Feulner, J.,
Zhou, S.K.,
Hammon, M.,
Seifert, S.,
Huber, M.,
Comaniciu, D.,
Hornegger, J.,
Cavallaro, A.,
A Probabilistic Model for Automatic Segmentation of the Esophagus in
3-D CT Scans,
MedImg(30), No. 6, June 2011, pp. 1252-1264.
IEEE DOI
1101
BibRef
He, H.,
Buehler, A.,
Bozhko, D.,
Jian, X.,
Cui, Y.,
Ntziachristos, V.,
Importance of Ultrawide Bandwidth for Optoacoustic Esophagus Imaging,
MedImg(37), No. 5, May 2018, pp. 1162-1167.
IEEE DOI
1805
Bandwidth, Biomedical imaging, Detectors, Endoscopes, Esophagus,
Transducers, Photoacoustic imaging, esophagus imaging,
ultrawide bandwidth
BibRef
Sejdic, E.,
Malandraki, G.A.,
Coyle, J.L.,
Computational Deglutition: Using Signal- and Image-Processing Methods
to Understand Swallowing and Associated Disorders,
SPMag(36), No. 1, January 2019, pp. 138-146.
IEEE DOI
1901
[Life Sciences]
Esophagus, Muscles, Pharynx, Liquids, Testing, Instruments, Medical services
BibRef
Passos, L.A.[Leandro A.],
de Souza, Jr., L.A.[Luis A.],
Mendel, R.[Robert],
Ebigbo, A.[Alanna],
Probst, A.[Andreas],
Messmann, H.[Helmut],
Palm, C.[Christoph],
Papa, J.P.[Joćo Paulo],
Barrett's esophagus analysis using infinity Restricted Boltzmann
Machines,
JVCIR(59), 2019, pp. 475-485.
Elsevier DOI
1903
Pre-cancer diagnosis.
Barrett's esophagus, Infinity Restricted Boltzmann Machines,
Meta-heuristics, Deep learning
BibRef
Aghanouri, M.[Mehrnaz],
Serej, N.D.[Nasim Dadashi],
Rabbani, H.[Hossein],
Adibi, P.[Peyman],
Automatic esophagus Z-line delineation in endoscopic images using a
new boundary linking method,
IET-IPR(16), No. 14, 2022, pp. 3842-3853.
DOI Link
2212
BibRef
Wang, C.[Cong],
Gan, M.[Meng],
Few-shot segmentation for esophageal OCT images based on
self-supervised vision transformer,
IJIST(34), No. 2, 2024, pp. e23006.
DOI Link
2402
esophagus, image segmentation, optical coherence tomography,
self-supervised learning, vision transformer
BibRef
Tang, Z.Q.[Zi-Qi],
Niu, X.T.[Xiao-Tong],
Rong, L.[Long],
Zhang, Y.Z.[Yi-Zhe],
Bi, Y.[Yawei],
Ru, N.[Nan],
Li, L.S.[Long-Song],
Chai, N.L.[Ning-Li],
Zhou, T.[Tao],
Frequency-enhanced contextual conversion network for esophageal
lesion segmentation,
PR(171), 2026, pp. 112235.
Elsevier DOI Code:
WWW Link.
2511
Esophageal cancer, EC lesion segmentation,
Frequency-enhanced context module, Contextual conversion module
BibRef
Cornelissen, S.,
van der Putten, J.A.,
Boers, T.G.W.,
Jukema, J.B.,
Fockens, K.N.,
Bergman, J.J.G.H.M.,
van der Sommen, F.,
de With, P.H.N.,
Evaluating Self-Supervised Learning Methods for Downstream
Classification of Neoplasia in Barrett's Esophagus,
ICIP21(66-70)
IEEE DOI
2201
Learning systems, Training, Hospitals, Shape, Superresolution,
Machine learning, Data models, representation learning, endoscopy
BibRef
van Riel, S.,
van der Sommen, F.,
Zinger, S.,
Schoon, E.J.,
de With, P.H.N.,
Automatic Detection of Early Esophageal Cancer with CNNS Using
Transfer Learning,
ICIP18(1383-1387)
IEEE DOI
1809
Cancer, Real-time systems,
Support vector machines, Esophagus, Lesions, Training, transfer learning
BibRef
Wang, S.Y.[Shuang-Yi],
Singh, D.[Davinder],
Lau, D.[David],
Reddy, K.[Kiran],
Althoefer, K.[Kaspar],
Rhode, K.[Kawal],
Housden, R.J.[Richard J.],
Probe Tracking and Its Application in Automatic Acquisition Using a
Trans-Esophageal Ultrasound Robot,
CARE16(14-23).
Springer DOI
1703
BibRef
Kurugol, S.[Sila],
Ozay, N.[Necmiye],
Dy, J.G.[Jennifer G.],
Sharp, G.C.[Gregory C.],
Brooks, D.H.[Dana H.],
Locally Deformable Shape Model to Improve 3D Level Set Based Esophagus
Segmentation,
ICPR10(3955-3958).
IEEE DOI
1008
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Medical Applications -- Colonoscopy, Colon Cancer .