iri, M., Murota, K.,
A Fast Voronoi-Diagram Algorithm With Quaternary Tree Bucketing,
IPL(18), 1984, pp. 227-231. BibRef

Lipski, Jr., W.,
An O(N Log N) Manhattan Path Algorithm,
IPL(19), 1984, pp. 99-102. BibRef

Papadimitriou, C.H., Vazirani, U.V.,
On Two Geometric Problems Related To The Travelling Salesman Problem,
J ALGORITHMS(5), 1984, pp. 231-246. BibRef

Toussaint, G.T.,
An Optimal Algorithm For Computing The Minimum Vertex Distance Between Two Crossing Convex Polygons,
COMPUTING(32), 1984, pp. 357-364. BibRef

Chin, F., Wang, C.A.,
Minimum Vertex Distance Between Separable Convex Polygons,
IPL(18), 1984, pp. 41-45. BibRef

Melter, R.A., Tomescu, I.,
Metric Bases In Digital Geometry,
CVGIP(25), 1984, pp. 113-121. BibRef

Bentley, J.L.,
A Case Study In Applied Algorithm Design,
COMPUTER(17), No. 2, 1984, pp. 75-88. BibRef

Megiddo, N., Supowit, K.J.,
On The Complexity Of Some Common Geometric Location Problems,
SIAM J. COMPUTING(13), 1984, pp. 182-196. BibRef

McDermott, D., Davis, E.,
Planning Routes Through Uncertain Territory,
AI(22), 1984, pp. 107-156. BibRef

Harary, F., Melter, R.A., Tomescu, I.,
Digital Metrics: A Graph-Theoretical Approach,
PRL(2), 1984, pp. 159-163. BibRef

Zhang, T.Y., Suen, C.Y.,
A Fast Parallel Algorithm For Thinning Digital Patterns,
CACM(27), 1984, pp. 236-239. BibRef

Kaleva, O., Seikkala, S.,
On Fuzzy Metric Spaces,
FUZZY SETS SYSTEMS(12), 1984, pp. 215-229. BibRef

Watson, D.F., Philip, G.M.,
Systematic Triangulations,
CVGIP(26), 1984, pp. 217-223. BibRef

Clarkson, K.L.,
Fast Expected-Time And Approximation Algorithms For Geometric Minimum Spanning Trees,
STOC(84), pp. 342-348. BibRef

Naccache, N.J., Shinghal, R.,
Spta: A Proposed Algorithm For Thinning Binary Patterns,
T-SMC(14), 1984, pp. 409-418. BibRef

Salari, E., Siy, P.,
The Ridge-Seeking Method For Obtaining The Skeleton Of Digital Images,
T-SMC(14), 1984, pp. 524-528. BibRef

Yamada, H.,
Complete Euclidean Distance Transformation By Parallel Operation,
7ICPR(84), pp. 69-71. BibRef

Bertrand, G.,
Skeletons In Derived Grids,
7ICPR(84), pp. 326-329. BibRef

Toussaint, G.T.,
An Optimal Algorithm For Computing The Minimum Vertex Distance Between Two Crossing Convex Polygons,
7ICPR(84), pp. 465-467. BibRef

Matsuyama, T., Phillips, T.Y.,
Digital Realization Of The Labeled Voronoi Diagram And Its Application To Closed Boundary Dtection,
7ICPR(84), pp. 478-480. BibRef

Pavlidis, T.,
A Hybrid Vectorization Algorithm,
7ICPR(84), pp. 490-492. BibRef

Boissonat, J.D.,
Representing 2d And 3d Shapes With The Delaunay Triangulation,
7ICPR(84), pp. 745-748. BibRef

Gilmore, J.F.,
Automatic Route Planning In Autonomous Vehicles,
7ICPR(84), pp. 880-882. BibRef

Melter, R.A.,
The Unfamiliar World Of Gray Geometry,
7ICPR(84), pp. 951-953. BibRef

Nakayama, A., Kimura, F., Yoshida, Y., Fukumura, T.,
An Efficient Thinning Algorithm For Large Scale Images Based Upon Pipeline Structure,
7ICPR(84), pp. 1184-1187. BibRef

Thorpe, C.E.,
Path Relaxation: Path Planning For A Mobile Robot,
AAAI(84), pp. 318-321. BibRef

Wallace, R.S.,
Three Findpath Problems,
AAAI(84), pp. 326-329. BibRef

Avis, D.,
The Number Of Furthest Neighbor Pairs Of A Finite Planar Set,
AMERICAN MATHEMATICAL MONTHLY(91), 1984, pp. 417-420. BibRef

Schattenschneider, D.J.,
The Taxicab Group,
AMERICAN MATHEMATICAL MONTHLY(91), 1984, pp. 423-428. BibRef

Borgefors, G.,
Distance Transformations In Arbitrary Dimensions,
CVGIP(27), 1984, pp. 321-345. BibRef

Golomb, S.W.,
Construction And Properties Of Costas Arrays,
P-IEEE(72), 1984, pp. 1143-1163. BibRef

Vaidya, P.M.,
A Fast Approximation Algorithm For Minimum Spanning Trees In K-Dimensional Space,
SFCS(84), pp. 403-407. BibRef

Sedgwick, R., Vitter, J.S.,
Shortest Paths In Euclidean Graphs,
SFCS(84), pp. 417-424. BibRef

Parodi, A.M.,
A Route Planning System For An Autonomous Vehicle,
CAIA(84), pp. 51-56. BibRef

Isik, C., Meystel, A.,
Knowledge-Based Pilot For An Intelligent Mobile Autonomous System,
CAIA(84), pp. 57-63. BibRef

Kuan, D.T., Brooks, R.A., Zamisko, J.C., Das, M.,
Automatic Path Planning For A Mobile Robot Using A Mixed Representation Of Free Space,
CAIA(84), pp. 70-74. BibRef

Crowley, J.L.,
Navigation For An Intelligent Mobile Robot,
CAIA(84), pp. 74-84. BibRef

Kuan, D.T.,
Terrain Map Knowledge Representation For Spatial Planning,
CAIA(84), pp. 578-584. BibRef

Litke, J.D.,
An Improved Solution To The Traveling Salesman Problem With Thousands Of Nodes,
CACM(27), 1984, pp. 1227-1236. BibRef

Chapter on Rosenfeld Bibliography for 1984 continues in
H.6. Convexity, straightness, visibility, hulls, .

Last update:Jun 7, 2018 at 10:14:50