6.4.4.7 Curvature, Corners, Dominant Points, Salient Points, Junctions

Chapter Contents (Back)
Corner Detector. Junction Detector. Curvature. 9710
See also Corner Feature Detection Techniques and Use.

Dessimoz, J.D.,
Curve Smoothing for Improved Feature Extraction from Digitized Pictures,
SP(1), 1979, pp. 205-210. BibRef 7900

Hung, S.H.Y., and Kasvand, T.,
Critical Points on a Perfectly 8- or 6-Connected Thin Binary Line,
PR(16), No. 3, 1983, pp. 297-306.
WWW Link. 9611
BibRef
Earlier: ICPR82(531-534). BibRef

Hung, S.H.Y., and Kasvand, T.,
Linear Approximations of Quantized Thin Lines,
PDA83(15-28). BibRef 8300

Langridge, D.J.,
Curve Encoding and the Detection of Discontinuities,
CGIP(20), No. 1, September 1982, pp. 58-71.
WWW Link. See also Detection of Discontinuities in the First Derivatives of Surfaces. BibRef 8209

Pineda, J.C., Horaud, P.,
An Improved Method for High-Curvature Detection with Applications to Automatic Inspection,
SP(5), 1983, pp. 117-124. BibRef 8300

Tejwani, Y.J., and Jones, R.A.,
On The Detection of Peaks and Valleys Using the Local Descriptors Method,
PAMI(6), No. 5, September 1984, pp. 629-632. BibRef 8409

Ogawa, H.,
Corner Detection on Digital Curves Based on Local Symmetry of the Shape,
PR(22), No. 4, 1989, pp. 351-357.
WWW Link. BibRef 8900

Lowe, D.G.,
Organization of Smooth Image Curves at Multiple Scales,
IJCV(3), No. 2, June 1989, pp. 119-130. BibRef 8906
And: ICCV88(558-567).
IEEE DOI Award, Marr Prize, HM. Uses the third derative of Gaussian convolution of the curve to find segmentation points on the curve. See also Recovery of Three-Dimensional Structure from Image Curves, The. BibRef

Kehtarnavaz, N., and de Figueiredo, R.J.P.,
A 3-D Contour Segmentation Scheme Based on Curvature and Torsion,
PAMI(10), No. 5, September 1988, pp. 707-713.
IEEE DOI BibRef 8809

Liu, S.T., Tsai, W.H.,
Moment-Preserving Corner Detection,
PR(23), No. 5, 1990, pp. 441-460.
WWW Link. BibRef 9000

Cabrelli, C.A., and Molter, U.M.,
Automatic Representation of Binary Images,
PAMI(12), No. 12, December 1990, pp. 1190-1196.
IEEE DOI Generate break points in curves, apply to the representation of binary versions of letters. BibRef 9012

Dattatreya, G.R., Kanal, L.N.,
Detection and smoothing of edge contours in images by one-dimensional Kalman techniques,
SMC(20), No. 1, January/February, 1990. Kalman filter for smoothing boundaries. BibRef 9001

Ansari, N., and Huang, K.W.,
Non-Parametric Dominant Point Detection,
PR(24), No. 9, 1991, pp. 849-862.
WWW Link. BibRef 9100

Ansari, N., Delp, E.J.,
On Detecting Dominant Points,
PR(24), No. 5, 1991, pp. 441-451.
WWW Link. BibRef 9100

Rattarangsi, A., and Chin, R.T.,
Scale-Based Detection of Corners of Planar Curves,
PAMI(14), No. 4, April 1992, pp. 430-449.
IEEE DOI BibRef 9204
Earlier: ICPR90(I: 923-930).
IEEE DOI Scale Space. Maximum of curvature of a boundary in all scales. Noise analysis. See also Scale-Space Behavior of Planar-Curve Corners. for some more analysis and extensions. BibRef

Wu, Q.M., Rodd, M.G.,
Boundary Feature Extraction and Structural Verification of Objects,
AMV Strategies921992, pp. 35-62. Generation of straight lines and curves from a contour for matching. BibRef 9200

Chen, M.H., and Chin, R.T.,
Partial Smoothing Splines for Noisy Boundaries with Corners,
PAMI(15), No. 11, November 1993, pp. 1208-1216.
IEEE DOI BibRef 9311

Worring, M., and Smeulders, A.W.M.,
Digital Curvature Estimation,
CVGIP(58), No. 3, November 1993, pp. 366-382.
WWW Link. BibRef 9311
Earlier:
The accuracy and precision of curvature estimation methods,
ICPR92(III:139-142).
IEEE DOI 9208
BibRef

Worring, M., Smeulders, A.W.M.,
Digitized Circular Arcs: Characterization and Parameter-Estimation,
PAMI(17), No. 6, June 1995, pp. 587-598.
IEEE DOI BibRef 9506
Earlier:
Discrete circular arcs,
ICPR94(A:174-178).
IEEE DOI 9410
BibRef

Fermüller, C.[Cornelia], and Kropatsch, W.G.[Walter G.],
A Syntactic Approach to Scale-Space-Based Corner Description,
PAMI(16), No. 7, July 1994, pp. 748-751.
IEEE DOI BibRef 9407
And:
Multiresolution Shape Description by Corners,
MDSG94(539-548). BibRef
Earlier: CVPR92(271-276).
IEEE DOI BibRef
Earlier:
Hierarchical curve representation,
ICPR92(III:143-146).
IEEE DOI 9208
BibRef

Fairney, D.P., Fairney, P.T.,
On the Accuracy of Point Curvature Estimators in a Discrete Environment,
IVC(12), No. 5, June 1994, pp. 259-265.
WWW Link. Evaluation, Curvature. BibRef 9406

Tsang, W.M., Yuen, P.C., Lam, F.K.,
Detection of Dominant Points on an Object Boundary: A Discontinuity Approach,
IVC(12), No. 9, November 1994, pp. 547-557.
WWW Link. Use in matching: See also Robust Matching Process: A Dominant Point Approach. BibRef 9411

Zhu, P.F.[Peng-Fei], Chirlian, P.M.,
On Critical-Point Detection Of Digital Shapes,
PAMI(17), No. 8, August 1995, pp. 737-748.
IEEE DOI Define a critical level to judge the importance of the contour point for defining the shape. Comparison with a number of other algorithms. BibRef 9508

Kankanhalli, M.S.,
An Adaptive Dominant Point Detection Algorithm for Digital Curves,
PRL(14), 1993, pp. 385-390. BibRef 9300

Espelid, R., Jonassen, I.,
A Comparison of Splitting Methods for the Identification of Corner-Points,
PRL(12), 1991, pp. 79-83. BibRef 9100

Illing, D.P., Fairney, P.T.,
Determining Perceptually Significant Points on Noisy Boundary Curves,
PRL(12), 1991, pp. 557-564. BibRef 9100

Canning, J., Kim, J.J., Netanyahu, N.S.[Nathan S.], Rosenfeld, A.,
Symbolic Pixel Labeling for Curvilinear Feature Detection,
PRL(8), 1988, pp. 299-310. BibRef 8800
Earlier: DARPA88(1080-1090). BibRef
Earlier: A1, A2, A4 Only: DARPA87(242-256). BibRef

Guiducci, A.,
Corner Characterization by Differential Geometry Techniques,
PRL(8), 1988, pp. 311-318. BibRef 8800

Cheng, K.H., Hsu, W.H.,
Parallel Algorithms for Corner Following on Digital Curves,
PRL(8), 1988, pp. 47-53. BibRef 8800

Teh, C.H., and Chin, R.T.,
On the Detection of Dominant Points on Digital Curve,
PAMI(11), No. 8, August 1989, pp. 859-872.
IEEE DOI BibRef 8908
And:
A Scale-Independent Dominant Point Detection Algorithm,
CVPR88(229-234).
IEEE DOI Find the dominant points along curves. BibRef

Brault, J.J., and Plamondon, R.,
Segmenting Handwritten Signatures at Their Perceptually Important Points,
PAMI(15), No. 9, September 1993, pp. 953-957.
IEEE DOI BibRef 9309

Sohn, K., Alexander, W.E., Kim, J.H., Snyder, W.E.,
A Constrained Regularization Approach in Robust Corner Detection,
SMC(24), 1994, pp. 820-828. BibRef 9400

Sohn, K., Kim, J.H., Alexander, W.E.,
A Mean-Field Annealing Approach To Robust Corner Detection,
SMC-B(28), No. 1, February 1998, pp. 82-90.
IEEE Top Reference. 9802
BibRef

Held, A., Abe, K., Arcelli, C.,
Towards a Hierarchical Contour Description via Dominant Point Detection,
SMC(24), 1994, pp. 942-949. BibRef 9400

Wang, M.J.J., Wu, W.Y., Huang, L.K., Wang, D.M.,
Corner Detection Using Bending Value,
PRL(16), No. 6, June 1995, pp. 575-583. BibRef 9506

Wu, W.Y.[Wen-Yen],
Dominant point detection using adaptive bending value,
IVC(21), No. 6, June 2003, pp. 517-525.
WWW Link. 0306
BibRef

Oakley, J.P., Shann, R.T.,
Curvature Sensitive Filter and Its Application in Microfossil Image Characterization,
IVC(14), No. 3, April 1996, pp. 237-241.
WWW Link. 9607
BibRef
Earlier: BMVC92(xx-yy).
PDF File. 9209
BibRef

Cornic, P.,
Another Look at the Dominant Point Detection of Digital Curves,
PRL(18), No. 1, January 1997, pp. 13-25. 9704
BibRef

Yu, D.G.[Dong-Gang], Yan, H.,
An Efficient Algorithm for Smoothing, Linearization and Detection of Structural Feature Points of Binary Image Contours,
PR(30), No. 1, January 1997, pp. 57-69.
WWW Link. 9702
BibRef
Earlier:
An Efficient Algorithm for Smoothing Binary Image Contours,
ICPR96(II: 403-407).
IEEE DOI 9608
(Univ. of Sydney, AUS) BibRef

Ip, H.H.S., Wong, W.H.,
Fast Conditioning Algorithm for Significant Zero Curvature Detection,
VISP(144), No. 1, February 1997, pp. 23-30. 9706
BibRef

Fu, A.M.N., Yan, H.,
Effective Classification of Planar Shapes Based on Curve Segment Properties,
PRL(18), No. 1, January 1997, pp. 55-61. 9704
BibRef

Fu, A.M.N., Yan, H., Huang, K.,
A Curve Bend Function Based Method to Characterize Contour Shapes,
PR(30), No. 10, October 1997, pp. 1661-1671.
WWW Link. 9712
BibRef

Garrido, A., de la Blanca, N.P.[N. Perez], Garcia-Silvente, M.,
Boundary Simplification Using a Multiscale Dominant Point Detection Algorithm,
PR(31), No. 6, June 1998, pp. 791-804.
WWW Link. 9806
BibRef

Ji, Q.A.[Qi-Ang], Haralick, R.M.,
Breakpoint Detection Using Covariance Propagation,
PAMI(20), No. 8, August 1998, pp. 845-851.
IEEE DOI BibRef 9808
Earlier:
Corner Detection with Covariance Propagation,
CVPR97(362-367).
IEEE DOI 9704
Compare to Lowe: polygonal approx. for curves. BibRef

Parida, L.[Laxmi], Geiger, D.[Devi], Hummel, R.A.[Robert A.],
Junctions: Detection, Classification, and Reconstruction,
PAMI(20), No. 7, July 1998, pp. 687-698.
IEEE DOI 9808
BibRef

Li, L.Y.[Li-Yuan], Chen, W.N.[Wei-Nan],
Corner Detection and Interpretation on Planar Curves Using Fuzzy Reasoning,
PAMI(21), No. 11, November 1999, pp. 1204-1210.
IEEE DOI 9912
Break points on the curves. BibRef

Cronin, T.M.[Terence M.],
A boundary concavity code to support dominant point detection,
PRL(20), No. 6. June 1999, pp. 617-634. BibRef 9906

West, G.A.W.[Geoff A. W.], Rosin, P.L.[Paul L.],
Investigation into the Extraction of Features from Images: From Curves to Features,
World Scientific1999, ISBN 981-02-3442-2. Fitting features to lines, 2D, 3D, etc. BibRef 9900

Simo, A., de Ves, E., Díaz, M.E., Ayala, G., Domingo, J.,
Bayesian estimation of edge orientations in junctions,
PRL(20), No. 11-13, November 1999, pp. 1113-1122. 0001
BibRef

Deschênes, F.[Francois], Ziou, D.[Djemel],
Detection of line junctions and line terminations using curvilinear features,
PRL(21), No. 6-7, June 2000, pp. 637-649. 0006
BibRef
Earlier:
Detection of Line Junctions in Gray-level Images,
ICPR00(Vol III: 754-757).
IEEE DOI 0009
BibRef

Beau, V.[Vincent], Singer, M.[Mark],
Reduced resolution and scale space for dominant feature detection in contours,
PR(34), No. 2, February 2001, pp. 287-297.
WWW Link. 0011
BibRef

Liu, W.Y.[Wen-Yu], Li, H.[Hua], Zhu, G.X.[Guang-Xi],
A fast algorithm for corner detection using the morphologic skeleton,
PRL(22), No. 8, June 2001, pp. 891-900.
Elsevier DOI 0105
BibRef

Han, J.H.[Joon H.], Poston, T.[Timothy],
Chord-to-Point Distance Accumulation and Planar Curvature: A New Approach to Discrete Curvature,
PRL(22), No. 10, August 2001, pp. 1133-1144.
Elsevier DOI 0108
BibRef

Han, J.H., Poston, T.,
Distance accumulation and planar curvature,
ICCV93(487-491).
IEEE DOI 0403
BibRef

Kuhnert, K.D., Pechtel, D.,
Towards Creating Abstract Features of Complex Objects: The Fusion of Contourpoints in Significant Contour Sections for Object Recognition,
PRL(23), No. 6, April 2002, pp. 713-718.
Elsevier DOI 0202
BibRef
Earlier: A2, A1:
Automatic generation of significant and local feature groups of complex and deformed objects,
CIAP99(340-345).
IEEE DOI 9909
BibRef

Neumann, R.[Richard], Teisseron, G.[Gilbert],
Extraction of dominant points by estimation of the contour fluctuations,
PR(35), No. 7, July 2002, pp. 1447-1462.
WWW Link. 0204
BibRef

da Fontoura Costa, L.[Luciano],
Estimating derivatives and curvature of open curves,
PR(35), No. 11, November 2002, pp. 2445-2451.
WWW Link. 0208
BibRef

Cazorla, M.A.[Miguel A.], Escolano, F., Gallardo, D., Rizo, R.,
Junction detection and grouping with probabilistic edge models and Bayesian A*,
PR(35), No. 9, September 2002, pp. 1869-1881.
WWW Link. 0206
BibRef

Craizer, M.[Marcos], Pesco, S.[Sinésio], Teixeira, R.[Ralph],
A Numerical Scheme for the Curvature Equation Near the Singularities,
JMIV(63), No. 1, June 2005, pp. 89-95.
Springer DOI 0501
BibRef

Craizer, M.[Marcos], Lewiner, T.[Thomas], Morvan, J.M.[Jean-Marie],
Combining Points and Tangents into Parabolic Polygons: An Affine Invariant Model for Plane Curves,
JMIV(29), No. 2-3, November 2007, pp. 131-140.
Springer DOI 0712
BibRef

Lewiner, T.[Thomas], Craizer, M.[Marcos],
Projective Splines and Estimators for Planar Curves,
JMIV(36), No. 1, January 2010, pp. xx-yy.
Springer DOI 1001
BibRef

Craizer, M.[Marcos], Alvim, M.[Moacyr], Teixeira, R.[Ralph],
Area Distances Of Convex Plane Curves And Improper Affine Spheres,
SIIMS(1), No. 3, 2008, pp. 209-227. area distances; improper affine spheres; discrete affine spheres
DOI Link BibRef 0800

Lavoue, G.[Guillaume], Dupont, F.[Florent], Baskurt, A.[Atilla],
A new subdivision based approach for piecewise smooth approximation of 3D polygonal curves,
PR(38), No. 8, August 2005, pp. 1139-1151.
WWW Link. 0505
See also Toward a near optimal quad/triangle subdivision surface fitting. BibRef

Shih, F.Y.[Frank Y.], Chuang, C.F.[Chao-Fa], Gaddipati, V.[Vijayalakshmi],
A modified regulated morphological corner detector,
PRL(26), No. 7, 15 May 2005, pp. 931-937.
WWW Link. 0506
BibRef

Carmona-Poyato, Á.[Ángel], Fernández-García, N.L.[Nicolás Luis], Medina-Carnicer, R.[Rafel], Madrid-Cuevas, F.J.[Francisco José],
Dominant point detection: A new proposal,
IVC(23), No. 13, 29 November 2005, pp. 1226-1236.
WWW Link. 0512
BibRef
Earlier:
A Method for Dominant Points Detection and Matching 2D Object Identification,
ICIAR04(I: 424-431).
Springer DOI 0409
Search based corner detection. See also Automatic generation of consensus ground truth for the comparison of edge detection techniques. See also efficient unsupervised method for obtaining polygonal approximations of closed digital planar curves, An. BibRef

Carmona-Poyato, A., Fernandez-Garcia, N.L., Muñoz-Salinas, R.,
A New Algorithm for Dominant Point Detection by Quasi-collinear Break Points Supression,
ACIVS08(xx-yy).
Springer DOI 0810
BibRef

Madrid-Cuevas, F.J.[Francisco José], Medina-Carnicer, R.[Rafel], Carmona-Poyato, Á.[Ángel], Fernández-García, N.L.[Nicolás Luis],
Dominant Points Detection Using Phase Congruence,
IbPRIA07(II: 138-145).
Springer DOI 0706
BibRef

Medina-Carnicer, R., Madrid-Cuevas, F.J.,
Unimodal thresholding for edge detection,
PR(41), No. 7, July 2008, pp. 2337-2346.
WWW Link. 0804
Unimodal thresholding; Edge detection BibRef

Medina-Carnicer, R., Munoz-Salinas, R., Carmona-Poyato, A., Madrid-Cuevas, F.J.,
A novel histogram transformation to improve the performance of thresholding methods in edge detection,
PRL(32), No. 5, 1 April 2011, pp. 676-693.
Elsevier DOI 1103
Thresholding; Edge detection; Histogram and edge sensitivity BibRef

Zhang, X.H.[Xiao-Hong], Lei, M.[Ming], Yang, D.[Dan], Wang, Y.Z.[Yu-Zhu], Ma, L.T.[Li-Tao],
Multi-scale curvature product for robust image corner detection in curvature scale space,
PRL(28), No. 5, 1 April 2007, pp. 545-554.
WWW Link. 0703
Curvature; CSS corner detection; Multi-scale product; CCN criteria; ACU accuracy BibRef

Zang, D.[Di], Sommer, G.[Gerald],
Signal modeling for two-dimensional image structures,
JVCIR(18), No. 1, February 2007, pp. 81-99.
WWW Link. 0711
Monogenic curvature tensor; Generalized monogenic curvature signal; Phase; Signal modeling BibRef

Sinzinger, E.D.[Eric D.],
A model-based approach to junction detection using radial energy,
PR(41), No. 2, February 2008, pp. 494-505.
WWW Link. 0711
Junction detection; Corner detection; Vertex detection; Feature analysis; Radial segmentation See also Radial segmentation. BibRef

Dinesh, R., Guru, D.S.,
Non-parametric Adaptive Approach for the Detection of Dominant Points on Boundary Curves Based on Non-symmetric Region of Support,
IJIG(9), No. 4, October 2009, pp. 541-557.
DOI Link 0911
See also Non-parametric adaptive region of support useful for corner detection: a novel approach. BibRef

Wang, Y.[Yu], Wang, D.S.[De-Sheng], Bruckstein, A.M.,
On Variational Curve Smoothing and Reconstruction,
JMIV(37), No. 3, July 2010, pp. xx-yy.
Springer DOI 1007
BibRef

Zhong, B.J.[Bao-Jiang], Ma, K.K.[Kai-Kuang],
On the Convergence of Planar Curves Under Smoothing,
IP(19), No. 8, August 2010, pp. 2171-2189.
IEEE DOI 1008
Curve smoothing. BibRef

Pedrosa, G.V.[Glauco V.], Barcelos, C.A.Z.[Celia A.Z.],
Anisotropic diffusion for effective shape corner point detection,
PRL(31), No. 12, 1 September 2010, pp. 1658-1664.
Elsevier DOI 1008
Curvature; Corner detection; Partial differential equation BibRef

Zhong, B.J.[Bao-Jiang], Liao, W.H.[Wen-He],
Direct Curvature Scale Space: Theory and Corner Detection,
PAMI(29), No. 3, March 2007, pp. 508-512.
IEEE DOI 0702
Corner Detection. BibRef
Earlier:
Direct Curvature Scale Space in Corner Detection,
SSPR06(235-242).
Springer DOI 0608
Convolve the curvature with Gaussian kernel. BibRef

Zhong, B.J.[Bao-Jiang], Ma, K.K.[Kai-Kuang], Liao, W.H.[Wen-He],
Scale-Space Behavior of Planar-Curve Corners,
PAMI(31), No. 8, August 2009, pp. 1517-1524.
IEEE DOI 0906
Curvature scale-space works for curves, not corners. See also Scale-Based Detection of Corners of Planar Curves. where the assumption of no shrinkage of curves under evolution was wrong. BibRef

Zhong, B.J.[Bao-Jiang], Li, C.[Chang], Wang, Z.S.[Zheng-Sheng],
Curvature product corner detection in direct curvature scale space,
IJCVR(1), No. 2, 2010, pp. 194-205.
DOI Link 1011
BibRef

Bretin, E., Lachaud, J.O.[Jacques-Olivier], Oudet, É.,
Regularization of Discrete Contour by Willmore Energy,
JMIV(40), No. 2, June 2011, pp. 214-229.
WWW Link. 1103
BibRef

de Vieilleville, F.[François], Lachaud, J.O.[Jacques-Olivier], Feschet, F.[Fabien],
Convex Digital Polygons, Maximal Digital Straight Segments and Convergence of Discrete Geometric Estimators,
JMIV(27), No. 2, February 2007, pp. 139-156.
Springer DOI 0704
BibRef
Earlier:
Maximal Digital Straight Segments and Convergence of Discrete Geometric Estimators,
SCIA05(988-997).
Springer DOI 0506
BibRef
Earlier: A2, A1, Only:
Convex Shapes and Convergence Speed of Discrete Tangent Estimators,
ISVC06(II: 688-697).
Springer DOI 0611
Estimation of shape with only discrete representaiton. BibRef

de Vieilleville, F.[François], Lachaud, J.O.[Jacques-Olivier],
Experimental Comparison of Continuous and Discrete Tangent Estimators Along Digital Curves,
IWCIA08(xx-yy).
Springer DOI 0804
BibRef

Kerautret, B.[Bertrand], Lachaud, J.O.[Jacques-Olivier],
Curvature estimation along noisy digital contours by approximate global optimization,
PR(42), No. 10, October 2009, pp. 2265-2278.
Elsevier DOI 0906
BibRef
Earlier:
Robust Estimation of Curvature along Digital Contours with Global Optimization,
DGCI08(xx-yy).
Springer DOI 0804
Discrete geometry; Digital contours; Curvature estimation; Feature detection; Robustness to noise BibRef

Kerautret, B.[Bertrand], Lachaud, J.O.[Jacques-Olivier],
Meaningful Scales Detection along Digital Contours for Unsupervised Local Noise Estimation,
PAMI(34), No. 12, December 2012, pp. 2379-2392.
IEEE DOI 1210
BibRef
Earlier:
Multi-scale Analysis of Discrete Contours for Unsupervised Noise Detection,
IWCIA09(187-200).
Springer DOI 0911
See also Meaningful Scales Detection: An Unsupervised Noise Detection Algorithm for Digital Contours. BibRef

Roussillon, T.[Tristan], Tougne, L.[Laure], Sivignon, I.[Isabelle],
On Three Constrained Versions of the Digital Circular Arc Recognition Problem,
DGCI09(34-45).
Springer DOI 0909
See also Reversible vectorisation of 3D digital planar curves and applications. BibRef

Roussillon, T.[Tristan], Lachaud, J.O.[Jacques-Olivier],
Accurate Curvature Estimation along Digital Contours with Maximal Digital Circular Arcs,
IWCIA11(43-55).
Springer DOI 1105
BibRef

Andres, E.[Eric], Roussillon, T.[Tristan],
Analytical Description of Digital Circles,
DGCI11(235-246).
Springer DOI 1104
BibRef

Andres, E.[Eric],
Digital Analytical Geometry: How Do I Define a Digital Analytical Object?,
IWCIA15(3-17).
Springer DOI 1601
BibRef

Kerautret, B.[Bertrand], Lachaud, J.O.[Jacques-Olivier], Nguyen, T.P.[Thanh Phuong],
Circular Arc Reconstruction of Digital Contours with Chosen Hausdorff Error,
DGCI11(247-259).
Springer DOI 1104
See also discrete geometry approach for dominant point detection, A. BibRef

Nguyen, T.P.[Thanh Phuong], Kerautret, B.[Bertrand], Debled-Rennesson, I.[Isabelle], Lachaud, J.O.[Jacques-Olivier],
Unsupervised, Fast and Precise Recognition of Digital Arcs in Noisy Images,
ICCVG10(I: 59-68).
Springer DOI 1009
BibRef

Kerautret, B.[Bertrand], Lachaud, J.O.[Jacques-Olivier],
Meaningful Scales Detection: An Unsupervised Noise Detection Algorithm for Digital Contours,
IPOL(2014), No. 2014, pp. 98-115.
DOI Link 1405
Code, Contours. See also Meaningful Scales Detection along Digital Contours for Unsupervised Local Noise Estimation. BibRef

Kawamura, K.[Kei], Ishii, D.[Daisuke], Watanabe, H.[Hiroshi],
Automatic Scale Detection for Contour Fragment Based on Difference of Curvature,
IEICE(E94-D), No. 10, October 2011, pp. 1998-2005.
WWW Link. 1110
BibRef

Elias, R., Laganiere, R.[Robert],
JUDOCA: JUnction Detection Operator Based on Circumferential Anchors,
IP(21), No. 4, April 2012, pp. 2109-2118.
IEEE DOI 1204
BibRef

Su, R.[Ran], Sun, C.M.[Chang-Ming], Pham, T.D.[Tuan D.],
Junction detection for linear structures based on Hessian, correlation and shape information,
PR(45), No. 10, October 2012, pp. 3695-3706.
Elsevier DOI 1206
Junction detection; Linear structure; Correlation matrix; Hessian information; Template BibRef

Su, R.[Ran], Sun, C.M.[Chang-Ming], Zhang, C.[Chao], Pham, T.D.[Tuan D.],
A new method for linear feature and junction enhancement in 2D images based on morphological operation, oriented anisotropic Gaussian function and Hessian information,
PR(47), No. 10, 2014, pp. 3193-3208.
Elsevier DOI 1406
Linear feature BibRef

Boccuto, A.[Antonio], Gerace, I.[Ivan], Pucci, P.[Patrizia],
Convex Approximation Technique for Interacting Line Elements Deblurring: a New Approach,
JMIV(44), No. 2, October 2012, pp. 168-184.
WWW Link. 1206
BibRef

Paula, Jr., I.C.[Ialis C.], Medeiros, F.N.S.[Fatima N. S.], Bezerra, F.N.[Francisco N.], Ushizima, D.M.[Daniela M.],
Multiscale Corner Detection in Planar Shapes,
JMIV(45), No. 3, March 2013, pp. 251-263.
WWW Link. 1301
BibRef

Hu, H.[Haibo], Lin, X.Z.[Xiao-Ze], Zhang, X.H.[Xiao-Hong], Feng, Y.[Yong],
Detection of local invariant features using contour,
IET-PR(7), No. 4, 2013, pp. 364-372.
DOI Link 1307
Corners in contours. BibRef

Pham, T.A.[The-Anh], Delalandre, M.[Mathieu], Barrat, S.[Sabine], Ramel, J.Y.[Jean-Yves],
Accurate junction detection and characterization in line-drawing images,
PR(47), No. 1, 2014, pp. 282-295.
Elsevier DOI 1310
BibRef
And: Erratum: PR(49), No. 1, 2016, pp. 249-250.
Elsevier DOI 1511
BibRef
Earlier:
Robust Symbol Localization Based on Junction Features and Efficient Geometry Consistency Checking,
ICDAR13(1083-1087)
IEEE DOI 1312
BibRef
Earlier:
Accurate junction detection and reconstruction in line-drawing images,
ICPR12(693-696).
WWW Link. 1302
Junction detection computational geometry. BibRef

Pham, T.A.[The-Anh], Barrat, S.[Sabine], Delalandre, M.[Mathieu], Ramel, J.Y.[Jean-Yves],
An efficient tree structure for indexing feature vectors,
PRL(55), No. 1, 2015, pp. 42-50.
Elsevier DOI 1503
Exact nearest neighbour search BibRef

Xia, G.S.[Gui-Song], Delon, J.[Julie], Gousseau, Y.[Yann],
Accurate Junction Detection and Characterization in Natural Images,
IJCV(106), No. 1, January 2014, pp. 31-56.
WWW Link. 1402
BibRef

Keles, H.Y.[Hacer Yalim], Tari, S.[Sibel],
A robust method for scale independent detection of curvature-based criticalities and intersections in line drawings,
PR(48), No. 1, 2015, pp. 140-155.
Elsevier DOI 1410
Line drawings BibRef

Teng, S.W.[Shyh Wei], Sadat, R.M.N.[Rafi Md. Najmus], Lu, G.J.[Guo-Jun],
Effective and efficient contour-based corner detectors,
PR(48), No. 7, 2015, pp. 2185-2197.
Elsevier DOI 1504
Corner detector BibRef

Núñez, J.M.[Joan M.], Bernal, J.[Jorge], Sánchez, F.J.[F. Javier], Vilariño, F.[Fernando],
GRowing Algorithm for Intersection Detection (GRAID) in branching patterns,
MVA(26), No. 2-3, April 2015, pp. 387-400.
Springer DOI 1504
BibRef

Schindele, A.[Andreas], Massopust, P.[Peter], Forster, B.[Brigitte],
Multigrid Convergence for the MDCA Curvature Estimator,
JMIV(57), No. 3, March 2017, pp. 423-438.
Springer DOI 1702
MDCA: maximal digital circular arcs. See also Accurate Curvature Estimation along Digital Contours with Maximal Digital Circular Arcs. BibRef

Owrang, A., Malek-Mohammadi, M., Proutiere, A., Jansson, M.,
Consistent Change Point Detection for Piecewise Constant Signals With Normalized Fused LASSO,
SPLetters(24), No. 6, June 2017, pp. 799-803.
IEEE DOI 1705
Computational complexity, Computational modeling, Noise level, Noise measurement, Numerical models, Sensors, Standards, Change point detection, fused LASSO (FL), irrepresentable condition, piecewise, constant BibRef


Lin, X., Zhu, C., Zhang, Q., Huang, X., Liu, Y.,
Efficient and Robust Corner Detectors Based on Second-Order Difference of Contour,
SPLetters(24), No. 9, September 2017, pp. 1393-1397.
IEEE DOI 1708
Computational complexity, Detectors, Euclidean distance, Indexes, Robustness, Corner detection, multiscale analysis, robustness, second-order difference of contour (SODC) BibRef

Afrin, N., Mohammed, N., Lai, W.,
An Effective Multi-Chord Corner Detection Technique,
DICTA16(1-8)
IEEE DOI 1701
Cascading style sheets BibRef

Duval-Poo, M.A.[Miguel Alejandro], Odone, F.[Francesca], de Vito, E.[Ernesto],
Enhancing Signal Discontinuities with Shearlets: An Application to Corner Detection,
CIAP15(II:108-118).
Springer DOI 1511
BibRef

Cordes, K.[Kai], Ostermann, J.[Jorn],
Increasing the precision of junction shaped features,
MVA15(295-298)
IEEE DOI 1507
Benchmark testing BibRef

Li, B.[Bo], Li, H.B.[Hai-Bo], Soderstrom, U.[Ulrik],
Scale-invariant corner keypoints,
ICIP14(5741-5745)
IEEE DOI 1502
Computer vision BibRef

Raftopoulos, K.A.[Konstantinos A.], Ferecatu, M.[Marin],
Noising versus Smoothing for Vertex Identification in Unknown Shapes,
CVPR14(4162-4168)
IEEE DOI 1409
Noise Resistance BibRef

Nieuwenhuis, C.[Claudia], Toeppe, E.[Eno], Gorelick, L.[Lena], Veksler, O.[Olga], Boykov, Y.Y.[Yuri Y.],
Efficient Squared Curvature,
CVPR14(4098-4105)
IEEE DOI 1409
MRF BibRef

Xia, G.S.[Gui-Song], Delon, J.[Julie], Gousseau, Y.[Yann],
An accurate and contrast invariant junction detector,
ICPR12(2780-2783).
WWW Link. 1302
BibRef

Li, Z.L.[Zhi-Li], Shen, Y.C.[Yan-Chun],
A robust corner detector based on curvature scale space and harris,
IASP11(223-226).
IEEE DOI 1112
BibRef

Fleischmann, O.[Oliver], Wietzke, L.[Lennart], Sommer, G.[Gerald],
A Novel Curvature Estimator for Digital Curves and Images,
DAGM10(442-451).
Springer DOI 1009
BibRef

Mair, E.[Elmar], Hager, G.D.[Gregory D.], Burschka, D.[Darius], Suppa, M.[Michael], Hirzinger, G.[Gerhard],
Adaptive and Generic Corner Detection Based on the Accelerated Segment Test,
ECCV10(II: 183-196).
Springer DOI 1009
BibRef

Fiorio, C.[Christophe], Mercat, C.[Christian], Rieux, F.[Frédéric],
Adaptive Discrete Laplace Operator,
ISVC11(II: 377-386).
Springer DOI 1109
BibRef
Earlier:
Curvature Estimation for Discrete Curves Based on Auto-adaptive Masks of Convolution,
CompIMAGE10(47-59).
Springer DOI 1006
See also Discrete Simulation of a Chladni Experiment. BibRef

Zhang, L.[Lin], Zhang, L.[Lei], Zhang, D.[David],
A Multi-scale Bilateral Structure Tensor Based Corner Detector,
ACCV09(II: 618-627).
Springer DOI 0909
BibRef

Cui, C.H.[Chun-Hui], Ngan, K.N.[King-Ngi],
Automatic scale selection for corners and junctions,
ICIP09(989-992).
IEEE DOI 0911
BibRef

Feng, Y.Q.[Yu-Qiang],
Corner Point Detection on Digital Curve through Rotate-Angle Accumulation,
CISP09(1-3).
IEEE DOI 0910
BibRef

Kerautret, B., Lachaud, J.O., Naegel, B.,
Comparison of Discrete Curvature Estimators and Application to Corner Detection,
ISVC08(I: 710-719).
Springer DOI 0812
BibRef

Join, C.[Cédric], Tabbone, S.[Salvatore],
Robust Curvature Extrema Detection Based on New Numerical Derivation,
ACIVS08(xx-yy).
Springer DOI 0810
BibRef

Maire, M.[Michael], Arbelaez, P.[Pablo], Fowlkes, C.C.[Charless C.], Malik, J.[Jitendra],
Using contours to detect and localize junctions in natural images,
CVPR08(1-8).
IEEE DOI 0806
See also Contour Detection and Hierarchical Image Segmentation. BibRef

Lemuz-López, R.[Rafael], Estrada, M.A.[Miguel Arias],
Ranking Corner Points by the Angular Difference between Dominant Edges,
CVS08(xx-yy).
Springer DOI 0805
BibRef

Karousos, E.I., Ginnis, A.I., Kaklis, P.D.,
Controlling Torsion Sign,
GMP08(xx-yy).
Springer DOI 0804
BibRef

Sánchez-Cruz, H.[Hermilo],
Corner Detection by Searching Two Class Pattern Substrings,
CIARP06(354-362).
Springer DOI 0611
BibRef

Arseneau, S.[Shawn], Cooperstock, J.R.[Jeremy R.],
An Improved Representation of Junctions Through Asymmetric Tensor Diffusion,
ISVC06(I: 363-372).
Springer DOI 0611
BibRef
And:
An Asymmetrical Diffusion Framework for Junction Analysis,
BMVC06(II:689).
PDF File. 0609
BibRef

Sánchez-Cruz, H.[Hermilo],
A Proposal Method for Corner Detection with an Orthogonal Three-Direction Chain Code,
ACIVS06(161-172).
Springer DOI 0609
BibRef

Chetverikov, D.[Dmitry],
A Simple and Efficient Algorithm for Detection of High Curvature Points in Planar Curves,
CAIP03(746-753).
Springer DOI 0311
BibRef

Koo, W.M.[Wai Mun], Kot, A.C.[Alex Chichung],
Curvature-Based Singular Points Detection,
AVBPA01(229).
Springer DOI 0310
BibRef

Lindeberg, T.,
Junction Detection with Automatic Selection of Detection Scales and Localization Scales,
ICIP94(I: 924-928).
IEEE DOI Junction location by normalized derivatives using sclae-space techniques. Abstract:
HTML Version. Full paper:
PS File. For edge detection: See also Edge Detection and Ridge Detection with Automatic Scale Selection. See also Feature Tracking with Automatic Selection of Spatial Scales. BibRef 9400

Hansen, T.[Thorsten], Neumann, H.[Heiko],
A Biologically Motivated Scheme for Robust Junction Detection,
BMCV02(16 ff.).
Springer DOI 0303
BibRef

Barsi, A.[Arpad], Heipke, C.[Christian], Willrich, F.[Felicitas],
Junction Extraction by Artificial Neural Network System - JEANS,
PCV02(B: 18). 0305
BibRef

Sluzek, A.[Andrzej],
A Local Algorithm for Real-Time Junction Detection in Contour Images,
CAIP01(465 ff.).
Springer DOI 0210
BibRef

Coeurjolly, D.[David], Miguet, S.[Serge], Tougne, L.[Laure],
Discrete Curvature Based on Osculating Circle Estimation,
VF01(303 ff.).
Springer DOI 0209
Extendes See also Digital Curvature Estimation. BibRef

Nandy, D., Ben-Arie, J.,
EXM eigen templates for detecting and classifying arbitrary junctions,
ICIP98(I: 211-215).
IEEE DOI 9810
BibRef

Caselles, V.[Vicent], Coll, B.[Bartomeu], Morel, J.M.[Jean-Michel],
Junction Detection and Filtering: A Morphological Approach,
ICIP96(I: 493-496).
IEEE DOI BibRef 9600

Kadonaga, T., Abe, K.,
Comparison of Methods for Detecting Corner Points from Digital Curves,
GRMA951996, pp. 23-34. BibRef 9600

Neumann, H., Ottenberg, K.[Karsten],
Estimating attributes of smooth signal transitions from scale-space,
ICPR92(III:754-758).
IEEE DOI 9208
BibRef

Dolan, J., and Riseman, E.M.,
Computing Curvilinear Structure by Token-Based Grouping,
CVPR92(264-270).
IEEE DOI BibRef 9200

Dolan, J., and Weiss, R.,
Perceptual Grouping of Curved Lines,
DARPA89(1135-1145). Using proximity and good continuation to get co-curving lines. This operates over a range of scales. Initial results for straight and simple curves. BibRef 8900

Lee, C.K., Haralick, R.M., Deguchi, K.,
Estimation of curvature from sampled noisy data,
CVPR93(536-541).
IEEE DOI 0403
BibRef

Bårman, H.[Håkan],
Hierarchical Curvature Estimation in Computer Vision,
Ph.D.Thesis, Linkoping University, September, 1991.
HTML Version. BibRef 9109

Deguchi, K.,
Multi-Scale Curvatures for Contour Feature Extraction,
ICPR88(II: 1113-1115).
IEEE DOI BibRef 8800

Aviad, Z.,
Locating Corners in Noisy Curves by Delineating Imperfect Sequences,
CMU-CS-TR--88-199, December 1988. BibRef 8812

Chapter on Edge Detection and Analysis, Lines, Segments, Curves, Corners, Hough Transform continues in
Corner Feature Detection Techniques and Use .


Last update:Sep 18, 2017 at 11:34:11