Dessimoz, J.D.,
Curve Smoothing for Improved Feature Extraction from
Digitized Pictures,
SP(1), 1979, pp. 205-210.
BibRef
7900
Hung, S.H.Y.,
Kasvand, T.,
Critical Points on a Perfectly 8- or 6-Connected Thin Binary Line,
PR(16), No. 3, 1983, pp. 297-306.
Elsevier DOI
9611
BibRef
Earlier:
ICPR82(531-534).
BibRef
Hung, S.H.Y.,
Kasvand, T.,
Linear Approximations of Quantized Thin Lines,
PDA83(15-28).
BibRef
8300
Langridge, D.J.,
Curve Encoding and the Detection of Discontinuities,
CGIP(20), No. 1, September 1982, pp. 58-71.
Elsevier DOI
See also Detection of Discontinuities in the First Derivatives of Surfaces.
BibRef
8209
Pineda, J.C.,
Horaud, P.,
An Improved Method for High-Curvature Detection with Applications
to Automatic Inspection,
SP(5), 1983, pp. 117-124.
BibRef
8300
Tejwani, Y.J.,
Jones, R.A.,
On The Detection of Peaks and Valleys Using the
Local Descriptors Method,
PAMI(6), No. 5, September 1984, pp. 629-632.
BibRef
8409
Ogawa, H.,
Corner Detection on Digital Curves Based on Local Symmetry of the Shape,
PR(22), No. 4, 1989, pp. 351-357.
Elsevier DOI
BibRef
8900
Lowe, D.G.,
Organization of Smooth Image Curves at Multiple Scales,
IJCV(3), No. 2, June 1989, pp. 119-130.
BibRef
8906
And:
ICCV88(558-567).
IEEE DOI
Award, Marr Prize, HM. Uses the third derative of Gaussian convolution of the
curve to find segmentation points on the curve.
See also Recovery of Three-Dimensional Structure from Image Curves, The.
BibRef
Kehtarnavaz, N.,
de Figueiredo, R.J.P.,
A 3-D Contour Segmentation Scheme Based on Curvature and Torsion,
PAMI(10), No. 5, September 1988, pp. 707-713.
IEEE DOI
BibRef
8809
Liu, S.T.[Song-Tyang],
Tsai, W.H.[Wen-Hsiang],
Moment-Preserving Corner Detection,
PR(23), No. 5, 1990, pp. 441-460.
Elsevier DOI
BibRef
9000
Cabrelli, C.A.,
Molter, U.M.,
Automatic Representation of Binary Images,
PAMI(12), No. 12, December 1990, pp. 1190-1196.
IEEE DOI Generate break points in curves, apply to the representation of binary versions
of letters.
BibRef
9012
Dattatreya, G.R.,
Kanal, L.N.,
Detection and smoothing of edge contours in images by one-dimensional
Kalman techniques,
SMC(20), No. 1, January/February, 1990.
Kalman filter for smoothing boundaries.
BibRef
9001
Ansari, N.[Nirwan],
Huang, K.W.[Kuo-Wei],
Non-Parametric Dominant Point Detection,
PR(24), No. 9, 1991, pp. 849-862.
Elsevier DOI
BibRef
9100
Ansari, N.[Nirwan],
Delp, E.J.[Edward J.],
On Detecting Dominant Points,
PR(24), No. 5, 1991, pp. 441-451.
Elsevier DOI
BibRef
9100
Rattarangsi, A.,
Chin, R.T.,
Scale-Based Detection of Corners of Planar Curves,
PAMI(14), No. 4, April 1992, pp. 430-449.
IEEE DOI
BibRef
9204
Earlier:
ICPR90(I: 923-930).
IEEE DOI
Scale Space. Maximum of curvature of a boundary in all scales.
Noise analysis.
See also Scale-Space Behavior of Planar-Curve Corners. for some more analysis and
extensions.
BibRef
Wu, Q.M.,
Rodd, M.G.,
Boundary Feature Extraction and Structural Verification of Objects,
AMV Strategies921992, pp. 35-62.
Generation of straight lines and curves from a contour for matching.
BibRef
9200
Chen, M.H.,
Chin, R.T.,
Partial Smoothing Splines for Noisy Boundaries with Corners,
PAMI(15), No. 11, November 1993, pp. 1208-1216.
IEEE DOI
BibRef
9311
Worring, M.,
Smeulders, A.W.M.,
Digital Curvature Estimation,
CVGIP(58), No. 3, November 1993, pp. 366-382.
DOI Link
BibRef
9311
Earlier:
The accuracy and precision of curvature estimation methods,
ICPR92(III:139-142).
IEEE DOI
9208
BibRef
Worring, M.,
Smeulders, A.W.M.,
Digitized Circular Arcs: Characterization and Parameter-Estimation,
PAMI(17), No. 6, June 1995, pp. 587-598.
IEEE DOI
BibRef
9506
Earlier:
Discrete circular arcs,
ICPR94(A:174-178).
IEEE DOI
9410
BibRef
Fermüller, C.[Cornelia],
Kropatsch, W.G.[Walter G.],
A Syntactic Approach to Scale-Space-Based Corner Description,
PAMI(16), No. 7, July 1994, pp. 748-751.
IEEE DOI
BibRef
9407
And:
Multiresolution Shape Description by Corners,
MDSG94(539-548).
BibRef
Earlier:
CVPR92(271-276).
IEEE DOI
BibRef
Earlier:
Hierarchical curve representation,
ICPR92(III:143-146).
IEEE DOI
9208
BibRef
Fairney, D.P.,
Fairney, P.T.,
On the Accuracy of Point Curvature Estimators
in a Discrete Environment,
IVC(12), No. 5, June 1994, pp. 259-265.
Elsevier DOI
Evaluation, Curvature.
BibRef
9406
Tsang, W.M.,
Yuen, P.C.,
Lam, F.K.,
Detection of Dominant Points on an Object Boundary:
A Discontinuity Approach,
IVC(12), No. 9, November 1994, pp. 547-557.
Elsevier DOI Use in matching:
See also Robust Matching Process: A Dominant Point Approach.
BibRef
9411
Zhu, P.F.[Peng-Fei],
Chirlian, P.M.,
On Critical-Point Detection Of Digital Shapes,
PAMI(17), No. 8, August 1995, pp. 737-748.
IEEE DOI Define a critical level to judge the importance of the contour point
for defining the shape. Comparison with a number of other algorithms.
BibRef
9508
Kankanhalli, M.S.,
An Adaptive Dominant Point Detection Algorithm for Digital Curves,
PRL(14), 1993, pp. 385-390.
BibRef
9300
Espelid, R.,
Jonassen, I.,
A Comparison of Splitting Methods for the Identification of
Corner-Points,
PRL(12), 1991, pp. 79-83.
BibRef
9100
Illing, D.P.,
Fairney, P.T.,
Determining Perceptually Significant Points on Noisy Boundary Curves,
PRL(12), 1991, pp. 557-564.
BibRef
9100
Canning, J.,
Kim, J.J.,
Netanyahu, N.S.[Nathan S.],
Rosenfeld, A.[Azriel],
Symbolic Pixel Labeling for Curvilinear Feature Detection,
PRL(8), 1988, pp. 299-310.
BibRef
8800
Earlier:
DARPA88(1080-1090).
BibRef
Earlier: A1, A2, A4 Only:
DARPA87(242-256).
BibRef
Guiducci, A.,
Corner Characterization by Differential Geometry Techniques,
PRL(8), 1988, pp. 311-318.
BibRef
8800
Cheng, K.H.,
Hsu, W.H.,
Parallel Algorithms for Corner Following on Digital Curves,
PRL(8), 1988, pp. 47-53.
BibRef
8800
Teh, C.H.,
Chin, R.T.,
On the Detection of Dominant Points on Digital Curve,
PAMI(11), No. 8, August 1989, pp. 859-872.
IEEE DOI
BibRef
8908
And:
A Scale-Independent Dominant Point Detection Algorithm,
CVPR88(229-234).
IEEE DOI Find the dominant points along curves.
BibRef
Brault, J.J.,
Plamondon, R.,
Segmenting Handwritten Signatures at Their
Perceptually Important Points,
PAMI(15), No. 9, September 1993, pp. 953-957.
IEEE DOI
BibRef
9309
Sohn, K.,
Alexander, W.E.,
Kim, J.H.,
Snyder, W.E.,
A Constrained Regularization Approach in Robust Corner Detection,
SMC(24), 1994, pp. 820-828.
BibRef
9400
Sohn, K.,
Kim, J.H.,
Alexander, W.E.,
A Mean-Field Annealing Approach To Robust Corner Detection,
SMC-B(28), No. 1, February 1998, pp. 82-90.
IEEE Top Reference.
9802
BibRef
Held, A.,
Abe, K.,
Arcelli, C.,
Towards a Hierarchical Contour Description via
Dominant Point Detection,
SMC(24), 1994, pp. 942-949.
BibRef
9400
Wang, M.J.J.,
Wu, W.Y.,
Huang, L.K.,
Wang, D.M.,
Corner Detection Using Bending Value,
PRL(16), No. 6, June 1995, pp. 575-583.
BibRef
9506
Wu, W.Y.[Wen-Yen],
Dominant point detection using adaptive bending value,
IVC(21), No. 6, June 2003, pp. 517-525.
Elsevier DOI
0306
BibRef
Oakley, J.P.,
Shann, R.T.,
Curvature Sensitive Filter and Its Application in
Microfossil Image Characterization,
IVC(14), No. 3, April 1996, pp. 237-241.
Elsevier DOI
9607
BibRef
Earlier:
BMVC92(xx-yy).
PDF File.
9209
BibRef
Cornic, P.,
Another Look at the Dominant Point Detection of Digital Curves,
PRL(18), No. 1, January 1997, pp. 13-25.
9704
BibRef
Yu, D.G.[Dong-Gang],
Yan, H.[Hong],
An Efficient Algorithm for Smoothing, Linearization and Detection of
Structural Feature Points of Binary Image Contours,
PR(30), No. 1, January 1997, pp. 57-69.
Elsevier DOI
9702
BibRef
Earlier:
An Efficient Algorithm for Smoothing Binary Image Contours,
ICPR96(II: 403-407).
IEEE DOI
9608
(Univ. of Sydney, AUS)
BibRef
Ip, H.H.S.,
Wong, W.H.,
Fast Conditioning Algorithm for Significant Zero Curvature Detection,
VISP(144), No. 1, February 1997, pp. 23-30.
9706
BibRef
Fu, A.M.N.,
Yan, H.,
Effective Classification of Planar Shapes Based on
Curve Segment Properties,
PRL(18), No. 1, January 1997, pp. 55-61.
9704
BibRef
Fu, A.M.N.[Alan M.N.],
Yan, H.[Hong],
Huang, K.[Kai],
A Curve Bend Function Based Method to Characterize Contour Shapes,
PR(30), No. 10, October 1997, pp. 1661-1671.
Elsevier DOI
9712
BibRef
Garrido, A.,
de la Blanca, N.P.[N. Perez],
Garcia-Silvente, M.,
Boundary Simplification Using a
Multiscale Dominant Point Detection Algorithm,
PR(31), No. 6, June 1998, pp. 791-804.
Elsevier DOI
9806
BibRef
Ji, Q.A.[Qi-Ang],
Haralick, R.M.[Robert M.],
Breakpoint Detection Using Covariance Propagation,
PAMI(20), No. 8, August 1998, pp. 845-851.
IEEE DOI
BibRef
9808
Earlier:
Corner Detection with Covariance Propagation,
CVPR97(362-367).
IEEE DOI
9704
Compare to Lowe: polygonal approx. for curves.
BibRef
Parida, L.[Laxmi],
Geiger, D.[Devi],
Hummel, R.A.[Robert A.],
Junctions: Detection, Classification, and Reconstruction,
PAMI(20), No. 7, July 1998, pp. 687-698.
IEEE DOI
9808
BibRef
Li, L.Y.[Li-Yuan],
Chen, W.N.[Wei-Nan],
Corner Detection and Interpretation on Planar Curves Using Fuzzy
Reasoning,
PAMI(21), No. 11, November 1999, pp. 1204-1210.
IEEE DOI
9912
Break points on the curves.
BibRef
Cronin, T.M.[Terence M.],
A boundary concavity code to support dominant point detection,
PRL(20), No. 6. June 1999, pp. 617-634.
BibRef
9906
West, G.A.W.[Geoff A. W.],
Rosin, P.L.[Paul L.],
Investigation into the Extraction of Features from Images:
From Curves to Features,
World Scientific1999, ISBN 981-02-3442-2.
Fitting features to lines, 2D, 3D, etc.
BibRef
9900
Simo, A.,
de Ves, E.,
Díaz, M.E.,
Ayala, G.,
Domingo, J.,
Bayesian estimation of edge orientations in junctions,
PRL(20), No. 11-13, November 1999, pp. 1113-1122.
0001
BibRef
Deschênes, F.[Francois],
Ziou, D.[Djemel],
Detection of line junctions and line terminations using curvilinear
features,
PRL(21), No. 6-7, June 2000, pp. 637-649.
0006
BibRef
Earlier:
Detection of Line Junctions in Gray-level Images,
ICPR00(Vol III: 754-757).
IEEE DOI
0009
BibRef
Beau, V.[Vincent],
Singer, M.[Mark],
Reduced resolution and scale space for dominant feature detection in
contours,
PR(34), No. 2, February 2001, pp. 287-297.
Elsevier DOI
0011
BibRef
Liu, W.Y.[Wen-Yu],
Li, H.[Hua],
Zhu, G.X.[Guang-Xi],
A fast algorithm for corner detection using the morphologic skeleton,
PRL(22), No. 8, June 2001, pp. 891-900.
Elsevier DOI
0105
BibRef
Han, J.H.[Joon H.],
Poston, T.[Timothy],
Chord-to-Point Distance Accumulation and Planar Curvature:
A New Approach to Discrete Curvature,
PRL(22), No. 10, August 2001, pp. 1133-1144.
Elsevier DOI
0108
BibRef
Han, J.H.,
Poston, T.,
Distance accumulation and planar curvature,
ICCV93(487-491).
IEEE DOI
0403
BibRef
Kuhnert, K.D.,
Pechtel, D.,
Towards Creating Abstract Features of Complex Objects: The Fusion of
Contourpoints in Significant Contour Sections for Object Recognition,
PRL(23), No. 6, April 2002, pp. 713-718.
Elsevier DOI
0202
BibRef
Earlier: A2, A1:
Automatic generation of significant and local feature groups of complex
and deformed objects,
CIAP99(340-345).
IEEE DOI
9909
BibRef
Neumann, R.[Richard],
Teisseron, G.[Gilbert],
Extraction of dominant points by estimation of the contour fluctuations,
PR(35), No. 7, July 2002, pp. 1447-1462.
Elsevier DOI
0204
BibRef
da Fontoura Costa, L.[Luciano],
Estimating derivatives and curvature of open curves,
PR(35), No. 11, November 2002, pp. 2445-2451.
Elsevier DOI
0208
BibRef
Cazorla, M.A.[Miguel A.],
Escolano, F.,
Gallardo, D.,
Rizo, R.,
Junction detection and grouping with probabilistic edge models and
Bayesian A*,
PR(35), No. 9, September 2002, pp. 1869-1881.
Elsevier DOI
0206
BibRef
Craizer, M.[Marcos],
Pesco, S.[Sinésio],
Teixeira, R.[Ralph],
A Numerical Scheme for the Curvature Equation Near the Singularities,
JMIV(63), No. 1, June 2005, pp. 89-95.
Springer DOI
0501
BibRef
Craizer, M.[Marcos],
Lewiner, T.[Thomas],
Morvan, J.M.[Jean-Marie],
Combining Points and Tangents into Parabolic Polygons:
An Affine Invariant Model for Plane Curves,
JMIV(29), No. 2-3, November 2007, pp. 131-140.
Springer DOI
0712
BibRef
Lewiner, T.[Thomas],
Craizer, M.[Marcos],
Projective Splines and Estimators for Planar Curves,
JMIV(36), No. 1, January 2010, pp. xx-yy.
Springer DOI
1001
BibRef
Craizer, M.[Marcos],
Alvim, M.[Moacyr],
Teixeira, R.[Ralph],
Area Distances Of Convex Plane Curves And Improper Affine Spheres,
SIIMS(1), No. 3, 2008, pp. 209-227.
area distances; improper affine spheres; discrete affine spheres
DOI Link
BibRef
0800
Lavoue, G.[Guillaume],
Dupont, F.[Florent],
Baskurt, A.[Atilla],
A new subdivision based approach for piecewise smooth approximation of
3D polygonal curves,
PR(38), No. 8, August 2005, pp. 1139-1151.
Elsevier DOI
0505
See also Toward a near optimal quad/triangle subdivision surface fitting.
BibRef
Shih, F.Y.[Frank Y.],
Chuang, C.F.[Chao-Fa],
Gaddipati, V.[Vijayalakshmi],
A modified regulated morphological corner detector,
PRL(26), No. 7, 15 May 2005, pp. 931-937.
Elsevier DOI
0506
BibRef
Carmona-Poyato, Á.[Ángel],
Fernández-García, N.L.[Nicolás Luis],
Medina-Carnicer, R.[Rafel],
Madrid-Cuevas, F.J.[Francisco José],
Dominant point detection: A new proposal,
IVC(23), No. 13, 29 November 2005, pp. 1226-1236.
Elsevier DOI
0512
BibRef
Earlier:
A Method for Dominant Points Detection and Matching 2D Object
Identification,
ICIAR04(I: 424-431).
Springer DOI
0409
Search based corner detection.
See also Automatic generation of consensus ground truth for the comparison of edge detection techniques.
See also efficient unsupervised method for obtaining polygonal approximations of closed digital planar curves, An.
BibRef
Carmona-Poyato, A.,
Fernandez-Garcia, N.L.,
Muñoz-Salinas, R.,
A New Algorithm for Dominant Point Detection by Quasi-collinear Break
Points Supression,
ACIVS08(xx-yy).
Springer DOI
0810
BibRef
Madrid-Cuevas, F.J.[Francisco José],
Medina-Carnicer, R.[Rafel],
Carmona-Poyato, Á.[Ángel],
Fernández-García, N.L.[Nicolás Luis],
Dominant Points Detection Using Phase Congruence,
IbPRIA07(II: 138-145).
Springer DOI
0706
BibRef
Medina-Carnicer, R.[Rafel],
Madrid-Cuevas, F.J.[Francisco José],
Unimodal thresholding for edge detection,
PR(41), No. 7, July 2008, pp. 2337-2346.
Elsevier DOI
0804
Unimodal thresholding; Edge detection
BibRef
Medina-Carnicer, R.[Rafel],
Munoz-Salinas, R.,
Carmona-Poyato, Á.[Ángel],
Madrid-Cuevas, F.J.[Francisco José],
A novel histogram transformation to improve the performance of
thresholding methods in edge detection,
PRL(32), No. 5, 1 April 2011, pp. 676-693.
Elsevier DOI
1103
Thresholding; Edge detection; Histogram and edge sensitivity
BibRef
Zhang, X.H.[Xiao-Hong],
Lei, M.[Ming],
Yang, D.[Dan],
Wang, Y.Z.[Yu-Zhu],
Ma, L.T.[Li-Tao],
Multi-scale curvature product for robust image corner detection in
curvature scale space,
PRL(28), No. 5, 1 April 2007, pp. 545-554.
Elsevier DOI
0703
Curvature; CSS corner detection; Multi-scale product;
CCN criteria; ACU accuracy
BibRef
Zang, D.[Di],
Sommer, G.[Gerald],
Signal modeling for two-dimensional image structures,
JVCIR(18), No. 1, February 2007, pp. 81-99.
Elsevier DOI
0711
Monogenic curvature tensor; Generalized monogenic curvature signal;
Phase; Signal modeling
BibRef
Sinzinger, E.D.[Eric D.],
A model-based approach to junction detection using radial energy,
PR(41), No. 2, February 2008, pp. 494-505.
Elsevier DOI
0711
Junction detection; Corner detection; Vertex detection; Feature analysis;
Radial segmentation
See also Radial segmentation.
BibRef
Dinesh, R.,
Guru, D.S.,
Non-parametric Adaptive Approach for the Detection of Dominant Points
on Boundary Curves Based on Non-symmetric Region of Support,
IJIG(9), No. 4, October 2009, pp. 541-557.
DOI Link
0911
See also Non-parametric adaptive region of support useful for corner detection: a novel approach.
BibRef
Wang, Y.[Yu],
Wang, D.S.[De-Sheng],
Bruckstein, A.M.,
On Variational Curve Smoothing and Reconstruction,
JMIV(37), No. 3, July 2010, pp. xx-yy.
Springer DOI
1007
BibRef
Zhong, B.J.[Bao-Jiang],
Ma, K.K.[Kai-Kuang],
On the Convergence of Planar Curves Under Smoothing,
IP(19), No. 8, August 2010, pp. 2171-2189.
IEEE DOI
1008
Curve smoothing.
BibRef
Pedrosa, G.V.[Glauco V.],
Barcelos, C.A.Z.[Celia A.Z.],
Anisotropic diffusion for effective shape corner point detection,
PRL(31), No. 12, 1 September 2010, pp. 1658-1664.
Elsevier DOI
1008
Curvature; Corner detection; Partial differential equation
BibRef
Zhong, B.J.[Bao-Jiang],
Liao, W.H.[Wen-He],
Direct Curvature Scale Space: Theory and Corner Detection,
PAMI(29), No. 3, March 2007, pp. 508-512.
IEEE DOI
0702
Corner Detection.
BibRef
Earlier:
Direct Curvature Scale Space in Corner Detection,
SSPR06(235-242).
Springer DOI
0608
Convolve the curvature with Gaussian kernel.
BibRef
Zhong, B.J.[Bao-Jiang],
Ma, K.K.[Kai-Kuang],
Liao, W.H.[Wen-He],
Scale-Space Behavior of Planar-Curve Corners,
PAMI(31), No. 8, August 2009, pp. 1517-1524.
IEEE DOI
0906
Curvature scale-space works for curves, not corners.
See also Scale-Based Detection of Corners of Planar Curves. where the assumption of no
shrinkage of curves under evolution was wrong.
BibRef
Zhong, B.J.[Bao-Jiang],
Li, C.[Chang],
Wang, Z.S.[Zheng-Sheng],
Curvature product corner detection in direct curvature scale space,
IJCVR(1), No. 2, 2010, pp. 194-205.
DOI Link
1011
BibRef
Bretin, E.,
Lachaud, J.O.[Jacques-Olivier],
Oudet, É.,
Regularization of Discrete Contour by Willmore Energy,
JMIV(40), No. 2, June 2011, pp. 214-229.
WWW Link.
1103
BibRef
de Vieilleville, F.[François],
Lachaud, J.O.[Jacques-Olivier],
Feschet, F.[Fabien],
Convex Digital Polygons, Maximal Digital Straight Segments and
Convergence of Discrete Geometric Estimators,
JMIV(27), No. 2, February 2007, pp. 139-156.
Springer DOI
0704
BibRef
Earlier:
Maximal Digital Straight Segments and Convergence of Discrete Geometric
Estimators,
SCIA05(988-997).
Springer DOI
0506
BibRef
Earlier: A2, A1, Only:
Convex Shapes and Convergence Speed of Discrete Tangent Estimators,
ISVC06(II: 688-697).
Springer DOI
0611
Estimation of shape with only discrete representaiton.
BibRef
de Vieilleville, F.[François],
Lachaud, J.O.[Jacques-Olivier],
Experimental Comparison of Continuous and Discrete Tangent Estimators
Along Digital Curves,
IWCIA08(xx-yy).
Springer DOI
0804
BibRef
Kerautret, B.[Bertrand],
Lachaud, J.O.[Jacques-Olivier],
Curvature estimation along noisy digital contours by approximate global
optimization,
PR(42), No. 10, October 2009, pp. 2265-2278.
Elsevier DOI
0906
BibRef
Earlier:
Robust Estimation of Curvature along Digital Contours with Global
Optimization,
DGCI08(xx-yy).
Springer DOI
0804
Discrete geometry; Digital contours; Curvature estimation; Feature
detection; Robustness to noise
BibRef
Kerautret, B.[Bertrand],
Lachaud, J.O.[Jacques-Olivier],
Meaningful Scales Detection along Digital Contours for Unsupervised
Local Noise Estimation,
PAMI(34), No. 12, December 2012, pp. 2379-2392.
IEEE DOI
1210
BibRef
Earlier:
Multi-scale Analysis of Discrete Contours for Unsupervised Noise
Detection,
IWCIA09(187-200).
Springer DOI
0911
See also Meaningful Scales Detection: An Unsupervised Noise Detection Algorithm for Digital Contours.
BibRef
Roussillon, T.[Tristan],
Tougne, L.[Laure],
Sivignon, I.[Isabelle],
On Three Constrained Versions of the Digital Circular Arc Recognition
Problem,
DGCI09(34-45).
Springer DOI
0909
See also Reversible vectorisation of 3D digital planar curves and applications.
BibRef
Roussillon, T.[Tristan],
Lachaud, J.O.[Jacques-Olivier],
Accurate Curvature Estimation along Digital Contours with Maximal
Digital Circular Arcs,
IWCIA11(43-55).
Springer DOI
1105
BibRef
Andres, E.[Eric],
Roussillon, T.[Tristan],
Analytical Description of Digital Circles,
DGCI11(235-246).
Springer DOI
1104
BibRef
Andres, E.[Eric],
Digital Analytical Geometry: How Do I Define a Digital Analytical
Object?,
IWCIA15(3-17).
Springer DOI
1601
BibRef
Kerautret, B.[Bertrand],
Lachaud, J.O.[Jacques-Olivier],
Nguyen, T.P.[Thanh Phuong],
Circular Arc Reconstruction of Digital Contours with Chosen Hausdorff
Error,
DGCI11(247-259).
Springer DOI
1104
See also discrete geometry approach for dominant point detection, A.
BibRef
Nguyen, T.P.[Thanh Phuong],
Kerautret, B.[Bertrand],
Debled-Rennesson, I.[Isabelle],
Lachaud, J.O.[Jacques-Olivier],
Unsupervised, Fast and Precise Recognition of Digital Arcs in Noisy
Images,
ICCVG10(I: 59-68).
Springer DOI
1009
BibRef
Kerautret, B.[Bertrand],
Lachaud, J.O.[Jacques-Olivier],
Meaningful Scales Detection:
An Unsupervised Noise Detection Algorithm for Digital Contours,
IPOL(2014), No. 2014, pp. 98-115.
DOI Link
1405
Code, Contours.
See also Meaningful Scales Detection along Digital Contours for Unsupervised Local Noise Estimation.
BibRef
Kawamura, K.[Kei],
Ishii, D.[Daisuke],
Watanabe, H.[Hiroshi],
Automatic Scale Detection for Contour Fragment Based on Difference of
Curvature,
IEICE(E94-D), No. 10, October 2011, pp. 1998-2005.
WWW Link.
1110
BibRef
Elias, R.,
Laganiere, R.[Robert],
JUDOCA: JUnction Detection Operator Based on Circumferential Anchors,
IP(21), No. 4, April 2012, pp. 2109-2118.
IEEE DOI
1204
BibRef
Su, R.[Ran],
Sun, C.M.[Chang-Ming],
Pham, T.D.[Tuan D.],
Junction detection for linear structures based on Hessian, correlation
and shape information,
PR(45), No. 10, October 2012, pp. 3695-3706.
Elsevier DOI
1206
Junction detection; Linear structure; Correlation matrix; Hessian
information; Template
BibRef
Su, R.[Ran],
Sun, C.M.[Chang-Ming],
Zhang, C.[Chao],
Pham, T.D.[Tuan D.],
A new method for linear feature and junction enhancement in 2D images
based on morphological operation, oriented anisotropic Gaussian
function and Hessian information,
PR(47), No. 10, 2014, pp. 3193-3208.
Elsevier DOI
1406
Linear feature
BibRef
Boccuto, A.[Antonio],
Gerace, I.[Ivan],
Pucci, P.[Patrizia],
Convex Approximation Technique for Interacting Line Elements
Deblurring: a New Approach,
JMIV(44), No. 2, October 2012, pp. 168-184.
WWW Link.
1206
BibRef
Paula, Jr., I.C.[Ialis C.],
Medeiros, F.N.S.[Fatima N. S.],
Bezerra, F.N.[Francisco N.],
Ushizima, D.M.[Daniela M.],
Multiscale Corner Detection in Planar Shapes,
JMIV(45), No. 3, March 2013, pp. 251-263.
WWW Link.
1301
BibRef
Hu, H.B.[Hai-Bo],
Lin, X.Z.[Xiao-Ze],
Zhang, X.H.[Xiao-Hong],
Feng, Y.[Yong],
Detection of local invariant features using contour,
IET-IPR(7), No. 4, 2013, pp. 364-372.
DOI Link
1307
Corners in contours.
BibRef
Pham, T.A.[The-Anh],
Delalandre, M.[Mathieu],
Barrat, S.[Sabine],
Ramel, J.Y.[Jean-Yves],
Accurate junction detection and characterization in line-drawing
images,
PR(47), No. 1, 2014, pp. 282-295.
Elsevier DOI
1310
BibRef
And:
Erratum:
PR(49), No. 1, 2016, pp. 249-250.
Elsevier DOI
1511
BibRef
Earlier:
Robust Symbol Localization Based on Junction Features and Efficient
Geometry Consistency Checking,
ICDAR13(1083-1087)
IEEE DOI
1312
BibRef
Earlier:
Accurate junction detection and reconstruction in line-drawing images,
ICPR12(693-696).
WWW Link.
1302
Junction detection
computational geometry.
BibRef
Pham, T.A.[The-Anh],
Barrat, S.[Sabine],
Delalandre, M.[Mathieu],
Ramel, J.Y.[Jean-Yves],
An efficient tree structure for indexing feature vectors,
PRL(55), No. 1, 2015, pp. 42-50.
Elsevier DOI
1503
Exact nearest neighbour search
BibRef
Xia, G.S.[Gui-Song],
Delon, J.[Julie],
Gousseau, Y.[Yann],
Accurate Junction Detection and Characterization in Natural Images,
IJCV(106), No. 1, January 2014, pp. 31-56.
WWW Link.
1402
BibRef
Keles, H.Y.[Hacer Yalim],
Tari, S.[Sibel],
A robust method for scale independent detection of curvature-based
criticalities and intersections in line drawings,
PR(48), No. 1, 2015, pp. 140-155.
Elsevier DOI
1410
Line drawings
BibRef
Teng, S.W.[Shyh Wei],
Sadat, R.M.N.[Rafi Md. Najmus],
Lu, G.J.[Guo-Jun],
Effective and efficient contour-based corner detectors,
PR(48), No. 7, 2015, pp. 2185-2197.
Elsevier DOI
1504
Corner detector
BibRef
Núñez, J.M.[Joan M.],
Bernal, J.[Jorge],
Sánchez, F.J.[F. Javier],
Vilariño, F.[Fernando],
GRowing Algorithm for Intersection Detection (GRAID) in branching
patterns,
MVA(26), No. 2-3, April 2015, pp. 387-400.
Springer DOI
1504
BibRef
Schindele, A.[Andreas],
Massopust, P.[Peter],
Forster, B.[Brigitte],
Multigrid Convergence for the MDCA Curvature Estimator,
JMIV(57), No. 3, March 2017, pp. 423-438.
Springer DOI
1702
MDCA: maximal digital circular arcs.
See also Accurate Curvature Estimation along Digital Contours with Maximal Digital Circular Arcs.
BibRef
Owrang, A.,
Malek-Mohammadi, M.,
Proutiere, A.,
Jansson, M.,
Consistent Change Point Detection for Piecewise Constant Signals With
Normalized Fused LASSO,
SPLetters(24), No. 6, June 2017, pp. 799-803.
IEEE DOI
1705
Computational complexity, Computational modeling, Noise level,
Noise measurement, Numerical models, Sensors, Standards,
Change point detection, fused LASSO (FL),
irrepresentable condition, piecewise, constant
BibRef
Xue, N.,
Xia, G.S.,
Bai, X.,
Zhang, L.,
Shen, W.,
Anisotropic-Scale Junction Detection and Matching for Indoor Images,
IP(27), No. 1, January 2018, pp. 78-91.
IEEE DOI
1712
computational geometry, feature extraction, image matching,
anisotropic-scale junction detection,
non-local description
BibRef
Raftopoulos, K.A.[Konstantinos A.],
Kollias, S.D.[Stefanos D.],
Sourlas, D.D.[Dionysios D.],
Ferecatu, M.[Marin],
On the Beneficial Effect of Noise in Vertex Localization,
IJCV(126), No. 1, January 2018, pp. 111-139.
Springer DOI
1801
BibRef
Earlier: A1, A4, Only:
Noising versus Smoothing for Vertex Identification in Unknown Shapes,
CVPR14(4162-4168)
IEEE DOI
1409
Noise Resistance. Vertex identification in unknown shapes. Noise helps.
BibRef
Le Quentrec, É.[Étienne],
Mazo, L.[Loïc],
Baudrier, É.[Étienne],
Tajine, M.[Mohamed],
Local Turn-Boundedness: A Curvature Control for Continuous Curves with
Application to Digitization,
JMIV(62), No. 5, June 2020, pp. 673-692.
Springer DOI
2007
BibRef
Lin, X.Y.[Xin-Yu],
Zhou, Y.J.[Ying-Jie],
Liu, Y.P.[Yi-Peng],
Zhu, C.[Ce],
A dedicated benchmark for contour-based corner detection evaluation,
IVC(136), 2023, pp. 104716.
Elsevier DOI
2308
Contour/curve analysis, Corner detection,
Dominant point detection, Low-level computer vision, Performance evaluation
BibRef
Liu, Z.H.[Zhi-Hao],
Fu, Y.Q.[Yu-Qian],
E-ACJ: Accurate Junction Extraction for Event Cameras,
ICIP21(2603-2607)
IEEE DOI
2201
Adaptation models, Image matching, Image edge detection,
Feature extraction, Cameras, Junctions, Event-based Vision
BibRef
Lin, X.,
Zhu, C.,
Zhang, Q.,
Huang, X.,
Liu, Y.,
Efficient and Robust Corner Detectors Based on Second-Order
Difference of Contour,
SPLetters(24), No. 9, September 2017, pp. 1393-1397.
IEEE DOI
1708
Computational complexity, Detectors,
Euclidean distance, Indexes, Robustness, Corner detection,
multiscale analysis, robustness, second-order difference of contour (SODC)
BibRef
Afrin, N.,
Mohammed, N.,
Lai, W.,
An Effective Multi-Chord Corner Detection Technique,
DICTA16(1-8)
IEEE DOI
1701
Cascading style sheets
BibRef
Duval-Poo, M.A.[Miguel Alejandro],
Odone, F.[Francesca],
de Vito, E.[Ernesto],
Enhancing Signal Discontinuities with Shearlets:
An Application to Corner Detection,
CIAP15(II:108-118).
Springer DOI
1511
BibRef
Cordes, K.[Kai],
Ostermann, J.[Jorn],
Increasing the precision of junction shaped features,
MVA15(295-298)
IEEE DOI
1507
Benchmark testing
BibRef
Li, B.[Bo],
Li, H.B.[Hai-Bo],
Soderstrom, U.[Ulrik],
Scale-invariant corner keypoints,
ICIP14(5741-5745)
IEEE DOI
1502
Computer vision
BibRef
Nieuwenhuis, C.[Claudia],
Toeppe, E.[Eno],
Gorelick, L.[Lena],
Veksler, O.[Olga],
Boykov, Y.Y.[Yuri Y.],
Efficient Squared Curvature,
CVPR14(4098-4105)
IEEE DOI
1409
MRF
BibRef
Xia, G.S.[Gui-Song],
Delon, J.[Julie],
Gousseau, Y.[Yann],
An accurate and contrast invariant junction detector,
ICPR12(2780-2783).
WWW Link.
1302
BibRef
Li, Z.L.[Zhi-Li],
Shen, Y.C.[Yan-Chun],
A robust corner detector based on curvature scale space and harris,
IASP11(223-226).
IEEE DOI
1112
BibRef
Fleischmann, O.[Oliver],
Wietzke, L.[Lennart],
Sommer, G.[Gerald],
A Novel Curvature Estimator for Digital Curves and Images,
DAGM10(442-451).
Springer DOI
1009
BibRef
Mair, E.[Elmar],
Hager, G.D.[Gregory D.],
Burschka, D.[Darius],
Suppa, M.[Michael],
Hirzinger, G.[Gerhard],
Adaptive and Generic Corner Detection Based on the Accelerated Segment
Test,
ECCV10(II: 183-196).
Springer DOI
1009
BibRef
Fiorio, C.[Christophe],
Mercat, C.[Christian],
Rieux, F.[Frédéric],
Adaptive Discrete Laplace Operator,
ISVC11(II: 377-386).
Springer DOI
1109
BibRef
Earlier:
Curvature Estimation for Discrete Curves Based on Auto-adaptive Masks
of Convolution,
CompIMAGE10(47-59).
Springer DOI
1006
See also Discrete Simulation of a Chladni Experiment.
BibRef
Zhang, L.[Lin],
Zhang, L.[Lei],
Zhang, D.[David],
A Multi-scale Bilateral Structure Tensor Based Corner Detector,
ACCV09(II: 618-627).
Springer DOI
0909
BibRef
Cui, C.H.[Chun-Hui],
Ngan, K.N.[King-Ngi],
Automatic scale selection for corners and junctions,
ICIP09(989-992).
IEEE DOI
0911
BibRef
Feng, Y.Q.[Yu-Qiang],
Corner Point Detection on Digital Curve through Rotate-Angle
Accumulation,
CISP09(1-3).
IEEE DOI
0910
BibRef
Kerautret, B.,
Lachaud, J.O.,
Naegel, B.,
Comparison of Discrete Curvature Estimators and Application to Corner
Detection,
ISVC08(I: 710-719).
Springer DOI
0812
BibRef
Join, C.[Cédric],
Tabbone, S.[Salvatore],
Robust Curvature Extrema Detection Based on New Numerical Derivation,
ACIVS08(xx-yy).
Springer DOI
0810
BibRef
Maire, M.[Michael],
Arbelaez, P.[Pablo],
Fowlkes, C.C.[Charless C.],
Malik, J.[Jitendra],
Using contours to detect and localize junctions in natural images,
CVPR08(1-8).
IEEE DOI
0806
See also Contour Detection and Hierarchical Image Segmentation.
BibRef
Lemuz-López, R.[Rafael],
Estrada, M.A.[Miguel Arias],
Ranking Corner Points by the Angular Difference between Dominant Edges,
CVS08(xx-yy).
Springer DOI
0805
BibRef
Karousos, E.I.,
Ginnis, A.I.,
Kaklis, P.D.,
Controlling Torsion Sign,
GMP08(xx-yy).
Springer DOI
0804
BibRef
Sánchez-Cruz, H.[Hermilo],
Corner Detection by Searching Two Class Pattern Substrings,
CIARP06(354-362).
Springer DOI
0611
BibRef
Arseneau, S.[Shawn],
Cooperstock, J.R.[Jeremy R.],
An Improved Representation of Junctions Through Asymmetric Tensor
Diffusion,
ISVC06(I: 363-372).
Springer DOI
0611
BibRef
And:
An Asymmetrical Diffusion Framework for Junction Analysis,
BMVC06(II:689).
PDF File.
0609
BibRef
Sánchez-Cruz, H.[Hermilo],
A Proposal Method for Corner Detection with an Orthogonal
Three-Direction Chain Code,
ACIVS06(161-172).
Springer DOI
0609
BibRef
Chetverikov, D.[Dmitry],
A Simple and Efficient Algorithm for Detection of High Curvature Points
in Planar Curves,
CAIP03(746-753).
Springer DOI
0311
BibRef
Koo, W.M.[Wai Mun],
Kot, A.C.[Alex Chichung],
Curvature-Based Singular Points Detection,
AVBPA01(229).
Springer DOI
0310
BibRef
Lindeberg, T.,
Junction Detection with Automatic Selection of
Detection Scales and Localization Scales,
ICIP94(I: 924-928).
IEEE DOI Junction location by normalized derivatives using sclae-space
techniques.
Abstract:
HTML Version. Full paper:
PS File. For edge detection:
See also Edge Detection and Ridge Detection with Automatic Scale Selection.
See also Feature Tracking with Automatic Selection of Spatial Scales.
BibRef
9400
Hansen, T.[Thorsten],
Neumann, H.[Heiko],
A Biologically Motivated Scheme for Robust Junction Detection,
BMCV02(16 ff.).
Springer DOI
0303
BibRef
Barsi, A.[Arpad],
Heipke, C.[Christian],
Willrich, F.[Felicitas],
Junction Extraction by Artificial Neural Network System - JEANS,
PCV02(B: 18).
0305
BibRef
Sluzek, A.[Andrzej],
A Local Algorithm for Real-Time Junction Detection in Contour Images,
CAIP01(465 ff.).
Springer DOI
0210
BibRef
Coeurjolly, D.[David],
Miguet, S.[Serge],
Tougne, L.[Laure],
Discrete Curvature Based on Osculating Circle Estimation,
VF01(303 ff.).
Springer DOI
0209
Extendes
See also Digital Curvature Estimation.
BibRef
Nandy, D.,
Ben-Arie, J.,
EXM eigen templates for detecting and classifying arbitrary junctions,
ICIP98(I: 211-215).
IEEE DOI
9810
BibRef
Caselles, V.[Vicent],
Coll, B.[Bartomeu],
Morel, J.M.[Jean-Michel],
Junction Detection and Filtering: A Morphological Approach,
ICIP96(I: 493-496).
IEEE DOI
BibRef
9600
Kadonaga, T.,
Abe, K.,
Comparison of Methods for Detecting Corner Points from Digital Curves,
GRMA951996, pp. 23-34.
BibRef
9600
Neumann, H.,
Ottenberg, K.[Karsten],
Estimating attributes of smooth signal transitions from scale-space,
ICPR92(III:754-758).
IEEE DOI
9208
BibRef
Dolan, J.,
Riseman, E.M.,
Computing Curvilinear Structure by Token-Based Grouping,
CVPR92(264-270).
IEEE DOI
BibRef
9200
Dolan, J.,
Weiss, R.,
Perceptual Grouping of Curved Lines,
DARPA89(1135-1145).
Using proximity and good continuation to get co-curving lines. This
operates over a range of scales. Initial results for straight and
simple curves.
BibRef
8900
Lee, C.K.,
Haralick, R.M.[Robert M.],
Deguchi, K.,
Estimation of curvature from sampled noisy data,
CVPR93(536-541).
IEEE DOI
0403
BibRef
Bårman, H.[Håkan],
Hierarchical Curvature Estimation in Computer Vision,
Ph.D.Thesis, Linkoping University, September, 1991.
HTML Version.
BibRef
9109
Deguchi, K.,
Multi-Scale Curvatures for Contour Feature Extraction,
ICPR88(II: 1113-1115).
IEEE DOI
BibRef
8800
Aviad, Z.,
Locating Corners in Noisy Curves by Delineating Imperfect Sequences,
CMU-CS-TR--88-199, December 1988.
BibRef
8812
Chapter on Edge Detection and Analysis, Lines, Segments, Curves, Corners, Hough Transform continues in
Corner Feature Detection Techniques and Use .