21.14.2.1 Medical Applications -- Esophagus, Esophageal Images

Chapter Contents (Back)
Gastrointestinal. Esophagus Imaging. Esophageal Imaging.

Feulner, J., Zhou, S.K., Hammon, M., Seifert, S., Huber, M., Comaniciu, D., Hornegger, J., Cavallaro, A.,
A Probabilistic Model for Automatic Segmentation of the Esophagus in 3-D CT Scans,
MedImg(30), No. 6, June 2011, pp. 1252-1264.
IEEE DOI 1101
BibRef

He, H., Buehler, A., Bozhko, D., Jian, X., Cui, Y., Ntziachristos, V.,
Importance of Ultrawide Bandwidth for Optoacoustic Esophagus Imaging,
MedImg(37), No. 5, May 2018, pp. 1162-1167.
IEEE DOI 1805
Bandwidth, Biomedical imaging, Detectors, Endoscopes, Esophagus, Transducers, Photoacoustic imaging, esophagus imaging, ultrawide bandwidth BibRef

Sejdic, E., Malandraki, G.A., Coyle, J.L.,
Computational Deglutition: Using Signal- and Image-Processing Methods to Understand Swallowing and Associated Disorders,
SPMag(36), No. 1, January 2019, pp. 138-146.
IEEE DOI 1901
[Life Sciences] Esophagus, Muscles, Pharynx, Liquids, Testing, Instruments, Medical services BibRef

Passos, L.A.[Leandro A.], de Souza, Jr., L.A.[Luis A.], Mendel, R.[Robert], Ebigbo, A.[Alanna], Probst, A.[Andreas], Messmann, H.[Helmut], Palm, C.[Christoph], Papa, J.P.[Joćo Paulo],
Barrett's esophagus analysis using infinity Restricted Boltzmann Machines,
JVCIR(59), 2019, pp. 475-485.
Elsevier DOI 1903
Pre-cancer diagnosis. Barrett's esophagus, Infinity Restricted Boltzmann Machines, Meta-heuristics, Deep learning BibRef

Aghanouri, M.[Mehrnaz], Serej, N.D.[Nasim Dadashi], Rabbani, H.[Hossein], Adibi, P.[Peyman],
Automatic esophagus Z-line delineation in endoscopic images using a new boundary linking method,
IET-IPR(16), No. 14, 2022, pp. 3842-3853.
DOI Link 2212
BibRef

Wang, C.[Cong], Gan, M.[Meng],
Few-shot segmentation for esophageal OCT images based on self-supervised vision transformer,
IJIST(34), No. 2, 2024, pp. e23006.
DOI Link 2402
esophagus, image segmentation, optical coherence tomography, self-supervised learning, vision transformer BibRef

Tang, Z.Q.[Zi-Qi], Niu, X.T.[Xiao-Tong], Rong, L.[Long], Zhang, Y.Z.[Yi-Zhe], Bi, Y.[Yawei], Ru, N.[Nan], Li, L.S.[Long-Song], Chai, N.L.[Ning-Li], Zhou, T.[Tao],
Frequency-enhanced contextual conversion network for esophageal lesion segmentation,
PR(171), 2026, pp. 112235.
Elsevier DOI Code:
WWW Link. 2511
Esophageal cancer, EC lesion segmentation, Frequency-enhanced context module, Contextual conversion module BibRef


Liu, T.Y.[Tian-Yi], Zhuang, S.S.[Shuai-Shuai], Nie, J.C.[Jia-Cheng], Chen, G.[Geng], Guo, Y.S.[Yu-Sheng], Zhou, G.Q.[Guang-Quan], Coatrieux, J.L.[Jean-Louis], Chen, Y.[Yang],
A Rotation-invariant Texture Vit for Fine-grained Recognition of Esophageal Cancer Endoscopic Ultrasound Images,
ECCV24(XXXI: 360-377).
Springer DOI 2412
BibRef

Cornelissen, S., van der Putten, J.A., Boers, T.G.W., Jukema, J.B., Fockens, K.N., Bergman, J.J.G.H.M., van der Sommen, F., de With, P.H.N.,
Evaluating Self-Supervised Learning Methods for Downstream Classification of Neoplasia in Barrett's Esophagus,
ICIP21(66-70)
IEEE DOI 2201
Learning systems, Training, Hospitals, Shape, Superresolution, Machine learning, Data models, representation learning, endoscopy BibRef

van Riel, S., van der Sommen, F., Zinger, S., Schoon, E.J., de With, P.H.N.,
Automatic Detection of Early Esophageal Cancer with CNNS Using Transfer Learning,
ICIP18(1383-1387)
IEEE DOI 1809
Cancer, Real-time systems, Support vector machines, Esophagus, Lesions, Training, transfer learning BibRef

Wang, S.Y.[Shuang-Yi], Singh, D.[Davinder], Lau, D.[David], Reddy, K.[Kiran], Althoefer, K.[Kaspar], Rhode, K.[Kawal], Housden, R.J.[Richard J.],
Probe Tracking and Its Application in Automatic Acquisition Using a Trans-Esophageal Ultrasound Robot,
CARE16(14-23).
Springer DOI 1703
BibRef

Kurugol, S.[Sila], Ozay, N.[Necmiye], Dy, J.G.[Jennifer G.], Sharp, G.C.[Gregory C.], Brooks, D.H.[Dana H.],
Locally Deformable Shape Model to Improve 3D Level Set Based Esophagus Segmentation,
ICPR10(3955-3958).
IEEE DOI 1008
BibRef

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Medical Applications -- Colonoscopy, Colon Cancer .


Last update:Nov 10, 2025 at 14:27:42