6.4.2.3.1 Polygonal Decomposition Techniques

Chapter Contents (Back)
Polygonal Decomposition.

Golomb, S.W.,
Tiling with polyominoes,
JCT-A(1), 1966, pp. 280-296. BibRef 6600

Golomb, S.W.,
Polyominoes which Tile Rectangles,
JCT-A(51), 1989, pp. 117-124. BibRef 8900

Feng, H.Y.F., and Pablidis, T.,
Decomposition of Polygons into Simpler Components,
TC(24), No. 6, June 1975, pp. 636-650. BibRef 7506

Schachter, B.,
Decomposition of Polygons into Convex Sets,
TC(27), No. 11, November 1978, pp. 1078-1082. BibRef 7811

Chow, W.W.,
Automatic Generation of Interlocking Shapes,
CGIP(9), No. 4, April 1979, pp. 333-353.
WWW Link. BibRef 7904

Shapiro, L.G.[Linda G.],
A Structural Model of Shape,
PAMI(2), No. 2, March 1980, pp. 111-126. BibRef 8003

Shapiro, L.G.[Linda G.], and Haralick, R.M.[Robert M.],
Decomposition of Two-Dimensional Shapes by Graph-Theoretic Clustering,
PAMI(1), No. 1, January 1979, pp. 10-20. BibRef 7901

Guerra, C., and Pieroni, G.G.,
A Graph-Theoretic Method for Decomposing Two-Dimensional Polygonal Shapes into Meaningful Parts,
PAMI(4), No. 4, July 1982, pp. 405-408. BibRef 8207

O'Rourke, J.,
Polygon Decomposition and Switching Function Minimization,
CGIP(18), No. 4, April 1982, pp. 382-391.
WWW Link. See also New Linear Algorithm for Intersecting Convex Polygons, A. BibRef 8204

O'Rourke, J., Supowit, K.J.,
Some NP-Hard Polygon Decomposition Problems,
IT(29), 1983, pp. 181-190. BibRef 8300

Nevins, A.J.,
Region Extraction from Complex Shapes,
PAMI(4), No. 5, September 1982, pp. 500-511. Decomposition into convex polygons. BibRef 8209

Ferrari, L.A., Sankar, P.V., and Sklansky, J.,
Minimal Rectangular Partitions of Digitized Blobs,
CVGIP(28), No. 1, October 1984, pp. 58-71.
WWW Link. BibRef 8410
Earlier: ICPR80(1040-1043). (UC Irvine) Partition into the minimum number of nonoverlapping rectangles. See also Recognition of Convex Blobs. See also Parallel Detection of Concavities in Cellular Blobs. BibRef

Cappellini, V., del Bimbo, A., Mecocci, A.,
Object Decomposition and Subpart Identification: Classification Algorithms,
IVC(2), No. 2, May 1984, pp. 109-113.
WWW Link. BibRef 8405

Franzblau, D.S., Kleitman, D.J.,
An Algorithm for Covering Polygons with Rectangles,
IC(63), 1984, pp. 164-184. BibRef 8400

Coffman, Jr., E.G., Gilbert, E.N.,
Dynamic, First-Fit Packings in Two or More Dimensions,
InfoControl(61), 1984, pp. 1-14. BibRef 8400

Ahuja, N.[Narendra],
On Approaches to Polygonal Decomposition for Hierarchical Image Representation,
CVGIP(24), No. 2, November 1983, pp. 200-214.
WWW Link. Doesn't seem to say anything shocking, just a summary. BibRef 8311

Avis, D., Toussaint, G.T.,
An Efficient Algorithm for Decomposing a Polygon into Star-Shaped Polygons,
PR(13), No. 6, 1981, pp. 395-398.
WWW Link. BibRef 8100

Asano, T.[Takao], Asano, T.[Tetsuo], and Imai, H.[Hiroshi],
Partitioning a Polygonal Region into Trapezoids,
JACM(33), No. 2, April 1986, pp. 290-312. BibRef 8604

Kundu, S.[Sukhamay], Sridhar, R.[Radhakrishnan],
An O(kN.log N) algorithm for decomposing a set of polygons into d-separable components,
PR(23), No. 7, 1990, pp. 735-743.
WWW Link. 0401
BibRef

Conway, J., Lagarias, J.C.,
Tiling with polyominoes and combinatorial group theory,
JCT-A(53), 1990, pp. 183-208. BibRef 9000

Wenqi, H., Wang, G.Q.,
A Quasi-Mechanical Method for Solving the Rectangle Covering Problem: An Approach to Tackling NP Hard Problems,
GMIP(56), No. 3, 1994, pp. 267-??. BibRef 9400

Held, A., Abe, K.,
On the Decomposition of Binary Shapes into Meaningful Parts,
PR(27), No. 5, May 1994, pp. 637-647.
WWW Link. BibRef 9405

Xu, J.N.,
Hierarchical Representation of 2-D Shapes Using Convex Polygons: A Morphological Approach,
PRL(18), No. 10, October 1997, pp. 1009-1017. 9802
See also Generalized Discrete Morphological Skeleton Transform with Multiple Structuring Elements for the Extraction of Structural Shape Components, A. BibRef

Xu, J.N.[Jian-Ning],
Morphological Decomposition of 2-D Binary Shapes into Simpler Shape Parts,
PRL(17), No. 7, June 10 1996, pp. 759-769. 9607
BibRef

Xu, J.N.[Jian-Ning],
Efficient morphological shape representation without searching,
ICIP98(II: 262-266).
IEEE DOI 9810
BibRef

Xu, J.N.,
Morphological Decomposition of 2-D Binary Shapes into Conditionally Maximal Convex Polygons,
PR(29), No. 7, July 1996, pp. 1075-1104.
WWW Link. 9607
BibRef
Earlier: ICIP94(II: 96-100).
IEEE DOI 9411
Convexity. See also Efficient morphological shape representation by varying overlapping levels among representative disks. See also Morphological Representation of 2-D Binary Shapes Using Rectangular Components. BibRef

Tuzikov, A.V., Heijmans, H.J.A.M.,
Minkowski Decomposition of Convex Polygons into Their Symmetrical and Asymmetric Parts,
PRL(19), No. 3-4, March 1998, pp. 247-254. 9807
BibRef

Miller, E.G.[Erik G.],
Alternative Tilings for Improved Surface Area Estimates by Local Counting Algorithms,
CVIU(74), No. 3, June 1999, pp. 193-211.
DOI Link BibRef 9906

Zhang, H.B.[Hong-Bin], Guo, J.J.[Jian-Jun],
Optimal polygonal approximation of digital planar curves using meta heuristics,
PR(34), No. 7, July 2001, pp. 1429-1436.
WWW Link. 0105
BibRef

Chung, K.L.[Kuo-Liang], Yan, W.M.[Wen-Ming], Chen, W.Y.[Wan-Yue],
Efficient algorithms for 3-D polygonal approximation based on LISE criterion,
PR(35), No. 11, November 2002, pp. 2539-2548.
WWW Link. 0208
BibRef

Rocha, J.[Jairo],
Perceptually stable regions for arbitrary polygons,
SMC-B(33), No. 1, February 2003, pp. 165-171.
IEEE Top Reference. 0301
BibRef

Rocha, J.[Jairo],
Efficient Polygon Decomposition into Singular and Regular Regions Via Voronoi Diagrams,
IJDAR(6), No. 2, 2003, pp. 89-101.
Springer DOI 0310
BibRef
Earlier:
Efficient Polygonal Decomposition Into Singular and Regular Regions Via Voronoi Diagrams,
ICPR00(Vol III: 762-765).
IEEE DOI 0009
BibRef

Wu, W.Y.[Wen-Yen],
An adaptive method for detecting dominant points,
PR(36No. 10, October 2003, pp. 2231-2237.
WWW Link. 0308
BibRef

Wu, W.Y.[Wen-Yen],
A dynamic method for dominant point detection,
GM(64), No. 5, September 2002, pp. Graphical Models, Volume 64, Issue 5, September 2002, 304-315.
WWW Link. 0309
BibRef

Marji, M.[Majed], Siy, P.[Pepe],
A new algorithm for dominant points detection and polygonization of digital curves,
PR(36No. 10, October 2003, pp. 2239-2251.
WWW Link. 0308
BibRef

Marji, M.[Majed], Siy, P.[Pepe],
Polygonal representation of digital planar curves through dominant point detection: A nonparametric algorithm,
PR(37), No. 11, November 2004, pp. 2113-2130.
WWW Link. 0409
BibRef

Hermes, L., Buhmann, J.M.,
A minimum entropy approach to adaptive image polygonization,
IP(12), No. 10, October 2003, pp. 1243-1258.
IEEE DOI 0310
BibRef

Roussillon, T.[Tristan], Sivignon, I.[Isabelle], Tougne, L.[Laure],
Measure of circularity for parts of digital boundaries and its fast computation,
PR(43), No. 1, January 2010, pp. 37-46,.
Elsevier DOI 0909
Circularity; Compactness; Digital circle; Discrete geometry; Computational geometry BibRef

Roussillon, T.[Tristan], Sivignon, I.[Isabelle],
Faithful polygonal representation of the convex and concave parts of a digital curve,
PR(44), No. 10-11, October-November 2011, pp. 2693-2700.
Elsevier DOI 1101
Digital curve; Polygonal representation; Convex and concave parts BibRef

Roussillon, T.[Tristan], Tougne, L.[Laure], Sivignon, I.[Isabelle],
Robust decomposition of a digital curve into convex and concave parts,
ICPR08(1-4).
IEEE DOI 0812
BibRef
Earlier:
Computation of Binary Objects Sides Number using Discrete Geometry, Application to Automatic Pebbles Shape Analysis,
CIAP07(763-768).
IEEE DOI 0709
Coarse polygonalization give the number of sides. See also Linear Algorithm for Segmentation of Digital Curves, A. BibRef

Vacavant, A.[Antoine], Roussillon, T.[Tristan], Kerautret, B.[Bertrand],
Unsupervised Polygonal Reconstruction of Noisy Contours by a Discrete Irregular Approach,
IWCIA11(398-409).
Springer DOI 1105
See also Curvature estimation along noisy digital contours by approximate global optimization. BibRef

Pinheiro, A.M.G., Ghanbari, M.,
Piecewise Approximation of Contours Through Scale-Space Selection of Dominant Points,
IP(19), No. 6, June 2010, pp. 1442-1450.
IEEE DOI 1006
BibRef
Earlier:
Contour simplification using non-linear diffusion,
ICIP04(I: 673-676).
IEEE DOI 0505
BibRef
Earlier:
Scalable coding of shape contours in scale space,
ICIP02(I: 165-168).
IEEE DOI 0210
BibRef

Pinheiro, A.M.G., Izquierdo, E., Ghanbari, M.,
Shape Matching Using a Curvature Based Polygonal Approximation in Scale-space,
ICIP00(Vol II: 538-541).
IEEE DOI 0008
BibRef

Pinheiro, A.M.G.[Antonio M. G.],
Local adaptive nonlinear diffusion,
ICIP08(601-604).
IEEE DOI 0810
BibRef

Gheibi, A., Davoodi, M., Javad, A., Panahi, F., Aghdam, M.M., Asgaripour, M., Mohades, A.,
Polygonal shape reconstruction in the plane,
IET-CV(5), No. 2, 2011, pp. 97-106.
DOI Link 1103
Polygon from dot patters and boundaries. Start from convex hull, step by step make it concave. BibRef


Swaminarayan, S., Prasad, L.,
Rapid Automated Polygonal Image Decomposition,
AIPR06(28-28).
IEEE DOI 0610
BibRef

Mi, X.F.[Xiao-Feng], DeCarlo, D.[Doug],
Separating Parts from 2D Shapes using Relatability,
ICCV07(1-8).
IEEE DOI 0710
BibRef

Ion, A.[Adrian], Kropatsch, W.G.[Walter G.], Andres, E.[Eric],
Euclidean Eccentricity Transform by Discrete Arc Paving,
DGCI08(xx-yy).
Springer DOI 0804
BibRef

Kropatsch, W.G.[Walter G.], Ion, A.[Adrian], Peltier, S.[Samuel],
Computing the Eccentricity Transform of a Polygonal Shape,
CIARP07(291-300).
Springer DOI 0711
BibRef

Ion, A.[Adrian], Peltier, S.[Samuel], Haxhimusa, Y.[Yll], Kropatsch, W.G.[Walter G.],
Decomposition for Efficient Eccentricity Transform of Convex Shapes,
CAIP07(653-660).
Springer DOI 0708
BibRef

Dexet, M.[Martine], Coeurjolly, D.[David], Andres, E.[Eric],
Invertible Polygonalization of 3D Planar Digital Curves and Application to Volume Data Reconstruction,
ISVC06(II: 514-523).
Springer DOI 0611
Linear time extraction. Use for representation of 3D data. BibRef

Vedhanayagam, M.[Masilamani], Krithivasan, K.[Kamala],
An Efficient Reconstruction of 2D-Tiling with t1,2, t2,1, t1,1 Tiles,
IWCIA06(474-480).
Springer DOI 0606
BibRef

Bodini, O.[Olivier], Nouvel, B.[Bertrand],
Z-Tilings of Polyominoes and Standard Basis,
IWCIA04(137-150).
Springer DOI 0505
Following on See also Tiling with polyominoes and combinatorial group theory. BibRef

Rocha, J.,
Polygon Partition into Stable Regions,
DAGM02(83 ff.).
Springer DOI 0303
BibRef

Tanase, M.[Mirela], Veltkamp, R.C.[Remco C.],
Polygon Decomposition Based on the Straight Line Skeleton,
WTRCV02(221-244). 0204
BibRef

Nagao, M., Katayama, M.,
Automatic Figure Decomposition into Elementary Features by Similarity Principle,
ICPR84(63-65). BibRef 8400

Chapter on Edge Detection and Analysis, Lines, Segments, Curves, Corners, Hough Transform continues in
General Triangulation Models, Delaunay .


Last update:Nov 18, 2017 at 20:56:18