6.4.2 Basic Algorithms to Partition Curves, Represent Curves

Chapter Contents (Back)
Circles. Curve Partitions. Segmentation, Curves. Curve Segmentation. 9605

Hodes, L.,
Discrete Approximation of Continuous Convex Blobs,
SIAM_JAM(19), 1970, pp. 477-485. BibRef 7000

Cooper, D., Yalabik, N.,
On the Computational Cost of Approximating and Recognizing Noise-Perturbed Straight Lines and Quadratic Arcs in the Plane,
TC(25), No. 10, October 1976, pp. 1020-1032. BibRef 7610

Davis, L.S., Rosenfeld, A.,
Curve Segmentation by Relaxation Labeling,
TC(26), 1977, pp. 1053-1057. BibRef 7700

Yamaguchi, F.[Fujio],
A New Curve Fitting Method Using a CRT Computer Display,
CGIP(7), No. 3, June 1978, pp. 425-437.
Elsevier DOI BibRef 7806

Pavlidis, T.[Theo], Ali, F.,
A Hierarchical Syntactic Shape Analyzer,
PAMI(1), No. 1, January 1979, pp. 2-9. BibRef 7901

Pavlidis, T.,
The Use of a Syntactic Shape Analyzer for Contour Matching,
PAMI(1), No. 3, July 1979, 307-310. BibRef 7907

Pavlidis, T.[Theo],
Hierarchies in Structural Pattern Recogniton,
PIEEE(67), 1979, pp. 737-744. BibRef 7900

Rutkowski, W.S., Peleg, S., Rosenfeld, A.,
Shape Segmentation Using Relaxation,
PAMI(3), No. 4, July 1981, pp. 368-375.
See also Thresholding Using Relaxation. BibRef 8107

Rutkowski, W.S.,
Shape Segmentation Using Arc/Chord Properties,
CGIP(17), No. 2, October 1981, pp. 114-129.
Elsevier DOI BibRef 8110

Slagle, J.R.[James R.], Dixon, J.K.[John K.],
Finding a good figure that approximately passes through given points,
PR(12), No. 5, 1980, pp. 319-326.
Elsevier DOI 0309
BibRef

Slagle, J.R.[James R.], Dixon, J.K.[John K.],
Freedom descriptions: A way to find figures that approximate given points,
PR(17), No. 6, 1984, pp. 631-636.
Elsevier DOI 0309
BibRef

Elliott, H., Srinivasan, L.,
An Application of Dynamic Programming to Sequential Boundary Estimation,
CGIP(17), No. 4, December 1981, pp. 291-314.
Elsevier DOI BibRef 8112

Shlien, S.[Seymour],
Segmentation of Digital Curves Using Linguistic Techniques,
CVGIP(22), No. 2, May 1983, pp. 277-286.
Elsevier DOI BibRef 8305

Pavlidis, T.[Theo],
Curve Fitting with Conic Splines,
TOG(2), No. 1, 1983, pp. 1-31. BibRef 8300

Badii, F., Peikari, B.,
Approximation of Multipath Planar Shapes in Pattern Analysis,
CIS(12), 1983, pp. 99-110. BibRef 8300

Fischler, M.A., Bolles, R.C.,
Perceptual Organization and Curve Partitioning,
PAMI(8), No. 1, January 1986, pp. 100-105. Reprinted: BibRef 8601 RCV87(210-215). BibRef
Earlier: CVPR83(38-46). BibRef
And: DARPA83(224-232). Various ways to partition curves. BibRef

Fischler, M.A.,
Perceptual Organization and the Curve Partitioning Problem,
IJCAI83(1014-1018). BibRef 8300

Fischler, M.A., Wolf, H.C.,
Locating Perceptually Salient Points on Planar Curves,
PAMI(16), No. 2, February 1994, pp. 113-129.
IEEE DOI BibRef 9402
Earlier:
Saliency Detection and Partitioning Planar Curves,
DARPA93(917-931). Curve partioning using salient points, with an attempt to match human performance. Extension of the Fischler/Bolles paper above. BibRef

Dobbins, A., Zucker, S.W., Cyander, M.S.,
Endstopped Neurons in the Visual Cortex as a Substrate for Calculating Curvature,
Nature(329), No. 6138, 1987, pp. 438-441. BibRef 8700

Wuescher, D.M., Boyer, K.L.,
Robust Contour Decomposition Using a Constant Curvature Criterion,
PAMI(13), No. 1, January 1991, pp. 41-51.
IEEE DOI Arcs and lines both. This produces more stable results than local maxima type decompositions. BibRef 9101

Ventura, J.A.[Jose A.], Chen, J.M.[Jen-Ming],
Segmentation of two-dimensional curve contours,
PR(25), No. 10, October 1992, pp. 1129-1140.
Elsevier DOI BibRef 9210

Robergé, J.[James], Roberge, J.,
A Data Reduction Algorithm for Planar Curves,
CVGIP(29), No. 2, February 1985, pp. 168-195.
Elsevier DOI Fastest algorithm according to
See also Optimum Uniform Piecewise Linear Approximation of Planar Curves. BibRef 8502

Hashiyama, H.[Hideshi], Araki, S.[Shuichi], Ogura, M.[Michio],
Data processing method of binary graphic pattern and system therefor,
US_Patent4,573,201, Feb 25, 1986
WWW Link. Contour representation by characteristic points. BibRef 8602

Phillips, T.Y., Rosenfeld, A.[Azriel],
A Method of Curve Partitioning Using Arc-Chord Distance,
PRL(5), 1987, pp. 285-288. BibRef 8700

Meer, P.[Peter], Baugher, E.S.[Ernest S.], Rosenfeld, A.[Azriel],
Extraction of Trend Lines and Extrema from Multiscale Curves,
PR(21), No. 3, 1988, pp. 217-226.
Elsevier DOI BibRef 8800

Yamada, K.[Keiichi],
Method and system for determining connection states of straight short vectors representing figure in curve fitting,
US_Patent5,231,697, July 27, 1993.
WWW Link. BibRef 9307

Cox, I.J., Rehg, J.M.[James M.], Hingorani, S.,
A Bayesian Multiple-Hypothesis Approach to Edge Grouping and Contour Segmentation,
IJCV(11), No. 1, August 1993, pp. 5-24.
Springer DOI BibRef 9308
A Bayesian Multiple-Hypothesis Approach to Contour Grouping,
ECCV92(72-77).
Springer DOI BibRef

Chang, C.H., Hwang, S.Y.,
2-D Curve Partitioning by Kohonen Feature Maps,
JVCIR(5), 1994, pp. 148-155. BibRef 9400

Katzir, N., Lindenbaum, M., Porat, M.,
Curve Segmentation under Partial Occlusion,
PAMI(16), No. 5, May 1994, pp. 513-519.
IEEE DOI BibRef 9405
Earlier:
Planar curve segmentation for recognition of partially occluded shapes,
ICPR90(I: 842-846).
IEEE DOI 9006
BibRef

West, G.A.W.[Geoff A.W.], Rosin, P.L.[Paul L.],
Techniques for Segmenting Image Curves into Meaningful Descriptions,
PR(24), No. 7, 1991, pp. 643-652.
Elsevier DOI BibRef 9100

Rosin, P.L.[Paul L.], West, G.A.W.[Geoff A.W.],
Segmentation of Edges into Lines and Arcs,
IVC(7), No. 2, May 1989, pp. 109-114.
Elsevier DOI BibRef 8905

Rosin, P.L.[Paul L.], West, G.A.W.[Geoff A.W.],
Curve Segmentation and Representation by Superellipses,
VISP(142), No. 5, October 1995, pp. 280-288. BibRef 9510
Earlier:
Segmenting Curves into Elliptic Arcs and Straight Lines,
ICCV90(75-78).
IEEE DOI BibRef

Rosin, P.L.[Paul L.],
Augmenting Corner Descriptors,
GMIP(58), No. 3, May 1996, pp. 286-294. 9606
BibRef

Rosin, P.L.[Paul L.], West, G.A.W.[Geoff A.W.],
Salience Distance Transforms,
GMIP(57), No. 6, November 1995, pp. 483-521. BibRef 9511
Earlier:
Multi-scale Salience Distance Transforms,
BMVC93(579-588).
PDF File. Curtin Univ, Australia. BibRef

Rosin, P.L.[Paul L.], West, G.A.W.[Geoff A.W.],
Nonparametric Segmentation of Curves into Various Representations,
PAMI(17), No. 12, December 1995, pp. 1140-1153.
IEEE DOI Code, Curve Segmentation. (Code is available:
WWW Link. BibRef 9512
Detection of Circular Arcs in Images,
Alvey88(259-263). BibRef
Earlier: A2, A1:
Multi-stage Combined Ellipse and Line Detection,
BMVC92(197-206).
PDF File. 9209
Segments into various components, lines, arcs (circular, elliptical, etc.). A fairly general complete algorithm. An extensive bibliography of earlier curve partitioning work. BibRef

Kanatani, K.,
Nonparametric Segmentation of Curves into Various Representations: Comment,
PAMI(19), No. 12, December 1997, pp. 1391-1394.
IEEE DOI 9712
BibRef

Rosin, P.L.[Paul L.], West, G.A.W.[Geoff A.W.],
Nonparametric Segmentation of Curves into Various Representations: Response,
PAMI(19), No. 12, December 1997, pp. 1393-1394.
IEEE DOI 9712
BibRef

Rosin, P.L.[Paul L.],
Non-Parametric Multi-Scale Curve Smoothing,
PRAI(8), 1994, pp. 1381-1406. BibRef 9400
Earlier: SPIE(1964), April 1993, pp. 66-77 Code, Curve Smoothing. Code is available:
WWW Link. BibRef

Sheu, H.T.[Hsin-Teng], Yang, H.Z.[Hung-Zi],
Open Curve Segmentation Via a 2-Phase Scheme,
PR(26), No. 12, December 1993, pp. 1839-1844.
Elsevier DOI BibRef 9312

Ichoku, C., Deffontaines, B., Chorowicz, J.,
Segmentation of Digital Plane-Curves: A Dynamic Focusing Approach,
PRL(17), No. 7, June 10 1996, pp. 741-750. 9607
BibRef

Arcelli, C.[Carlo], Ramella, G.[Giuliana],
Finding Contour-Based Abstractions of Planar Patterns,
PR(26), No. 10, October 1993, pp. 1563-1577.
Elsevier DOI BibRef 9310

Sharaiha, Y.M.[Yazid M.], Garat, P.[Philippe],
A Compact Chord Property for Digital Arcs,
PR(26), No. 5, May 1993, pp. 799-803.
Elsevier DOI Compact chord property. Extension from:
See also Digital Straight Line Segments. BibRef 9305

Debled-Rennesson, I.[Isabelle], Reveilles, J.P.,
A Linear Algorithm for Segmentation of Digital Curves,
PRAI(9), 1995, pp. 635-662.
See also Multiorder polygonal approximation of digital curves. BibRef 9500

Reveillès, J.P.[Jean-Pierre],
Weak Rational Computing for Digital Geometry,
DGCI08(xx-yy).
Springer DOI 0804
BibRef

Debled-Rennesson, I.[Isabelle], Rémy, J.L.[Jean-Luc], Rouyer-Degli, J.[Jocelyne],
Segmentation of Discrete Curves into Fuzzy Segments,
INRIARR-4989, 2003.
HTML Version. BibRef 0300

de la Blanca, N.P.[N. Perez], Fdez Valdivia, J., Garcia, J.A.,
Characterizing Planar Outlines,
PRL(14), 1993, pp. 489-497. BibRef 9300

Chaudhuri, B.B., Dutta, S.,
Interactive Curve Drawing by Segmented Bezier Approximation with a Control Parameter,
PRL(4), 1986, pp. 171-176. BibRef 8600

Leite, J.A.F., Hancock, E.R.,
Iterative Curve Organization with the EM Algorithm,
PRL(18), No. 2, February 1997, pp. 143-155. 9704
BibRef
Earlier:
Iterative Spline Relaxation with the EM Algorithm,
ICPR96(II: 161-165).
IEEE DOI 9608
(Univ. of York, UK) BibRef

Lindeberg, T., Li, M.X.,
Segmentation and Classification of Edges Using Minimum Description Length Approximation and Complementary Junction Cues,
CVIU(67), No. 1, July 1997, pp. 88-98. 9707

DOI Link BibRef

Lindeberg, T., Li, M.,
Automatic Generation of Break Points for MDL Based Curve Classification,
SCIA95(767-776). BibRef 9500
And: ISRN KTH/NA/P-94/28-SE, September 1994.
HTML Version. BibRef

Li, M.,
Minimum Description Length Based 2-D Shape Description,
ICCV93(512-517).
IEEE DOI BibRef 9300
And: ISRN KTH/NA/P-92/34-SE, November 1992.
HTML Version. And Postscript:
PS File. BibRef

Ozugur, T., Denizhan, Y., Panayirci, E.,
Feature-Extraction in Shape-Recognition Using Segmentation of the Boundary Curve,
PRL(18), No. 10, October 1997, pp. 1049-1056. 9802
BibRef

Pham, T.D., Yan, H.,
An Effective Algorithm for the Segmentation of Digital Plane Curves: The Isoparametric Formulation,
PRL(19), No. 2, February 1998, pp. 171-176. 9808
BibRef

Zunic, J.[Jovisa], Acketa, D.M.[Dragan M.],
A General Coding Scheme for Families of Digital Curve Segments,
GMIP(60), No. 6, November 1998, pp. 437-460. BibRef 9811

Sheu, H.T., Hu, W.C.,
Multiprimitive Segmentation of Planar Curves: A Two-Level Breakpoint Classification and Tuning Approach,
PAMI(21), No. 8, August 1999, pp. 791-797.
IEEE DOI BibRef 9908

Rosin, P.L.[Paul L.],
Shape Partitioning by Convexity,
SMC-A(30), No. 2, March 2000, pp. 202-210.
IEEE Top Reference. 0004
BibRef
Earlier: BMVC99(633-64).
PDF File.
PDF File. BibRef

Rosin, P.L.[Paul L.],
Straightening and Partitioning Shapes,
VF01(440 ff.).
Springer DOI 0209
BibRef

Chung, J.W.[Jae-Won], Lee, J.H.[Jin-Hak], Moon, J.H.[Joo-Hee], Kim, J.K.[Jae-Kyoon],
A new vertex-based binary shape coder for high coding efficiency,
SP:IC(15), No. 7-8, May 2000, pp. 665-684.
Elsevier DOI 0005
BibRef

Meier, F.W.[Fabian W.], Schuster, G.M.[Guido M.], Katsaggelos, A.K.[Aggelos K.],
A mathematical model for shape coding with B-splines,
SP:IC(15), No. 7-8, May 2000, pp. 685-701.
Elsevier DOI 0005
BibRef

Meribout, M., Ogura, T., Nakanishi, M.,
On Using the CAM Concept for Parametric Curve Extraction,
IP(9), No. 12, December 2000, pp. 2126-2130.
IEEE DOI 0011
BibRef

Yan, H.[Hong],
Fuzzy curve-tracing algorithm,
SMC-B(31), No. 5, October 2001, pp. 768-780.
IEEE Top Reference. 0111
BibRef
Earlier:
Detection of curved text path based on the fuzzy curve-tracing (FCT) algorithm,
ICDAR01(266-270).
IEEE DOI 0109
BibRef

Lam, B.S.Y., Yan, H.[Hong],
Complex curve tracing based on a minimum spanning tree model and regularized fuzzy clustering,
ICIP04(III: 2091-2094).
IEEE DOI 0505
BibRef

Wang, D.P.[Der Perng],
A new algorithm for fitting a rectilinear x-monotone curve to a set of points in the plane,
PRL(23), No. 1-3, January 2002, pp. 329-334.
Elsevier DOI 0201
BibRef

Cronin, T.M.[Terence M.],
Visualizing concave and convex partitioning of 2D contours,
PRL(24), No. 1-3, January 2003, pp. 429-443.
Elsevier DOI 0211
BibRef

Sarkar, B.[Biswajit], Singh, L.K.[Lokendra K.], Sarkar, D.[Debranjan],
Approximation of digital curves with line segments and circular arcs using genetic algorithms,
PRL(24), No. 15, November 2003, pp. 2585-2595.
Elsevier DOI 0308
BibRef

Sarkar, B.[Biswajit], Roy, S.[Sanghamitra], Sarkar, D.[Debranjan],
Hierarchical representation of digitized curves through dominant point detection,
PRL(24), No. 15, November 2003, pp. 2869-2882.
Elsevier DOI 0308
BibRef

Faber, P.[Petko],
A Theoretical Framework for Relaxation Processes in Pattern Recognition: Application to Robust Nonparametric Contour Generalization,
PAMI(25), No. 8, August 2003, pp. 1021-1027.
IEEE Abstract. 0308
Task is to find an application specific relaxation process. Apply to curve descriptions. BibRef

Wei, W.[Wei], Wang, Q.[Qi], Wang, H.[Hua], Zhang, H.G.[Hong Guang],
The feature extraction of nonparametric curves based on niche genetic algorithms and multi-population competition,
PRL(26), No. 10, 15 July 2005, pp. 1483-1497.
Elsevier DOI 0506
BibRef

Mayster, Y.[Yan], Lopez, M.A.[Mario A.],
Approximating a set of points by a step function,
JVCIR(17), No. 6, December 2006, pp. 1178-1189.
Elsevier DOI 0711
Combinatorial optimization; Visual data reduction; Curve fitting; Approximation algorithms BibRef

Sarfraz, M.[Muhammad],
Some Algorithms for Curve Design and Automatic Outline Capturing of Images,
IJIG(4), No. 2, April 2004, pp. 301-324. 0404
BibRef

Sarfraz, M.,
Interactive Curve Modeling With Applications to Computer Graphics, Vision and Image Processing,
Springer2008, ISBN: 978-1-84628-870-8.
WWW Link. Tools for curves, splines, etc. BibRef 0800

Awrangjeb, M.[Mohammad], Lu, G.J.[Guo-Jun],
Robust Image Corner Detection Based on the Chord-to-Point Distance Accumulation Technique,
MultMed(10), No. 6, October 2008, pp. 1059-1072.
IEEE DOI 0905
BibRef

Awrangjeb, M.[Mohammad], Lu, G.J.[Guo-Jun], Fraser, C.S.[Clive S.], Ravanbakhsh, M.[Mehdi],
A Fast Corner Detector Based on the Chord-to-Point Distance Accumulation Technique,
DICTA09(519-525).
IEEE DOI 0912
BibRef

Awrangjeb, M.[Mohammad], Lu, G.J.[Guo-Jun], Fraser, C.S.[Clive S.],
Performance Comparisons of Contour-Based Corner Detectors,
IP(21), No. 9, September 2012, pp. 4167-4179.
IEEE DOI 1208
BibRef
Earlier:
A Comparative Study on Contour-Based Corner Detectors,
DICTA10(92-99).
IEEE DOI 1012
BibRef

Awrangjeb, M., Lu, G.J.[Guo-Jun],
A Performance Review of Recent Corner Detectors,
DICTA13(1-8)
IEEE DOI 1402
content-based retrieval BibRef

Narappanawar, N.[Nitin], Rao, B.M.[B. Madhusudan], Joshi, M.[Maduri],
Graph theory based segmentation of traced boundary into open and closed sub-sections,
CVIU(115), No. 11, November 2011, pp. 1552-1558.
Elsevier DOI 1110
Border following; Boundary following; Boundary traversing; Boundary segmentation; Component segmentation; Component identification; Identifying strokes; OCR; Multiple regression analysis BibRef

Elder, J.H.[James H.], Oleskiw, T.D.[Timothy D.], Yakubovich, A.[Alex], Peyré, G.[Gabriel],
On growth and formlets: Sparse multi-scale coding of planar shape,
IVC(31), No. 1, January 2013, pp. 1-13.
Elsevier DOI 1302
Planar shape; Deformation; Sparse coding; Contour completion BibRef
Earlier: A2, A1, A4, Only: CVPR10(459-466).
IEEE DOI 1006
BibRef

Yakubovich, A.[Alex], Elder, J.H.[James H.],
Building Better Formlet Codes for Planar Shape,
CRV14(84-91)
IEEE DOI 1406
Computational modeling BibRef

Vacavant, A.[Antoine], Roussillon, T.[Tristan], Kerautret, B.[Bertrand], Lachaud, J.O.[Jacques-Olivier],
A combined multi-scale/irregular algorithm for the vectorization of noisy digital contours,
CVIU(117), No. 4, April 2013, pp. 438-450.
Elsevier DOI 1303
Noisy object analysis; Multi-scale noise detection; Irregular grids; Reeb graph BibRef

Vacavant, A.[Antoine], Kerautret, B.[Bertrand], Roussillon, T.[Tristan], Feschet, F.[Fabien],
Reconstructions of Noisy Digital Contours with Maximal Primitives Based on Multi-scale/Irregular Geometric Representation and Generalized Linear Programming,
DGCI17(291-303).
Springer DOI 1711
BibRef

Kerautret, B.[Bertrand], Ngo, P.[Phuc], Kenmochi, Y.[Yukiko], Vacavant, A.[Antoine],
Greyscale Image Vectorization from Geometric Digital Contour Representations,
DGCI17(319-331).
Springer DOI 1711
BibRef

Provot, L.[Laurent], Gérard, Y.[Yan], Feschet, F.[Fabien],
Digital Level Layers for Digital Curve Decomposition and Vectorization,
IPOL(2014), No. 1, pp. 169-186.
DOI Link 1408
Code, Curve Decomposition. BibRef
Earlier: A2, A1, A3:
Introduction to Digital Level Layers,
DGCI11(83-94).
Springer DOI 1104
BibRef

Tu, L.Y.[Li-Yun], Yang, D.[Dan], Vicory, J., Zhang, X.H.[Xiao-Hong], Pizer, S.M., Styner, M.,
Fitting Skeletal Object Models Using Spherical Harmonics Based Template Warping,
SPLetters(22), No. 12, December 2015, pp. 2269-2273.
IEEE DOI 1512
curve fitting BibRef

Tu, L.Y.[Li-Yun], Vicory, J.[Jared], Elhabian, S.[Shireen], Paniagua, B.[Beatriz], Prieto, J.C.[Juan Carlos], Damon, J.N.[James N.], Whitaker, R.[Ross], Styner, M.[Martin], Pizer, S.M.[Stephen M.],
Entropy-based correspondence improvement of interpolated skeletal models,
CVIU(151), No. 1, 2016, pp. 72-79.
Elsevier DOI 1610
Statistical shape analysis BibRef

Asadzadeh, S.[Saeid], de Souza Filho, C.R.[Carlos Roberto],
Iterative Curve Fitting: A Robust Technique to Estimate the Wavelength Position and Depth of Absorption Features From Spectral Data,
GeoRS(54), No. 10, October 2016, pp. 5964-5974.
IEEE DOI 1610
iterative methods BibRef

Qian, H.Z.[Hai-Zhong], Zhang, M.[Meng], Wu, F.[Fang],
A New Simplification Approach Based on the Oblique-Dividing-Curve Method for Contour Lines,
IJGI(5), No. 9, 2016, pp. 153.
DOI Link 1610
Curves at different scales for a map. BibRef

Zheng, A.[Amin], Cheung, G.[Gene], Florencio, D.[Dinei],
Context Tree-Based Image Contour Coding Using a Geometric Prior,
IP(26), No. 2, February 2017, pp. 574-589.
IEEE DOI 1702
dynamic programming. BibRef

Zheng, A.[Amin], Cheung, G.[Gene], Florencio, D.[Dinei],
Joint Denoising/Compression of Image Contours via Shape Prior and Context Tree,
IP(27), No. 7, July 2018, pp. 3332-3344.
IEEE DOI 1805
BibRef
Earlier:
Joint denoising/compression of image contours via geometric prior and variable-length context tree,
ICIP16(1549-1553)
IEEE DOI 1610
data compression, image coding, image denoising, image recognition, image representation, object detection, joint denoising/compression Noise smoothing to enable compression of smooth curves. BibRef

Ngo, P.[Phuc], Debled-Rennesson, I.[Isabelle], Kerautret, B.[Bertrand], Nasser, H.[Hayat],
Analysis of Noisy Digital Contours with Adaptive Tangential Cover,
JMIV(59), No. 1, September 2017, pp. 123-135.
Springer DOI 1708
BibRef
Earlier: A1, A4, A2, Only:
A Discrete Approach for Decomposing Noisy Digital Contours into Arcs and Segments,
DGMMCV16(II: 493-505).
Springer DOI 1704
BibRef
Earlier: A1, A4, A2, A3:
Adaptive Tangential Cover for Noisy Digital Contours,
DGCI16(439-451).
WWW Link. 1606
BibRef
Earlier: A1, A4, A2, Only:
Efficient Dominant Point Detection Based on Discrete Curve Structure,
IWCIA15(143-156).
Springer DOI 1601
BibRef

Nguyen, T.P.[Thanh Phuong], Debled-Rennesson, I.[Isabelle],
Arc Segmentation in Linear Time,
CAIP11(I: 84-92).
Springer DOI 1109
BibRef
And:
Decomposition of a Curve into Arcs and Line Segments Based on Dominant Point Detection,
SCIA11(794-805).
Springer DOI 1105
BibRef
Earlier:
A Multi-scale Approach to Decompose a Digital Curve into Meaningful Parts,
ICPR10(1072-1075).
IEEE DOI 1008

See also discrete geometry approach for dominant point detection, A.
See also Ellipse Detection through Decomposition of Circular Arcs and Line Segments. BibRef

Tsuchie, S.[Shoichi],
Reconstruction of underlying curves with styling radius corners,
VC(33), No. 9, September 2017, pp. 1197-1210.
WWW Link. 1708
BibRef

Du, L.Y.[Ling-Yu], Ma, Q.[Qiuhe], Ben, J.[Jin], Wang, R.[Rui], Li, J.H.[Jia-Hao],
Duality and Dimensionality Reduction Discrete Line Generation Algorithm for a Triangular Grid,
IJGI(7), No. 10, 2018, pp. xx-yy.
DOI Link 1811
BibRef

Zhang, M.Y.[Ming-Yi], Liu, X.L.[Xi-Long], Xu, D.[De], Cao, Z.Q.[Zhi-Qiang],
Feature-Related Searching Control Model for Curve Detection,
Cyber(49), No. 2, February 2019, pp. 580-591.
IEEE DOI 1901
Feature extraction, Image edge detection, Image segmentation, Frequency modulation, Mathematical model, Predictive models, updating BibRef

Köksal, A.[Ali], Özuysal, M.[Mustafa],
Curve description by histograms of tangent directions,
IET-CV(13), No. 5, August 2019, pp. 507-514.
DOI Link 1908
BibRef

Li, C.M.[Cheng-Ming], Yin, Y.[Yong], Wu, P.[Pengda], Wu, W.[Wei],
Skeleton Line Extraction Method in Areas with Dense Junctions Considering Stroke Features,
IJGI(8), No. 7, 2019, pp. xx-yy.
DOI Link 1908
BibRef

Ose, K.[Kazuya], Iwata, K.[Kazunori], Suematsu, N.[Nobuo],
Sampling Shape Contours Using Optimization over a Geometric Graph,
IEICE(E102-D), No. 12, December 2019, pp. 2547-2556.
WWW Link. 1912
BibRef

Zhao, M.Y.[Ming-Yang], Jia, X.H.[Xiao-Hong], Yan, D.M.[Dong-Ming],
An occlusion-resistant circle detector using inscribed triangles,
PR(109), 2021, pp. 107588.
Elsevier DOI 2009
Circle detection, Inscribed triangle, Parameter estimation, Hough transform BibRef

Rasul, R.B.[Raisa B.], Avedisian, C.T.[C. Thomas], Xu, Y.H.[Yu-Hao], Hicks, M.C.[Michael C.], Reeves, A.P.[Anthony P.],
Dynamic Differential Image Circle Diameter Measurement Precision Assessment: Application to Burning Droplets,
PAMI(45), No. 2, February 2023, pp. 1668-1681.
IEEE DOI 2301
Particle measurements, Fuels, Atmospheric measurements, Biomedical measurement, Combustion, Shape measurement, measurement quality BibRef

Kang, S.[Seungwoo], Oh, H.S.[Hee-Seok],
Probabilistic Principal Curves on Riemannian Manifolds,
PAMI(46), No. 7, July 2024, pp. 4843-4849.
IEEE DOI 2406
Manifolds, Probabilistic logic, Gaussian distribution, Fitting, Principal component analysis, Wrapping, Time series analysis, symmetric space BibRef


Chassat, P.[Perrine], Park, J.[Juhyun], Brunel, N.[Nicolas],
Shape Analysis of Euclidean Curves under Frenet-Serret Framework,
ICCV23(4004-4013)
IEEE DOI 2401
BibRef

Magnier, B.[Baptiste], Shokouh, G.S.[Ghulam-Sakhi], Xu, B.B.[Bin-Bin], Montesinos, P.[Philippe],
A Multi-scale Line Feature Detection Using Second Order Semi-Gaussian Filters,
CAIP21(II:98-108).
Springer DOI 2112
BibRef

Han, B.[Boran], Vila, J.[Jeremy],
A Robust End-to-end Method for Parametric Curve Tracing via Soft Cosine-similarity-based Objective Function,
TradiCV21(2453-2463)
IEEE DOI 2112
Visualization, Microscopy, Linear programming, Noise measurement, Optimization BibRef

Wang, F.G.[Fei-Gege], Gu, Y.[Yue], Liu, W.X.[Wen-Xi], Yu, Y.L.[Yuan-Long], He, S.F.[Sheng-Feng], Pan, J.[Jia],
Context-Aware Spatio-Recurrent Curvilinear Structure Segmentation,
CVPR19(12640-12649).
IEEE DOI 2002
BibRef

Krasheninnikov, V.R., Malenova, O.E., Subbotin, A.U.,
Models of Images With Radial-circular Structure,
PTVSBB19(123-127).
DOI Link 1912
BibRef

Mariyanayagam, D.[Damien], Gurdjos, P.[Pierre], Chambon, S.[Sylvie], Brunet, F.[Florent], Charvillat, V.[Vincent],
Pose Estimation of a Single Circle Using Default Intrinsic Calibration,
ACCV18(III:575-589).
Springer DOI 1906
BibRef

Comic, L.[Lidija],
Convex and Concave Vertices on a Simple Closed Curve in the Triangular Grid,
DGCI19(397-408).
Springer DOI 1905
BibRef

Strait, J., Kurtek, S.,
Bayesian Model-Based Automatic Landmark Detection for Planar Curves,
DIFF-CV16(1041-1049)
IEEE DOI 1612
BibRef

Lezama, J.[Jose], von Gioi, R.G.[Rafael Grompone], Randall, G.[Gregory], Morel, J.M.[Jean-Michel],
A contrario detection of good continuation of points,
ICIP14(4757-4761)
IEEE DOI 1502
Noise. Have points along a curve, find next one. BibRef

Lin, W.Y.[Wen-Yan], Cheng, M.M.[Ming-Ming], Zheng, S.[Shuai], Lu, J.B.[Jiang-Bo], Crook, N.[Nigel],
Robust Non-parametric Data Fitting for Correspondence Modeling,
ICCV13(2376-2383)
IEEE DOI 1403
curve fitting; matching; non-parametric; spline; warping BibRef

Hu, G.[Gang], Gao, Q.G.[Qi-Gang],
A non-parametric statistics based method for generic curve partition and classification,
ICIP10(3041-3044).
IEEE DOI 1009
BibRef

Zhang, J.[Jing], Kasturi, R.[Rangachar],
Weighted Boundary Points for Shape Analysis,
ICPR10(1598-1601).
IEEE DOI 1008
BibRef

Kovacs, A.[Andrea], Sziranyi, T.[Tamas],
Local contour descriptors around scale-invariant keypoints,
ICIP09(1105-1108).
IEEE DOI 0911
BibRef

Islam, M.S.[Muhammad Sirajul], Kitchen, L.J.[Leslie John],
Straight-Edge Extraction in Distorted Images Using Gradient Correction,
DICTA09(505-512).
IEEE DOI 0912
BibRef

Ye, G.H.[Gan-Hua], Lu, R.M.[Rui-Min], Li, Y.C.[Yong-Chao], Ma, J.L.[Jin-Ling], Gu, Y.H.[Yong-Hong],
Revised SNR Estimator in DSSS Receiver Based on Curve Fitting,
CISP09(1-3).
IEEE DOI 0910
BibRef

Tortorella, F.[Francesco], Patraccone, R.[Rossella], Molinara, M.[Mario],
A Dynamic Programming approach for segmenting digital planar curves into line segments and circular arcs,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Bauckhage, C.[Christian],
Extracting Salient Points and Parts of Shapes Using Modified k d-Trees,
CAIP07(995-1002).
Springer DOI 0708
BibRef

He, Z.Y.[Zhi-Yu], Kuester, F.[Falko],
GPU-Based Active Contour Segmentation Using Gradient Vector Flow,
ISVC06(I: 191-201).
Springer DOI 0611
BibRef

Locteau, H.[Herve], Raveaux, R.[Romain], Adam, S.[Sébastien], Lecourtier, Y.[Yves], Héroux, P.[Pierre], Trupin, E.[Eric],
Approximation of Digital Curves using a Multi-Objective Genetic Algorithm,
ICPR06(II: 716-719).
IEEE DOI 0609
BibRef

Trupin, E., Lecourtier, Y.,
A modified contour following algorithm applied to document segmentation,
ICPR92(II:525-528).
IEEE DOI 9208
BibRef

Makkapati, V.V.[Vishnu V.], Mahapatra, P.R.[Pravas R.],
Contour Encoding Based on Extraction of Key Points Using Wavelet Transform,
ICPR06(II: 1177-1180).
IEEE DOI 0609

See also Extreme Compression of Weather Radar Data. BibRef

Marji, M.[Majed], Klette, R.[Reinhard], Siy, P.[Pepe],
Corner Detection and Curve Partitioning Using Arc-Chord Distance,
IWCIA04(512-521).
Springer DOI 0505
BibRef

Weitzenberg, J., Posch, S., Rost, M.,
Analysis of Amperometric Biosensor Curves Using Hidden-Markov-Models,
DAGM02(182 ff.).
Springer DOI 0303
BibRef

Sezgin, T.M.[Tevfik Metin], Davis, R.[Randall],
Early Sketch Processing with Application in HMM Based Sketch Recognition,
MIT AIM-2004-016, July 28, 2004.
WWW Link. 0501
BibRef

Sezgin, T.M.[Tevfik Metin],
Feature Point Detection and Curve Approximation for Early Processing of Free-Hand Sketches,
MIT AI-TR-2001-009, May 2001.
WWW Link. 0205
BibRef

Ho, P.S.[Pong-Sik], Kim, M.H.[Min-Hwan],
A Hierarchical Scheme for Representing Curves without Self-Intersections,
CVPR01(II:498-503).
IEEE DOI 0110
Applying iterative endpoint fit for complex curves results in self-intersection. Hierarchical approach to eliminate that problem.
See also Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. BibRef

Stricker, M.[Markus], Leonardis, A.[Aleš],
ExSel++: A general framework to extract parametric models,
CAIP95(90-97).
Springer DOI 9509
BibRef
And:
From Edgels to Parametric Curves,
SCIA95(xx).
WWW Link. BibRef

Stewart, C.V.[Charles V.], Bubna, K.[Kishore], Perera, A.[Amitha],
Estimating Model Parameters and Boundaries By Minimizing a Joint, Robust Objective Function,
CVPR99(II: 387-393).
IEEE DOI Not really curves, but estimation of parameters. BibRef 9900

Robl, C., Farber, G.,
Contour Tracer for a Fast and Precise Edge-line Extraction,
MVA98(xx-yy). BibRef 9800

Sluzek, A.[Andrzej],
Multi-Level Contour Segmentation Using Multiple Segmentation Primitives,
ICPR98(Vol I: 741-743).
IEEE DOI 9808
BibRef

Mokhtari, M., Bergevin, R.,
Multiscale Segmentation and Approximation for Significant Description of 2D Contours,
ICIP97(I: 212-215).
IEEE DOI BibRef 9700

Weitzel, L., Kopecz, K., Spengler, C., Eckhorn, R., Reitboeck, H.J.,
Contour segmentation with recurrent neural networks of pulse-coding neurons,
CAIP97(337-344).
Springer DOI 9709
BibRef

Sloboda, F.[Fridrich], Zat'ko, B.[Bedrich],
Analysis situs and image processing,
CIAP97(I: 190-197).
Springer DOI 9709
Approximation of planar curves and arcs. BibRef

Sloboda, F.[Fridrich], Zat'ko, B.[Bedrich],
On boundary approximation,
CAIP95(488-495).
Springer DOI 9509
BibRef

Orrite, C., Lopez, J.E., Alcolea, A.,
Curve segmentation by continuous smoothing at multiple scales,
ICIP96(III: 579-582).
IEEE DOI 9610
BibRef

Caglioti, V.[Vincenzo],
Decomposing contours into curves of different families,
CIAP95(399-404).
Springer DOI 9509
BibRef

Delingette, H.,
Intrinsic Stabilizers of Planar Curves,
ECCV94(B:427-436).
Springer DOI BibRef 9400

Waku, J., Chassery, J.M.,
Specification of a wavelet for multiscale analysis of discrete boundary,
ICPR92(III:680-683).
IEEE DOI 9208
BibRef

Wu, L.D., Luo, X.Y.,
Fast Piecewise Non-Linear Approximation,
ICPR84(330-332). BibRef 8400

Otsu, N.,
Karhunen-Loeve Line Fitting And A Linearity Measure,
ICPR84(486-489). BibRef 8400

Gutfinger, D., Nishimura, R., Doi, H., and Sklansky, J.,
Robust Curve Detection by Temporal Geodesics,
ICCV90(752-756).
IEEE DOI BibRef 9000

Zhou, Y.T.,
Fitting smooth curves,
ICPR90(I: 455-459).
IEEE DOI 9006
BibRef

Cai, L.D., Porrill, J., Pollard, S.B., Mayhew, J.E.W., Frisby, J.P.,
Segmentation of planar curves using local and global behaviour analysis,
BMVC90(xx-yy).
PDF File. 9009
BibRef

Chapter on Edge Detection and Analysis, Lines, Segments, Curves, Corners, Hough Transform continues in
Piece-Wise Linear Representations from Curves .


Last update:Sep 28, 2024 at 17:47:54