7.2.2.2 Concavity Detection

Chapter Contents (Back)
Concavity.

Sklansky, J.,
Measuring Concavity on a Rectangular Mosaic,
TC(21), No. 12, December 1972, pp. 1355-1364. BibRef 7212

Arcelli, C., Cordella, L.P.,
Concavity Point Detection by Iterative Arrays,
CGIP(3), No. 1, March 1974, pp. 34-47.
WWW Link. Includes program. BibRef 7403

Sklansky, J., Cordella, L.P., and Levialdi, S.,
Parallel Detection of Concavities in Cellular Blobs,
TC(25), 1976, pp. 187-196. BibRef 7600
Earlier: ICPR74(143-147). See also Minimal Rectangular Partitions of Digitized Blobs. See also Recognition of Convex Blobs. BibRef

Sklansky, J.,
On Filling Cellular Concavities,
CGIP(4), No. 3, September 1975, pp. 236-247.
WWW Link. To generate a convex blob. BibRef 7509

Batchelor, B.G.,
Hierarchical Shape Description Based upon Convex Hulls of Concavities,
J. Cybernetics(10), 1980, pp. 205-210. BibRef 8000

Batchelor, B.G.,
Shape Descriptions for Labeling Concavity Trees,
J. Cybernetics(10), 1980, pp. 233-237. BibRef 8000

Rosenfeld, A.,
Measuring the Sizes of Concavities,
PRL(3), 1985, pp. 71-75. BibRef 8500

Borgefors, G.[Gunilla], Sanniti di Baja, G.[Gabriella],
Analyzing Nonconvex 2D and 3D Patterns,
CVIU(63), No. 1, January 1996, pp. 145-157.
DOI Link BibRef 9601
Earlier:
Methods for hierarchical analysis of concavities,
ICPR92(III:171-175).
IEEE DOI 9208
BibRef

Borgefors, G.[Gunilla], Sanniti di Baja, G.[Gabriella],
Filling and Analysing Concavities of Digital Patterns Parallelwise,
VF91(57-66). Fill the concavities to get the convex hull. BibRef 9100

Jiang, X.Y.[Xiao-Yi], Große, A.[Andree], Rothaus, K.[Kai],
Interactive segmentation of non-star-shaped contours by dynamic programming,
PR(44), No. 9, September 2011, pp. 2008-2016.
Elsevier DOI 1106
BibRef
Earlier: A2, A3, A1:
Detection of Non-convex Objects by Dynamic Programming,
CAIP09(285-292).
Springer DOI 0909
Contour detection; Non-convex; Non-star-shaped; Shortest path; Dynamic programming BibRef

Farhan, M.[Muhammad], Yli-Harja, O.[Olli], Niemistö, A.[Antti],
A novel method for splitting clumps of convex objects incorporating image intensity and using rectangular window-based concavity point-pair search,
PR(46), No. 3, March 2013, pp. 741-751.
Elsevier DOI 1212
Image segmentation; Clump splitting; Intensity-based splitting; Concavity point; Split line BibRef

Seref, O.[Onur], Zobel, C.W.[Christopher W.],
Recursive voids for identifying a nonconvex boundary of a set of points in the plane,
PR(46), No. 12, 2013, pp. 3288-3299.
Elsevier DOI 1308
Nonconvex boundary BibRef

Liu, Z.Y., Qiao, H.,
GNCCP: Graduated Non-Convexity and Concavity Procedure,
PAMI(36), No. 6, June 2014, pp. 1258-1267.
IEEE DOI 1406
Algorithm design and analysis BibRef


Gubareva, A.[Anna], Sulimova, V.[Valentina], Seredin, O.[Oleg], Larin, A.[Alexander], Mottl, V.[Vadim],
Finding the Largest Hypercavity in a Linear Data Space,
ICPR14(4406-4410)
IEEE DOI 1412
Cavity resonators. Data free feature space. BibRef

Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Inside/Outside Tests .


Last update:Nov 18, 2017 at 20:56:18