6.4.2.3.2 General Triangulation Models, Delaunay

Chapter Contents (Back)
Triangulated Models.

Manacher, G.K., Zobrist, A.L.,
Neither the Greedy nor the Delaunay Triangulation of a Planar Point Set Approximates the Optimal Triangulation,
IPL(9), No. 1, 1979, pp. 31-34. BibRef 7900

Watson, D.F.,
Computing the N-Dimensional Delaunay Tessellation with Application to Voronoi Polytopes,
Computer Journal(24), 1981, pp. 167-172. BibRef 8100

Lee, D.T., Schachter, B.J.,
Two Algorithms for Constructing a Delaunay Triangulation,
CIS(9), No. 3, 1980, pp. 219-242. BibRef 8000

Shapiro, M.,
A Note on Lee and Schachter's Algorithms for Delaunay Triangulation,
CIS(10), 1981, pp. 413-426. BibRef 8100

Devijver, P.A., Dekesel, M.,
Insert and Delete Algorithms for Maintaining Dynamic Delaunay Triangulations,
PRL(1), 1982, pp. 73-77. BibRef 8200

Granapathy, S., Dennehy, T.G.,
A New General Triangulation Method for Planar Contours,
Computer Graphics(16), no. 1, 1982, pp. 69-75. BibRef 8200

Mirante, A., Weingarten, N.,
The Radial Sweep Algorithm for Constructing Triangulated Irregular Networks,
IEEE_CGA(2), No. 1, 1982, pp. 11-21. TIN. BibRef 8200

Watson, D.F., Philip, G.M.,
Systematic Triangulations,
CVGIP(26), No. 2, May 1984, pp. 217-223.
Elsevier DOI BibRef 8405

Hertel, S., Mehlhorn, K.,
Fast Triangulation of the Plane with Respect to Simple Polygons,
IC(64), 1985, pp. 52-76. BibRef 8500

Melter, R.A.,
Tessellation Graph Characterization Using Rosettas,
PRL(4), 1986, pp. 79-85. BibRef 8600

Toussaint, G.T.,
A New Linear Algorithm for Triangulating Monotone Polygons,
PRL(2), 1984, pp. 155-158.
See also Single Linear Algorithm for Intersecting Convex Polygons, A. BibRef 8400

Renka, R.J.,
Algorithm 751: Tripack: A Constrained 2-Dimensional Delaunay Triangulation Package,
TMS(22), No. 1, March 1996, pp. 1-8. BibRef 9603

Renka, R.J.,
Algorithm 752: SRFPACK - Software for Scattered Data Fitting with a Constrained Surface under Tension,
TMS(22), No. 1, March 1996, pp. 9-17. BibRef 9603

Fang, T.P., Piegl, L.A.,
Delaunay Triangulation in Three Dimensions,
IEEE_CGA(15), No. 5, 1995, pp. 62-69. BibRef 9500

Chang, L.H.T., Said, H.B.,
A C-2 Triangular Patch for the Interpolation of Functional Scattered Data,
CAD(29), No. 6, June 1997, pp. 407-412. 9705
BibRef

Nielson, G.M.[Gregory M.],
Tools for Triangulations and Tetrahedrizations and Constructing Functions defined over Them,
Scientific Visualization1997, BibRef 9700 CS-PressGood survey of techniques. Survey, Triangulation. BibRef

Nielson, G.M.[Gregory M.],
Dual Marching Tetrahedra: Contouring in the Tetrahedronal Environment,
ISVC08(I: 183-194).
Springer DOI 0812
BibRef

Lomenie, N.[Nicolas], Stamon, G.[Georges],
Morphological mesh filtering and alpha-objects,
PRL(29), No. 10, 15 July 2008, pp. 1571-1579.
Elsevier DOI 0711
Shape analysis; Mesh analysis; Unorganized point cloud; Surface-oriented representation; Simplicial representation; Morphological operator BibRef

Loménie, N.[Nicolas], Gallo, L.[Laurent], Cambou, N.[Nicole], Stamon, G.[Georges],
Morphological Operations on Delaunay Triangulations,
ICPR00(Vol III: 552-555).
IEEE DOI 0009
BibRef


Wu, C.K.[Cheng-Ke], Mohr, R.[Roger],
Image Representation by Integrating Curvatures and Delaunay Triangulations,
SPIE(1570), 1991, pp. 362-370. BibRef 9100

Chapter on Edge Detection and Analysis, Lines, Segments, Curves, Corners, Hough Transform continues in
Curve Partitions, Applied to Chain Codes .


Last update:Nov 26, 2024 at 16:40:19