6.1.7.1 Gaussian Filters, General

Chapter Contents (Back)
Gaussian Filters.

Wells, III, W.M.,
Efficient Synthesis of Gaussian Filters by Cascaded Uniform Filters,
PAMI(8), No. 2, March 1986, pp. 234-239. BibRef 8603

Meer, P.,
Efficient Computation of Two-Dimensional Gaussian Windows,
PRL(7), 1988, pp. 227-229. BibRef 8800

Meer, P., Connelly, S.,
A Fast Parallel Method for Synthesis of Random Patterns,
PR(22), No. 2, 1989, pp. 189-204.
WWW Link. BibRef 8900

Spann, M., Nieminen, A.,
Adaptive Gaussian Weighted Filtering for Image Segmentation,
PRL(8), 1988, pp. 251-255. BibRef 8800

Levitan, R., Buchsbaum, G.,
Conversion and Trade-offs Between Scaled Gaussian Parallel and Hierarchical Analysis Multirate Filter Banks,
JVCIR(4), 1993, pp. 187-195. BibRef 9300

Bloom, J.A., Reed, T.R.,
A Gaussian derivative-based transform,
IP(5), No. 3, March 1996, pp. 551-553.
IEEE DOI 0402
Decompose image with Gaussian filters. BibRef

Bloom, J.A., and Reed, T.R.,
An Uncertainty Analysis of Some Real Functions for Image Processing Applications,
ICIP97(III: 670-673).
IEEE DOI BibRef 9700

Bijaoui, A.[Albert],
Wavelets, Gaussian mixtures and Wiener filtering,
SP(82), No. 4, April 2002, pp. 709-712.
HTML Version. 0206
BibRef

Elgammal, A.M., Duraiswami, R., Davis, L.S.,
Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking,
PAMI(25), No. 11, November 2003, pp. 1499-1504.
IEEE Abstract. 0311
BibRef
Earlier:
Efficient Computation of Kernel Density Estimation using Fast Gauss Transform with Applications for segmentation and tracking,
SCTV01(xx-yy). 0106
BibRef
And:
Efficient Non-parametric Adaptive Color Modeling Using Fast Gauss Transform,
CVPR01(II:563-570).
IEEE DOI 0110
Estimation of PDF from observations. The fast GAuss transform allose the summation of M Gaussians at N points in M+N time. BibRef

Elgammal, A.M., Duraiswami, R., Davis, L.S.,
Probabilistic tracking in joint feature-spatial spaces,
CVPR03(I: 781-788).
IEEE DOI 0307
BibRef

Yang, C.J.[Chang-Jiang], Duraiswami, R., Gumerov, N.A., Davis, L.S.,
Improved fast gauss transform and efficient kernel density estimation,
ICCV03(464-471).
IEEE DOI 0311
BibRef

Scotney, B.W., Coleman, S.A., Herron, M.G.,
Improving angular error by near-circular operator design,
PR(37), No. 1, January 2004, pp. 169-172.
WWW Link. 0311
BibRef
Earlier:
A Systematic Design Procedure for Scalable Near-circular Gaussian Operators,
ICIP01(III: 844-847).
IEEE DOI 0108
See also Integrated Edge and Corner Detection. See also Content-adaptive feature extraction using image variance. BibRef

Coleman, S.A.[Sonya A.], Scotney, B.W.[Bryan W.], Herron, M.G.[Madonna G.],
A validated edge model technique for the empirical performance evaluation of discrete zero-crossing methods,
IVC(25), No. 8, 1 August 2007, pp. 1315-1328.
WWW Link. 0706
BibRef
Earlier:
A systematic design procedure for scalable near-circular laplacian of gaussian operators,
ICPR04(I: 700-703).
IEEE DOI 0409
BibRef
Earlier:
An empirical performance evaluation technique for discrete second derivative edge detectors,
CIAP03(594-599).
IEEE DOI 0310
Performance evaluation; Edge sensitivity analysis; Zero-crossings BibRef

Scotney, B.W.[Bryan W.], Coleman, S.A.[Sonya A.],
Improving angular error via systematically designed near-circular Gaussian-based feature extraction operators,
PR(40), No. 5, May 2007, pp. 1451-1465.
WWW Link. 0702
Keywords: Circularity; Angular error; Feature extraction BibRef

Tan, S.[Sovira], Dale, J.L.[Jason L.], Johnston, A.[Alan],
Performance of three recursive algorithms for fast space-variant Gaussian filtering,
RealTimeImg(9), No. 3, June 2003, pp. 215-228.
WWW Link. 0310
Apply Gaussian filtering to space variant images. BibRef


Gomez, G.,
Local Smoothness in terms of Variance: the Adaptive Gaussian Filter,
BMVC00(xx-yy).
PDF File. 0009
BibRef

Cai, L.D.,
A 'Small Leakage' Model for Diffusion Smoothing of Image Data,
IJCAI89(1585-1590). Gaussian smoothing technique. BibRef 8900

Chapter on Edge Detection and Analysis, Lines, Segments, Curves, Corners, Hough Transform continues in
Directional Masks, Gaussian Masks, Canny etc. .


Last update:Nov 18, 2017 at 20:56:18