Hodes, L.,
Discrete Approximation of Continuous Convex Blobs,
SIAM_JAM(19), 1970, pp. 477-485.
BibRef
7000
Cooper, D.,
Yalabik, N.,
On the Computational Cost of Approximating and Recognizing Noise-Perturbed
Straight Lines and Quadratic Arcs in the Plane,
TC(25), No. 10, October 1976, pp. 1020-1032.
BibRef
7610
Davis, L.S.,
Rosenfeld, A.,
Curve Segmentation by Relaxation Labeling,
TC(26), 1977, pp. 1053-1057.
BibRef
7700
Yamaguchi, F.[Fujio],
A New Curve Fitting Method Using a CRT Computer Display,
CGIP(7), No. 3, June 1978, pp. 425-437.
Elsevier DOI
BibRef
7806
Pavlidis, T.[Theo],
Ali, F.,
A Hierarchical Syntactic Shape Analyzer,
PAMI(1), No. 1, January 1979, pp. 2-9.
BibRef
7901
Pavlidis, T.,
The Use of a Syntactic Shape Analyzer for Contour Matching,
PAMI(1), No. 3, July 1979, 307-310.
BibRef
7907
Pavlidis, T.[Theo],
Hierarchies in Structural Pattern Recogniton,
PIEEE(67), 1979, pp. 737-744.
BibRef
7900
Rutkowski, W.S.,
Peleg, S.,
Rosenfeld, A.,
Shape Segmentation Using Relaxation,
PAMI(3), No. 4, July 1981, pp. 368-375.
See also Thresholding Using Relaxation.
BibRef
8107
Rutkowski, W.S.,
Shape Segmentation Using Arc/Chord Properties,
CGIP(17), No. 2, October 1981, pp. 114-129.
Elsevier DOI
BibRef
8110
Slagle, J.R.[James R.],
Dixon, J.K.[John K.],
Finding a good figure that approximately passes through given points,
PR(12), No. 5, 1980, pp. 319-326.
Elsevier DOI
0309
BibRef
Slagle, J.R.[James R.],
Dixon, J.K.[John K.],
Freedom descriptions:
A way to find figures that approximate given points,
PR(17), No. 6, 1984, pp. 631-636.
Elsevier DOI
0309
BibRef
Elliott, H.,
Srinivasan, L.,
An Application of Dynamic Programming to
Sequential Boundary Estimation,
CGIP(17), No. 4, December 1981, pp. 291-314.
Elsevier DOI
BibRef
8112
Shlien, S.[Seymour],
Segmentation of Digital Curves Using Linguistic Techniques,
CVGIP(22), No. 2, May 1983, pp. 277-286.
Elsevier DOI
BibRef
8305
Pavlidis, T.[Theo],
Curve Fitting with Conic Splines,
TOG(2), No. 1, 1983, pp. 1-31.
BibRef
8300
Badii, F.,
Peikari, B.,
Approximation of Multipath Planar Shapes in Pattern Analysis,
CIS(12), 1983, pp. 99-110.
BibRef
8300
Fischler, M.A.,
Bolles, R.C.,
Perceptual Organization and Curve Partitioning,
PAMI(8), No. 1, January 1986, pp. 100-105.
Reprinted:
BibRef
8601
RCV87(210-215).
BibRef
Earlier:
CVPR83(38-46).
BibRef
And:
DARPA83(224-232).
Various ways to partition curves.
BibRef
Fischler, M.A.,
Perceptual Organization and the Curve Partitioning Problem,
IJCAI83(1014-1018).
BibRef
8300
Fischler, M.A.,
Wolf, H.C.,
Locating Perceptually Salient Points on Planar Curves,
PAMI(16), No. 2, February 1994, pp. 113-129.
IEEE DOI
BibRef
9402
Earlier:
Saliency Detection and Partitioning Planar Curves,
DARPA93(917-931).
Curve partioning using salient points, with an attempt to match
human performance. Extension of the Fischler/Bolles paper above.
BibRef
Dobbins, A.,
Zucker, S.W.,
Cyander, M.S.,
Endstopped Neurons in the Visual Cortex as a Substrate for
Calculating Curvature,
Nature(329), No. 6138, 1987, pp. 438-441.
BibRef
8700
Wuescher, D.M.,
Boyer, K.L.,
Robust Contour Decomposition Using a Constant Curvature Criterion,
PAMI(13), No. 1, January 1991, pp. 41-51.
IEEE DOI Arcs and lines both. This produces more stable
results than local maxima type decompositions.
BibRef
9101
Ventura, J.A.[Jose A.],
Chen, J.M.[Jen-Ming],
Segmentation of two-dimensional curve contours,
PR(25), No. 10, October 1992, pp. 1129-1140.
Elsevier DOI
BibRef
9210
Robergé, J.[James],
Roberge, J.,
A Data Reduction Algorithm for Planar Curves,
CVGIP(29), No. 2, February 1985, pp. 168-195.
Elsevier DOI Fastest algorithm according to
See also Optimum Uniform Piecewise Linear Approximation of Planar Curves.
BibRef
8502
Hashiyama, H.[Hideshi],
Araki, S.[Shuichi],
Ogura, M.[Michio],
Data processing method of binary graphic pattern and system therefor,
US_Patent4,573,201, Feb 25, 1986
WWW Link. Contour representation by characteristic points.
BibRef
8602
Phillips, T.Y.,
Rosenfeld, A.[Azriel],
A Method of Curve Partitioning Using Arc-Chord Distance,
PRL(5), 1987, pp. 285-288.
BibRef
8700
Meer, P.[Peter],
Baugher, E.S.[Ernest S.],
Rosenfeld, A.[Azriel],
Extraction of Trend Lines and Extrema from Multiscale Curves,
PR(21), No. 3, 1988, pp. 217-226.
Elsevier DOI
BibRef
8800
Yamada, K.[Keiichi],
Method and system for determining connection states of straight
short vectors representing figure in curve fitting,
US_Patent5,231,697, July 27, 1993.
WWW Link.
BibRef
9307
Cox, I.J.,
Rehg, J.M.[James M.],
Hingorani, S.,
A Bayesian Multiple-Hypothesis Approach to
Edge Grouping and Contour Segmentation,
IJCV(11), No. 1, August 1993, pp. 5-24.
Springer DOI
BibRef
9308
A Bayesian Multiple-Hypothesis Approach to Contour Grouping,
ECCV92(72-77).
Springer DOI
BibRef
Chang, C.H.,
Hwang, S.Y.,
2-D Curve Partitioning by Kohonen Feature Maps,
JVCIR(5), 1994, pp. 148-155.
BibRef
9400
Katzir, N.,
Lindenbaum, M.,
Porat, M.,
Curve Segmentation under Partial Occlusion,
PAMI(16), No. 5, May 1994, pp. 513-519.
IEEE DOI
BibRef
9405
Earlier:
Planar curve segmentation for recognition of partially occluded shapes,
ICPR90(I: 842-846).
IEEE DOI
9006
BibRef
West, G.A.W.[Geoff A.W.],
Rosin, P.L.[Paul L.],
Techniques for Segmenting Image Curves into Meaningful Descriptions,
PR(24), No. 7, 1991, pp. 643-652.
Elsevier DOI
BibRef
9100
Rosin, P.L.[Paul L.],
West, G.A.W.[Geoff A.W.],
Segmentation of Edges into Lines and Arcs,
IVC(7), No. 2, May 1989, pp. 109-114.
Elsevier DOI
BibRef
8905
Rosin, P.L.[Paul L.],
West, G.A.W.[Geoff A.W.],
Curve Segmentation and Representation by Superellipses,
VISP(142), No. 5, October 1995, pp. 280-288.
BibRef
9510
Earlier:
Segmenting Curves into Elliptic Arcs and Straight Lines,
ICCV90(75-78).
IEEE DOI
BibRef
Rosin, P.L.[Paul L.],
Augmenting Corner Descriptors,
GMIP(58), No. 3, May 1996, pp. 286-294.
9606
BibRef
Rosin, P.L.[Paul L.],
West, G.A.W.[Geoff A.W.],
Salience Distance Transforms,
GMIP(57), No. 6, November 1995, pp. 483-521.
BibRef
9511
Earlier:
Multi-scale Salience Distance Transforms,
BMVC93(579-588).
PDF File. Curtin Univ, Australia.
BibRef
Rosin, P.L.[Paul L.],
West, G.A.W.[Geoff A.W.],
Nonparametric Segmentation of Curves into Various Representations,
PAMI(17), No. 12, December 1995, pp. 1140-1153.
IEEE DOI
Code, Curve Segmentation. (Code is available:
WWW Link.
BibRef
9512
Detection of Circular Arcs in Images,
Alvey88(259-263).
BibRef
Earlier: A2, A1:
Multi-stage Combined Ellipse and Line Detection,
BMVC92(197-206).
PDF File.
9209
Segments into various components, lines, arcs (circular, elliptical, etc.).
A fairly general complete algorithm. An extensive bibliography of earlier
curve partitioning work.
BibRef
Kanatani, K.,
Nonparametric Segmentation of Curves into Various Representations:
Comment,
PAMI(19), No. 12, December 1997, pp. 1391-1394.
IEEE DOI
9712
BibRef
Rosin, P.L.[Paul L.],
West, G.A.W.[Geoff A.W.],
Nonparametric Segmentation of Curves into Various Representations:
Response,
PAMI(19), No. 12, December 1997, pp. 1393-1394.
IEEE DOI
9712
BibRef
Rosin, P.L.[Paul L.],
Non-Parametric Multi-Scale Curve Smoothing,
PRAI(8), 1994, pp. 1381-1406.
BibRef
9400
Earlier:
SPIE(1964), April 1993, pp. 66-77
Code, Curve Smoothing. Code is available:
WWW Link.
BibRef
Sheu, H.T.[Hsin-Teng],
Yang, H.Z.[Hung-Zi],
Open Curve Segmentation Via a 2-Phase Scheme,
PR(26), No. 12, December 1993, pp. 1839-1844.
Elsevier DOI
BibRef
9312
Ichoku, C.,
Deffontaines, B.,
Chorowicz, J.,
Segmentation of Digital Plane-Curves: A Dynamic Focusing Approach,
PRL(17), No. 7, June 10 1996, pp. 741-750.
9607
BibRef
Arcelli, C.[Carlo],
Ramella, G.[Giuliana],
Finding Contour-Based Abstractions of Planar Patterns,
PR(26), No. 10, October 1993, pp. 1563-1577.
Elsevier DOI
BibRef
9310
Sharaiha, Y.M.[Yazid M.],
Garat, P.[Philippe],
A Compact Chord Property for Digital Arcs,
PR(26), No. 5, May 1993, pp. 799-803.
Elsevier DOI Compact chord property.
Extension from:
See also Digital Straight Line Segments.
BibRef
9305
Debled-Rennesson, I.[Isabelle],
Reveilles, J.P.,
A Linear Algorithm for Segmentation of Digital Curves,
PRAI(9), 1995, pp. 635-662.
See also Multiorder polygonal approximation of digital curves.
BibRef
9500
Reveillès, J.P.[Jean-Pierre],
Weak Rational Computing for Digital Geometry,
DGCI08(xx-yy).
Springer DOI
0804
BibRef
Debled-Rennesson, I.[Isabelle],
Rémy, J.L.[Jean-Luc],
Rouyer-Degli, J.[Jocelyne],
Segmentation of Discrete Curves into Fuzzy Segments,
INRIARR-4989, 2003.
HTML Version.
BibRef
0300
de la Blanca, N.P.[N. Perez],
Fdez Valdivia, J.,
Garcia, J.A.,
Characterizing Planar Outlines,
PRL(14), 1993, pp. 489-497.
BibRef
9300
Chaudhuri, B.B.,
Dutta, S.,
Interactive Curve Drawing by Segmented Bezier Approximation with a
Control Parameter,
PRL(4), 1986, pp. 171-176.
BibRef
8600
Leite, J.A.F.,
Hancock, E.R.,
Iterative Curve Organization with the EM Algorithm,
PRL(18), No. 2, February 1997, pp. 143-155.
9704
BibRef
Earlier:
Iterative Spline Relaxation with the EM Algorithm,
ICPR96(II: 161-165).
IEEE DOI
9608
(Univ. of York, UK)
BibRef
Lindeberg, T.,
Li, M.X.,
Segmentation and Classification of Edges Using
Minimum Description Length Approximation and Complementary Junction Cues,
CVIU(67), No. 1, July 1997, pp. 88-98.
9707
DOI Link
BibRef
Lindeberg, T.,
Li, M.,
Automatic Generation of Break Points for
MDL Based Curve Classification,
SCIA95(767-776).
BibRef
9500
And:
ISRN KTH/NA/P-94/28-SE, September 1994.
HTML Version.
BibRef
Li, M.,
Minimum Description Length Based 2-D Shape Description,
ICCV93(512-517).
IEEE DOI
BibRef
9300
And:
ISRN KTH/NA/P-92/34-SE, November 1992.
HTML Version. And Postscript:
PS File.
BibRef
Ozugur, T.,
Denizhan, Y.,
Panayirci, E.,
Feature-Extraction in Shape-Recognition Using Segmentation of
the Boundary Curve,
PRL(18), No. 10, October 1997, pp. 1049-1056.
9802
BibRef
Pham, T.D.,
Yan, H.,
An Effective Algorithm for the Segmentation of Digital Plane Curves:
The Isoparametric Formulation,
PRL(19), No. 2, February 1998, pp. 171-176.
9808
BibRef
Zunic, J.[Jovisa],
Acketa, D.M.[Dragan M.],
A General Coding Scheme for Families of Digital Curve Segments,
GMIP(60), No. 6, November 1998, pp. 437-460.
BibRef
9811
Sheu, H.T.,
Hu, W.C.,
Multiprimitive Segmentation of Planar Curves:
A Two-Level Breakpoint Classification and Tuning Approach,
PAMI(21), No. 8, August 1999, pp. 791-797.
IEEE DOI
BibRef
9908
Rosin, P.L.[Paul L.],
Shape Partitioning by Convexity,
SMC-A(30), No. 2, March 2000, pp. 202-210.
IEEE Top Reference.
0004
BibRef
Earlier:
BMVC99(633-64).
PDF File.
PDF File.
BibRef
Rosin, P.L.[Paul L.],
Straightening and Partitioning Shapes,
VF01(440 ff.).
Springer DOI
0209
BibRef
Chung, J.W.[Jae-Won],
Lee, J.H.[Jin-Hak],
Moon, J.H.[Joo-Hee],
Kim, J.K.[Jae-Kyoon],
A new vertex-based binary shape coder for high coding efficiency,
SP:IC(15), No. 7-8, May 2000, pp. 665-684.
Elsevier DOI
0005
BibRef
Meier, F.W.[Fabian W.],
Schuster, G.M.[Guido M.],
Katsaggelos, A.K.[Aggelos K.],
A mathematical model for shape coding with B-splines,
SP:IC(15), No. 7-8, May 2000, pp. 685-701.
Elsevier DOI
0005
BibRef
Meribout, M.,
Ogura, T.,
Nakanishi, M.,
On Using the CAM Concept for Parametric Curve Extraction,
IP(9), No. 12, December 2000, pp. 2126-2130.
IEEE DOI
0011
BibRef
Yan, H.[Hong],
Fuzzy curve-tracing algorithm,
SMC-B(31), No. 5, October 2001, pp. 768-780.
IEEE Top Reference.
0111
BibRef
Earlier:
Detection of curved text path based on the fuzzy curve-tracing (FCT)
algorithm,
ICDAR01(266-270).
IEEE DOI
0109
BibRef
Lam, B.S.Y.,
Yan, H.[Hong],
Complex curve tracing based on a minimum spanning tree model and
regularized fuzzy clustering,
ICIP04(III: 2091-2094).
IEEE DOI
0505
BibRef
Wang, D.P.[Der Perng],
A new algorithm for fitting a rectilinear x-monotone curve to a set of
points in the plane,
PRL(23), No. 1-3, January 2002, pp. 329-334.
Elsevier DOI
0201
BibRef
Cronin, T.M.[Terence M.],
Visualizing concave and convex partitioning of 2D contours,
PRL(24), No. 1-3, January 2003, pp. 429-443.
Elsevier DOI
0211
BibRef
Sarkar, B.[Biswajit],
Singh, L.K.[Lokendra K.],
Sarkar, D.[Debranjan],
Approximation of digital curves with line segments and circular arcs
using genetic algorithms,
PRL(24), No. 15, November 2003, pp. 2585-2595.
Elsevier DOI
0308
BibRef
Sarkar, B.[Biswajit],
Roy, S.[Sanghamitra],
Sarkar, D.[Debranjan],
Hierarchical representation of digitized curves through dominant point
detection,
PRL(24), No. 15, November 2003, pp. 2869-2882.
Elsevier DOI
0308
BibRef
Faber, P.[Petko],
A Theoretical Framework for Relaxation Processes in Pattern
Recognition: Application to Robust Nonparametric Contour Generalization,
PAMI(25), No. 8, August 2003, pp. 1021-1027.
IEEE Abstract.
0308
Task is to find an application specific relaxation process.
Apply to curve descriptions.
BibRef
Wei, W.[Wei],
Wang, Q.[Qi],
Wang, H.[Hua],
Zhang, H.G.[Hong Guang],
The feature extraction of nonparametric curves based on niche genetic
algorithms and multi-population competition,
PRL(26), No. 10, 15 July 2005, pp. 1483-1497.
Elsevier DOI
0506
BibRef
Mayster, Y.[Yan],
Lopez, M.A.[Mario A.],
Approximating a set of points by a step function,
JVCIR(17), No. 6, December 2006, pp. 1178-1189.
Elsevier DOI
0711
Combinatorial optimization; Visual data reduction;
Curve fitting; Approximation algorithms
BibRef
Sarfraz, M.[Muhammad],
Some Algorithms for Curve Design and Automatic Outline Capturing of
Images,
IJIG(4), No. 2, April 2004, pp. 301-324.
0404
BibRef
Sarfraz, M.,
Interactive Curve Modeling
With Applications to Computer Graphics, Vision and Image Processing,
Springer2008, ISBN: 978-1-84628-870-8.
WWW Link. Tools for curves, splines, etc.
BibRef
0800
Awrangjeb, M.[Mohammad],
Lu, G.J.[Guo-Jun],
Robust Image Corner Detection Based on the Chord-to-Point Distance
Accumulation Technique,
MultMed(10), No. 6, October 2008, pp. 1059-1072.
IEEE DOI
0905
BibRef
Awrangjeb, M.[Mohammad],
Lu, G.J.[Guo-Jun],
Fraser, C.S.[Clive S.],
Ravanbakhsh, M.[Mehdi],
A Fast Corner Detector Based on the Chord-to-Point Distance
Accumulation Technique,
DICTA09(519-525).
IEEE DOI
0912
BibRef
Awrangjeb, M.[Mohammad],
Lu, G.J.[Guo-Jun],
Fraser, C.S.[Clive S.],
Performance Comparisons of Contour-Based Corner Detectors,
IP(21), No. 9, September 2012, pp. 4167-4179.
IEEE DOI
1208
BibRef
Earlier:
A Comparative Study on Contour-Based Corner Detectors,
DICTA10(92-99).
IEEE DOI
1012
BibRef
Awrangjeb, M.,
Lu, G.J.[Guo-Jun],
A Performance Review of Recent Corner Detectors,
DICTA13(1-8)
IEEE DOI
1402
content-based retrieval
BibRef
Narappanawar, N.[Nitin],
Rao, B.M.[B. Madhusudan],
Joshi, M.[Maduri],
Graph theory based segmentation of traced boundary into open and closed
sub-sections,
CVIU(115), No. 11, November 2011, pp. 1552-1558.
Elsevier DOI
1110
Border following; Boundary following; Boundary traversing; Boundary
segmentation; Component segmentation; Component identification;
Identifying strokes; OCR; Multiple regression analysis
BibRef
Elder, J.H.[James H.],
Oleskiw, T.D.[Timothy D.],
Yakubovich, A.[Alex],
Peyré, G.[Gabriel],
On growth and formlets: Sparse multi-scale coding of planar shape,
IVC(31), No. 1, January 2013, pp. 1-13.
Elsevier DOI
1302
Planar shape; Deformation; Sparse coding; Contour completion
BibRef
Earlier: A2, A1, A4, Only:
CVPR10(459-466).
IEEE DOI
1006
BibRef
Yakubovich, A.[Alex],
Elder, J.H.[James H.],
Building Better Formlet Codes for Planar Shape,
CRV14(84-91)
IEEE DOI
1406
Computational modeling
BibRef
Vacavant, A.[Antoine],
Roussillon, T.[Tristan],
Kerautret, B.[Bertrand],
Lachaud, J.O.[Jacques-Olivier],
A combined multi-scale/irregular algorithm for the vectorization of
noisy digital contours,
CVIU(117), No. 4, April 2013, pp. 438-450.
Elsevier DOI
1303
Noisy object analysis; Multi-scale noise detection; Irregular grids;
Reeb graph
BibRef
Vacavant, A.[Antoine],
Kerautret, B.[Bertrand],
Roussillon, T.[Tristan],
Feschet, F.[Fabien],
Reconstructions of Noisy Digital Contours with Maximal Primitives Based
on Multi-scale/Irregular Geometric Representation and Generalized
Linear Programming,
DGCI17(291-303).
Springer DOI
1711
BibRef
Kerautret, B.[Bertrand],
Ngo, P.[Phuc],
Kenmochi, Y.[Yukiko],
Vacavant, A.[Antoine],
Greyscale Image Vectorization from Geometric Digital Contour
Representations,
DGCI17(319-331).
Springer DOI
1711
BibRef
Provot, L.[Laurent],
Gérard, Y.[Yan],
Feschet, F.[Fabien],
Digital Level Layers for Digital Curve Decomposition and Vectorization,
IPOL(2014), No. 1, pp. 169-186.
DOI Link
1408
Code, Curve Decomposition.
BibRef
Earlier: A2, A1, A3:
Introduction to Digital Level Layers,
DGCI11(83-94).
Springer DOI
1104
BibRef
Tu, L.Y.[Li-Yun],
Yang, D.[Dan],
Vicory, J.,
Zhang, X.H.[Xiao-Hong],
Pizer, S.M.,
Styner, M.,
Fitting Skeletal Object Models Using Spherical Harmonics Based
Template Warping,
SPLetters(22), No. 12, December 2015, pp. 2269-2273.
IEEE DOI
1512
curve fitting
BibRef
Tu, L.Y.[Li-Yun],
Vicory, J.[Jared],
Elhabian, S.[Shireen],
Paniagua, B.[Beatriz],
Prieto, J.C.[Juan Carlos],
Damon, J.N.[James N.],
Whitaker, R.[Ross],
Styner, M.[Martin],
Pizer, S.M.[Stephen M.],
Entropy-based correspondence improvement of interpolated skeletal
models,
CVIU(151), No. 1, 2016, pp. 72-79.
Elsevier DOI
1610
Statistical shape analysis
BibRef
Asadzadeh, S.[Saeid],
de Souza Filho, C.R.[Carlos Roberto],
Iterative Curve Fitting: A Robust Technique to Estimate the
Wavelength Position and Depth of Absorption Features From Spectral
Data,
GeoRS(54), No. 10, October 2016, pp. 5964-5974.
IEEE DOI
1610
iterative methods
BibRef
Qian, H.Z.[Hai-Zhong],
Zhang, M.[Meng],
Wu, F.[Fang],
A New Simplification Approach Based on the Oblique-Dividing-Curve
Method for Contour Lines,
IJGI(5), No. 9, 2016, pp. 153.
DOI Link
1610
Curves at different scales for a map.
BibRef
Zheng, A.[Amin],
Cheung, G.[Gene],
Florencio, D.[Dinei],
Context Tree-Based Image Contour Coding Using a Geometric Prior,
IP(26), No. 2, February 2017, pp. 574-589.
IEEE DOI
1702
dynamic programming.
BibRef
Zheng, A.[Amin],
Cheung, G.[Gene],
Florencio, D.[Dinei],
Joint Denoising/Compression of Image Contours via Shape Prior and
Context Tree,
IP(27), No. 7, July 2018, pp. 3332-3344.
IEEE DOI
1805
BibRef
Earlier:
Joint denoising/compression of image contours via geometric prior
and variable-length context tree,
ICIP16(1549-1553)
IEEE DOI
1610
data compression, image coding, image denoising,
image recognition, image representation, object detection,
joint denoising/compression
Noise smoothing to enable compression of smooth curves.
BibRef
Ngo, P.[Phuc],
Debled-Rennesson, I.[Isabelle],
Kerautret, B.[Bertrand],
Nasser, H.[Hayat],
Analysis of Noisy Digital Contours with Adaptive Tangential Cover,
JMIV(59), No. 1, September 2017, pp. 123-135.
Springer DOI
1708
BibRef
Earlier: A1, A4, A2, Only:
A Discrete Approach for Decomposing Noisy Digital Contours into Arcs
and Segments,
DGMMCV16(II: 493-505).
Springer DOI
1704
BibRef
Earlier: A1, A4, A2, A3:
Adaptive Tangential Cover for Noisy Digital Contours,
DGCI16(439-451).
WWW Link.
1606
BibRef
Earlier: A1, A4, A2, Only:
Efficient Dominant Point Detection Based on Discrete Curve Structure,
IWCIA15(143-156).
Springer DOI
1601
BibRef
Nguyen, T.P.[Thanh Phuong],
Debled-Rennesson, I.[Isabelle],
Arc Segmentation in Linear Time,
CAIP11(I: 84-92).
Springer DOI
1109
BibRef
And:
Decomposition of a Curve into Arcs and Line Segments Based on Dominant
Point Detection,
SCIA11(794-805).
Springer DOI
1105
BibRef
Earlier:
A Multi-scale Approach to Decompose a Digital Curve into Meaningful
Parts,
ICPR10(1072-1075).
IEEE DOI
1008
See also discrete geometry approach for dominant point detection, A.
See also Ellipse Detection through Decomposition of Circular Arcs and Line Segments.
BibRef
Tsuchie, S.[Shoichi],
Reconstruction of underlying curves with styling radius corners,
VC(33), No. 9, September 2017, pp. 1197-1210.
WWW Link.
1708
BibRef
Du, L.Y.[Ling-Yu],
Ma, Q.[Qiuhe],
Ben, J.[Jin],
Wang, R.[Rui],
Li, J.H.[Jia-Hao],
Duality and Dimensionality Reduction Discrete Line Generation
Algorithm for a Triangular Grid,
IJGI(7), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Zhang, M.Y.[Ming-Yi],
Liu, X.L.[Xi-Long],
Xu, D.[De],
Cao, Z.Q.[Zhi-Qiang],
Feature-Related Searching Control Model for Curve Detection,
Cyber(49), No. 2, February 2019, pp. 580-591.
IEEE DOI
1901
Feature extraction, Image edge detection, Image segmentation,
Frequency modulation, Mathematical model, Predictive models,
updating
BibRef
Köksal, A.[Ali],
Özuysal, M.[Mustafa],
Curve description by histograms of tangent directions,
IET-CV(13), No. 5, August 2019, pp. 507-514.
DOI Link
1908
BibRef
Li, C.M.[Cheng-Ming],
Yin, Y.[Yong],
Wu, P.[Pengda],
Wu, W.[Wei],
Skeleton Line Extraction Method in Areas with Dense Junctions
Considering Stroke Features,
IJGI(8), No. 7, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Ose, K.[Kazuya],
Iwata, K.[Kazunori],
Suematsu, N.[Nobuo],
Sampling Shape Contours Using Optimization over a Geometric Graph,
IEICE(E102-D), No. 12, December 2019, pp. 2547-2556.
WWW Link.
1912
BibRef
Zhao, M.Y.[Ming-Yang],
Jia, X.H.[Xiao-Hong],
Yan, D.M.[Dong-Ming],
An occlusion-resistant circle detector using inscribed triangles,
PR(109), 2021, pp. 107588.
Elsevier DOI
2009
Circle detection, Inscribed triangle, Parameter estimation, Hough transform
BibRef
Rasul, R.B.[Raisa B.],
Avedisian, C.T.[C. Thomas],
Xu, Y.H.[Yu-Hao],
Hicks, M.C.[Michael C.],
Reeves, A.P.[Anthony P.],
Dynamic Differential Image Circle Diameter Measurement Precision
Assessment: Application to Burning Droplets,
PAMI(45), No. 2, February 2023, pp. 1668-1681.
IEEE DOI
2301
Particle measurements, Fuels, Atmospheric measurements,
Biomedical measurement, Combustion, Shape measurement, measurement quality
BibRef
Kang, S.[Seungwoo],
Oh, H.S.[Hee-Seok],
Probabilistic Principal Curves on Riemannian Manifolds,
PAMI(46), No. 7, July 2024, pp. 4843-4849.
IEEE DOI
2406
Manifolds, Probabilistic logic, Gaussian distribution, Fitting,
Principal component analysis, Wrapping, Time series analysis, symmetric space
BibRef
Magnier, B.[Baptiste],
Shokouh, G.S.[Ghulam-Sakhi],
Xu, B.B.[Bin-Bin],
Montesinos, P.[Philippe],
A Multi-scale Line Feature Detection Using Second Order Semi-Gaussian
Filters,
CAIP21(II:98-108).
Springer DOI
2112
BibRef
Han, B.[Boran],
Vila, J.[Jeremy],
A Robust End-to-end Method for Parametric Curve Tracing via Soft
Cosine-similarity-based Objective Function,
TradiCV21(2453-2463)
IEEE DOI
2112
Visualization, Microscopy,
Linear programming, Noise measurement, Optimization
BibRef
Wang, F.G.[Fei-Gege],
Gu, Y.[Yue],
Liu, W.X.[Wen-Xi],
Yu, Y.L.[Yuan-Long],
He, S.F.[Sheng-Feng],
Pan, J.[Jia],
Context-Aware Spatio-Recurrent Curvilinear Structure Segmentation,
CVPR19(12640-12649).
IEEE DOI
2002
BibRef
Krasheninnikov, V.R.,
Malenova, O.E.,
Subbotin, A.U.,
Models of Images With Radial-circular Structure,
PTVSBB19(123-127).
DOI Link
1912
BibRef
Mariyanayagam, D.[Damien],
Gurdjos, P.[Pierre],
Chambon, S.[Sylvie],
Brunet, F.[Florent],
Charvillat, V.[Vincent],
Pose Estimation of a Single Circle Using Default Intrinsic Calibration,
ACCV18(III:575-589).
Springer DOI
1906
BibRef
Comic, L.[Lidija],
Convex and Concave Vertices on a Simple Closed Curve in the Triangular
Grid,
DGCI19(397-408).
Springer DOI
1905
BibRef
Strait, J.,
Kurtek, S.,
Bayesian Model-Based Automatic Landmark Detection for Planar Curves,
DIFF-CV16(1041-1049)
IEEE DOI
1612
BibRef
Lezama, J.[Jose],
von Gioi, R.G.[Rafael Grompone],
Randall, G.[Gregory],
Morel, J.M.[Jean-Michel],
A contrario detection of good continuation of points,
ICIP14(4757-4761)
IEEE DOI
1502
Noise. Have points along a curve, find next one.
BibRef
Lin, W.Y.[Wen-Yan],
Cheng, M.M.[Ming-Ming],
Zheng, S.[Shuai],
Lu, J.B.[Jiang-Bo],
Crook, N.[Nigel],
Robust Non-parametric Data Fitting for Correspondence Modeling,
ICCV13(2376-2383)
IEEE DOI
1403
curve fitting; matching; non-parametric; spline; warping
BibRef
Hu, G.[Gang],
Gao, Q.G.[Qi-Gang],
A non-parametric statistics based method for generic curve partition
and classification,
ICIP10(3041-3044).
IEEE DOI
1009
BibRef
Zhang, J.[Jing],
Kasturi, R.[Rangachar],
Weighted Boundary Points for Shape Analysis,
ICPR10(1598-1601).
IEEE DOI
1008
BibRef
Kovacs, A.[Andrea],
Sziranyi, T.[Tamas],
Local contour descriptors around scale-invariant keypoints,
ICIP09(1105-1108).
IEEE DOI
0911
BibRef
Islam, M.S.[Muhammad Sirajul],
Kitchen, L.J.[Leslie John],
Straight-Edge Extraction in Distorted Images Using Gradient Correction,
DICTA09(505-512).
IEEE DOI
0912
BibRef
Ye, G.H.[Gan-Hua],
Lu, R.M.[Rui-Min],
Li, Y.C.[Yong-Chao],
Ma, J.L.[Jin-Ling],
Gu, Y.H.[Yong-Hong],
Revised SNR Estimator in DSSS Receiver Based on Curve Fitting,
CISP09(1-3).
IEEE DOI
0910
BibRef
Tortorella, F.[Francesco],
Patraccone, R.[Rossella],
Molinara, M.[Mario],
A Dynamic Programming approach for segmenting digital planar curves
into line segments and circular arcs,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Bauckhage, C.[Christian],
Extracting Salient Points and Parts of Shapes Using Modified k d-Trees,
CAIP07(995-1002).
Springer DOI
0708
BibRef
He, Z.Y.[Zhi-Yu],
Kuester, F.[Falko],
GPU-Based Active Contour Segmentation Using Gradient Vector Flow,
ISVC06(I: 191-201).
Springer DOI
0611
BibRef
Locteau, H.[Herve],
Raveaux, R.[Romain],
Adam, S.[Sébastien],
Lecourtier, Y.[Yves],
Héroux, P.[Pierre],
Trupin, E.[Eric],
Approximation of Digital Curves using a Multi-Objective Genetic
Algorithm,
ICPR06(II: 716-719).
IEEE DOI
0609
BibRef
Trupin, E.,
Lecourtier, Y.,
A modified contour following algorithm applied to document segmentation,
ICPR92(II:525-528).
IEEE DOI
9208
BibRef
Makkapati, V.V.[Vishnu V.],
Mahapatra, P.R.[Pravas R.],
Contour Encoding Based on Extraction of Key Points Using Wavelet
Transform,
ICPR06(II: 1177-1180).
IEEE DOI
0609
See also Extreme Compression of Weather Radar Data.
BibRef
Marji, M.[Majed],
Klette, R.[Reinhard],
Siy, P.[Pepe],
Corner Detection and Curve Partitioning Using Arc-Chord Distance,
IWCIA04(512-521).
Springer DOI
0505
BibRef
Weitzenberg, J.,
Posch, S.,
Rost, M.,
Analysis of Amperometric Biosensor Curves Using Hidden-Markov-Models,
DAGM02(182 ff.).
Springer DOI
0303
BibRef
Sezgin, T.M.[Tevfik Metin],
Davis, R.[Randall],
Early Sketch Processing with Application in HMM Based Sketch
Recognition,
MIT AIM-2004-016, July 28, 2004.
WWW Link.
0501
BibRef
Sezgin, T.M.[Tevfik Metin],
Feature Point Detection and Curve Approximation for Early Processing of
Free-Hand Sketches,
MIT AI-TR-2001-009, May 2001.
WWW Link.
0205
BibRef
Ho, P.S.[Pong-Sik],
Kim, M.H.[Min-Hwan],
A Hierarchical Scheme for Representing Curves without
Self-Intersections,
CVPR01(II:498-503).
IEEE DOI
0110
Applying iterative endpoint fit for complex curves results in
self-intersection. Hierarchical approach to eliminate that
problem.
See also Algorithms for the reduction of the number of points required to represent a digitized line or its caricature.
BibRef
Stricker, M.[Markus],
Leonardis, A.[Aleš],
ExSel++: A general framework to extract parametric models,
CAIP95(90-97).
Springer DOI
9509
BibRef
And:
From Edgels to Parametric Curves,
SCIA95(xx).
WWW Link.
BibRef
Stewart, C.V.[Charles V.],
Bubna, K.[Kishore],
Perera, A.[Amitha],
Estimating Model Parameters and Boundaries By Minimizing a Joint,
Robust Objective Function,
CVPR99(II: 387-393).
IEEE DOI Not really curves, but estimation of parameters.
BibRef
9900
Robl, C.,
Farber, G.,
Contour Tracer for a Fast and Precise Edge-line Extraction,
MVA98(xx-yy).
BibRef
9800
Sluzek, A.[Andrzej],
Multi-Level Contour Segmentation Using
Multiple Segmentation Primitives,
ICPR98(Vol I: 741-743).
IEEE DOI
9808
BibRef
Mokhtari, M.,
Bergevin, R.,
Multiscale Segmentation and Approximation for
Significant Description of 2D Contours,
ICIP97(I: 212-215).
IEEE DOI
BibRef
9700
Weitzel, L.,
Kopecz, K.,
Spengler, C.,
Eckhorn, R.,
Reitboeck, H.J.,
Contour segmentation with recurrent neural networks of pulse-coding
neurons,
CAIP97(337-344).
Springer DOI
9709
BibRef
Sloboda, F.[Fridrich],
Zat'ko, B.[Bedrich],
Analysis situs and image processing,
CIAP97(I: 190-197).
Springer DOI
9709
Approximation of planar curves and arcs.
BibRef
Sloboda, F.[Fridrich],
Zat'ko, B.[Bedrich],
On boundary approximation,
CAIP95(488-495).
Springer DOI
9509
BibRef
Orrite, C.,
Lopez, J.E.,
Alcolea, A.,
Curve segmentation by continuous smoothing at multiple scales,
ICIP96(III: 579-582).
IEEE DOI
9610
BibRef
Caglioti, V.[Vincenzo],
Decomposing contours into curves of different families,
CIAP95(399-404).
Springer DOI
9509
BibRef
Delingette, H.,
Intrinsic Stabilizers of Planar Curves,
ECCV94(B:427-436).
Springer DOI
BibRef
9400
Waku, J.,
Chassery, J.M.,
Specification of a wavelet for multiscale analysis of discrete boundary,
ICPR92(III:680-683).
IEEE DOI
9208
BibRef
Wu, L.D.,
Luo, X.Y.,
Fast Piecewise Non-Linear Approximation,
ICPR84(330-332).
BibRef
8400
Otsu, N.,
Karhunen-Loeve Line Fitting And A Linearity Measure,
ICPR84(486-489).
BibRef
8400
Gutfinger, D.,
Nishimura, R.,
Doi, H., and
Sklansky, J.,
Robust Curve Detection by Temporal Geodesics,
ICCV90(752-756).
IEEE DOI
BibRef
9000
Zhou, Y.T.,
Fitting smooth curves,
ICPR90(I: 455-459).
IEEE DOI
9006
BibRef
Cai, L.D.,
Porrill, J.,
Pollard, S.B.,
Mayhew, J.E.W.,
Frisby, J.P.,
Segmentation of planar curves using local and global behaviour analysis,
BMVC90(xx-yy).
PDF File.
9009
BibRef
Chapter on Edge Detection and Analysis, Lines, Segments, Curves, Corners, Hough Transform continues in
Piece-Wise Linear Representations from Curves .