13.3.12.5.1 Semi-Supervised Regression

Chapter Contents (Back)
Regression. Semi-Supervised Learning.
See also Gradient Descent.
See also Semi-Supervised Clustering, Semi-Supervised Learning, Classification.

Verbeek, J.J.[Jakob J.], Vlassis, N.[Nikos],
Gaussian fields for semi-supervised regression and correspondence learning,
PR(39), No. 10, October 2006, pp. 1864-1875.
Elsevier DOI Gaussian fields; Regression; Active learning; Model selection 0606
BibRef

Ng, M.K.[Michael K.], Chan, E.Y.[Elaine Y.], So, M.M.C.[Meko M.C.], Ching, W.K.[Wai-Ki],
A semi-supervised regression model for mixed numerical and categorical variables,
PR(40), No. 6, June 2007, pp. 1745-1752.
Elsevier DOI 0704
Clustering; Regression; Data mining; Numerical variables; Categorical variables BibRef

Zhao, M.B.[Ming-Bo], Zhan, C.J.[Chou-Jun], Wu, Z.[Zhou], Tang, P.[Peng],
Semi-Supervised Image Classification Based on Local and Global Regression,
SPLetters(22), No. 10, October 2015, pp. 1666-1670.
IEEE DOI 1506
extrapolation BibRef

Fazakis, N.[Nikos], Karlos, S.[Stamatis], Kotsiantis, S.[Sotiris], Sgarbas, K.[Kyriakos],
A multi-scheme semi-supervised regression approach,
PRL(125), 2019, pp. 758-765.
Elsevier DOI 1909
Semi-supervised regression, Multi-scheme regression, Semi-supervised learning, Ensemble method, Machine learning BibRef

Adiyeke, E.[Esra], Baydogan, M.G.[Mustafa Gökçe],
An ensemble-based semi-supervised feature ranking for multi-target regression problems,
PRL(148), 2021, pp. 36-42.
Elsevier DOI 2107
Semi-supervised learning, Feature ranking, Multi-target regression BibRef

Bao, J.Q.[Jia-Qi], Kudo, M.[Mineichi], Kimura, K.[Keigo], Sun, L.[Lu],
Robust embedding regression for semi-supervised learning,
PR(145), 2024, pp. 109894.
Elsevier DOI 2311
Feature selection, Semi-supervised learning, Ridge regression, Nuclear norm BibRef

Pan, Z.Y.[Zhi-Yu], Cui, J.H.[Jia-Hao], Wang, K.W.[Ke-Wei], Wu, Y.Z.[Yi-Zheng], Cao, Z.G.[Zhi-Guo],
Pseudo Label Fusion With Uncertainty Estimation for Semi-Supervised Cropping Box Regression,
MultMed(26), 2024, pp. 8157-8171.
IEEE DOI 2408
Task analysis, Uncertainty, Annotations, Semisupervised learning, Object detection, Data models, Multitasking, Image cropping, uncertainty estimation BibRef


Yin, Y.[Yingda], Cai, Y.C.[Ying-Cheng], Wang, H.[He], Chen, B.Q.[Bao-Quan],
FisherMatch: Semi-Supervised Rotation Regression via Entropy-based Filtering,
CVPR22(11154-11163)
IEEE DOI 2210
Uncertainty, Filtering, Supervised learning, Semisupervised learning, Predictive models, Probabilistic logic, Self- semi- meta- Pose estimation and tracking BibRef

Nitzan, Y.[Yotam], Gal, R.[Rinon], Brenner, O.[Ofir], Cohen-Or, D.[Daniel],
LARGE: Latent-Based Regression through GAN Semantics,
CVPR22(19217-19227)
IEEE DOI 2210
Image coding, Semantics, Encoding, Reliability, Task analysis, Representation learning, Self- semi- meta- Transfer/low-shot/long-tail learning BibRef

Wang, Y.K.[Yi-Kai], Sun, X.W.[Xin-Wei], Fu, Y.W.[Yan-Wei],
Scalable Penalized Regression for Noise Detection in Learning with Noisy Labels,
CVPR22(346-355)
IEEE DOI 2210
Training, Statistical analysis, Pipelines, Training data, Probabilistic logic, Data models, Robustness, Statistical methods, Self- semi- meta- unsupervised learning BibRef

Shukla, M.[Megh],
Bayesian Uncertainty and Expected Gradient Length - Regression: Two Sides Of The Same Coin?,
WACV22(2021-2030)
IEEE DOI 2202
Uncertainty, Closed-form solutions, Pose estimation, Approximation algorithms, Inference algorithms, Semi- and Un- supervised Learning Active Learning BibRef

Wu, H., Spurlock, S., Souvenir, R.,
Semi-supervised multi-output image manifold regression,
ICIP17(2413-2417)
IEEE DOI 1803
Kernel, Manifolds, Mathematical model, Prediction algorithms, Principal component analysis, Task analysis, semi-supervised BibRef

Xie, W.X.[Wen-Xuan], Lu, Z.W.[Zhi-Wu], Peng, Y.X.[Yu-Xin], Xiao, J.G.[Jian-Guo],
Multimodal semi-supervised image classification by combining tag refinement, graph-based learning and support vector regression,
ICIP13(4307-4311)
IEEE DOI 1402
Graph-based semi-supervised learning BibRef

Carreira-Perpinan, M.A.[Miguel A.], Lu, Z.D.[Zheng-Dong],
Parametric dimensionality reduction by unsupervised regression,
CVPR10(1895-1902).
IEEE DOI 1006
BibRef
Earlier:
Dimensionality reduction by unsupervised regression,
CVPR08(1-8).
IEEE DOI 0806
BibRef

Yang, G.[Gelan], Xu, X.[Xue], Jin, H.X.[Hui-Xia],
Semi-Supervised Regression via Local Block Coordinate,
CISP09(1-4).
IEEE DOI 0910
BibRef

Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
MRF Optimization, Energy Minimization .


Last update:Oct 6, 2025 at 14:07:43