Komodakis, N.[Nikos],
Tziritas, G.[Georgios],
Paragios, N.[Nikos],
Performance vs computational efficiency for optimizing single and
dynamic MRFs: Setting the state of the art with primal-dual strategies,
CVIU(112), No. 1, October 2008, pp. 14-29.
Elsevier DOI
0810
BibRef
Earlier:
Fast, Approximately Optimal Solutions for Single and Dynamic MRFs,
CVPR07(1-8).
IEEE DOI
PDF File.
0706
Code, Alignment.
WWW Link.
BibRef
Earlier: A1, A3, A2:
MRF Optimization via Dual Decomposition: Message-Passing Revisited,
ICCV07(1-8).
IEEE DOI
0710
Nonlinear programming techniques.
Markov random fields; Linear programming; Primal-dual schema; Discrete
optimization; Graph cuts
BibRef
Komodakis, N.[Nikos],
Paragios, N.[Nikos],
Tziritas, G.[Georgios],
MRF Energy Minimization and Beyond via Dual Decomposition,
PAMI(33), No. 3, March 2011, pp. 531-552.
IEEE DOI
1102
New framework for MRF optimization. First decompose into subproblems,
then combine solutions.
BibRef
Komodakis, N.[Nikos],
Efficient training for pairwise or higher order CRFs via dual
decomposition,
CVPR11(1841-1848).
IEEE DOI
1106
BibRef
Komodakis, N.[Nikos],
Learning to cluster using high order graphical models with latent
variables,
ICCV11(73-80).
IEEE DOI
1201
BibRef
Komodakis, N.[Nikos],
Paragios, N.[Nikos],
Beyond pairwise energies: Efficient optimization for higher-order MRFs,
CVPR09(2985-2992).
IEEE DOI
0906
BibRef
Earlier:
Beyond Loose LP-Relaxations: Optimizing MRFs by Repairing Cycles,
ECCV08(III: 806-820).
Springer DOI
0810
BibRef
Komodakis, N.[Nikos],
Towards More Efficient and Effective LP-Based Algorithms for MRF
Optimization,
ECCV10(II: 520-534).
Springer DOI
1009
BibRef
Nowozin, S.[Sebastian],
Lampert, C.H.[Christoph H.],
Global Interactions In Random Field Models:
A Potential Function Ensuring Connectedness,
SIIMS(3), No. 4, 2010, pp. 1048-1074.
WWW Link.
DOI Link
BibRef
1000
Earlier:
Global connectivity potentials for random field models,
CVPR09(818-825).
IEEE DOI
0906
Markov random fields; potential functions; large cliques; high-arity
interactions
BibRef
Levada, A.L.M.[Alexandre L.M.],
Mascarenhas, N.D.A.[Nelson D.A.],
Tannus, A.[Alberto],
A novel MAP-MRF approach for multispectral image contextual
classification using combination of suboptimal iterative algorithms,
PRL(31), No. 13, 1 October 2010, pp. 1795-1808.
Elsevier DOI
1003
BibRef
Earlier:
On the asymptotic variances of Gaussian Markov Random Field model
hyperparameters in stochastic image modeling,
ICPR08(1-4).
IEEE DOI
0812
BibRef
And:
A novel pseudo-likelihood equation for Potts MRF model parameter
estimation in image analysis,
ICIP08(1828-1831).
IEEE DOI
0810
BibRef
And:
Improving Potts MRF model parameter estimation using higher-order
neighborhood systems on stochastic image modeling,
WSSIP08(385-388).
IEEE DOI
0806
Contextual classification; Markov random fields; Combinatorial
optimization; Maximum pseudo-likelihood; Data fusion; Classifier
combination
BibRef
Kim, W.S.[Won-Sik],
Lee, K.M.[Kyoung Mu],
A hybrid approach for MRF optimization problems: Combination of
stochastic sampling and deterministic algorithms,
CVIU(115), No. 12, December 2011, pp. 1623-1637.
Elsevier DOI
1111
BibRef
Earlier:
Continuous Markov Random Field Optimization Using Fusion Move Driven
Markov Chain Monte Carlo Technique,
ICPR10(1364-1367).
IEEE DOI
1008
BibRef
Earlier:
Markov Chain Monte Carlo combined with deterministic methods for Markov
random field optimization,
CVPR09(1406-1413).
IEEE DOI
0906
Analysis of the issues and techniques for computation methods in
energy minimization.
Markov Chain Monte Carlo; Markov Random Field model; Energy
minimization; Optimization
BibRef
Kim, W.S.[Won-Sik],
Lee, K.M.[Kyoung Mu],
MRF optimization by graph approximation,
CVPR15(1063-1071)
IEEE DOI
1510
BibRef
Kim, W.S.[Won-Sik],
Lee, K.M.[Kyoung Mu],
Scanline Sampler without Detailed Balance:
An Efficient MCMC for MRF Optimization,
CVPR14(1354-1361)
IEEE DOI
1409
MCMC; MRF optimization; sampler; scanline
BibRef
Lai, M.J.[Ming-Jun],
Yin, W.T.[Wo-Tao],
Augmented L_1 and Nuclear-Norm Models with a Globally Linearly
Convergent Algorithm,
SIIMS(6), No. 2, 2013, pp. 1059-1091.
DOI Link
1307
BibRef
Fritsche, C.,
Orguner, U.,
Svensson, L.,
Gustafsson, F.,
The Marginal Enumeration Bayesian Cramer-Rao Bound for
Jump Markov Systems,
SPLetters(21), No. 4, April 2014, pp. 464-468.
IEEE DOI
1403
Approximation methods
BibRef
Fritsche, C.,
Gustafsson, F.,
The Marginal Bayesian Cramer-Rao Bound for Jump Markov Systems,
SPLetters(23), No. 5, May 2016, pp. 575-579.
IEEE DOI
1604
Bayes methods
BibRef
Jiang, X.Y.[Xin-Yang],
Wu, F.[Fei],
Zhang, Y.[Yin],
Tang, S.L.[Si-Liang],
Lu, W.M.[Wei-Ming],
Zhuang, Y.T.[Yue-Ting],
The classification of multi-modal data with hidden conditional random
field,
PRL(51), No. 1, 2015, pp. 63-69.
Elsevier DOI
1412
Hidden conditional random field
M-HCRF.
BibRef
Lu, C.Y.[Can-Yi],
Lin, Z.C.[Zhou-Chen],
Yan, S.C.[Shui-Cheng],
Smoothed Low Rank and Sparse Matrix Recovery by Iteratively
Reweighted Least Squares Minimization,
IP(24), No. 2, February 2015, pp. 646-654.
IEEE DOI
1502
iterative methods
BibRef
Lu, C.Y.[Can-Yi],
Tang, J.H.[Jin-Hui],
Yan, S.C.[Shui-Cheng],
Lin, Z.C.[Zhou-Chen],
Nonconvex Nonsmooth Low Rank Minimization via Iteratively Reweighted
Nuclear Norm,
IP(25), No. 2, February 2016, pp. 829-839.
IEEE DOI
1601
BibRef
Earlier:
Generalized Nonconvex Nonsmooth Low-Rank Minimization,
CVPR14(4130-4137)
IEEE DOI
1409
Approximation methods
BibRef
Lu, P.[Peng],
Peng, X.J.[Xu-Jun],
Zhu, X.S.[Xin-Shan],
Li, R.F.[Rui-Fan],
Finding more relevance:
Propagating similarity on Markov random field for object retrieval,
SP:IC(32), No. 1, 2015, pp. 54-68.
Elsevier DOI
1503
Image retrieval
BibRef
Song, D.J.[Dong-Jin],
Liu, W.[Wei],
Zhou, T.Y.[Tian-Yi],
Tao, D.C.[Da-Cheng],
Meyer, D.A.,
Efficient Robust Conditional Random Fields,
IP(24), No. 10, October 2015, pp. 3124-3136.
IEEE DOI
1507
convergence of numerical methods
BibRef
Bousmalis, K.,
Zafeiriou, S.P.,
Morency, L.,
Pantic, M.,
Ghahramani, Z.,
Variational Infinite Hidden Conditional Random Fields,
PAMI(37), No. 9, September 2015, pp. 1917-1929.
IEEE DOI
1508
Analytical models
BibRef
Kappes, J.H.[Jörg Hendrik],
Speth, M.[Markus],
Reinelt, G.[Gerhard],
Schnörr, C.[Christoph],
Higher-order segmentation via multicuts,
CVIU(143), No. 1, 2016, pp. 104-119.
Elsevier DOI
1601
BibRef
Earlier:
Towards Efficient and Exact MAP-Inference for Large Scale Discrete
Computer Vision Problems via Combinatorial Optimization,
CVPR13(1752-1758)
IEEE DOI
1309
Segmentation.
Graphical models; Markov random fields; discrete optimization
BibRef
Zivkovic, Z.[Zoran],
Gentle ICM energy minimization for Markov random fields with
smoothness-based priors,
RealTimeIP(11), No. 1, January 2016, pp. 235-246.
WWW Link.
1601
BibRef
Khandelwal, D.[Dinesh],
Bhatia, K.[Kush],
Arora, C.[Chetan],
Singla, P.[Parag],
Lazy Generic Cuts,
CVIU(143), No. 1, 2016, pp. 80-91.
Elsevier DOI
1601
Markov random fields.
efficient algorithm for inference in binary higher order MRF-MAP.
BibRef
Ha, J.[Jeongmok],
Jeong, H.[Hong],
A fast scanning based message receiving method on four directed
acyclic subgraphs,
JVCIR(38), No. 1, 2016, pp. 161-174.
Elsevier DOI
1605
Markov random fields
MAP inference method.
BibRef
Nguyen, L.V.,
Kodagoda, S.,
Ranasinghe, R.,
Spatial Sensor Selection via Gaussian Markov Random Fields,
SMCS(46), No. 9, September 2016, pp. 1226-1239.
IEEE DOI
1609
Computational modeling
BibRef
Hovhannisyan, V.[Vahan],
Parpas, P.[Panos],
Zafeiriou, S.P.[Stefanos P.],
MAGMA: Multilevel Accelerated Gradient Mirror Descent Algorithm for
Large-Scale Convex Composite Minimization,
SIIMS(9), No. 4, 2016, pp. 1829-1857.
DOI Link
1612
BibRef
Luong, D.V.N.[Duy V. N.],
Parpas, P.[Panos],
Rueckert, D.[Daniel],
Rustem, B.[Berç],
Solving MRF Minimization by Mirror Descent,
ISVC12(I: 587-598).
Springer DOI
1209
BibRef
França, G.[Guilherme],
Bento, J.[José],
Markov Chain Lifting and Distributed ADMM,
SPLetters(24), No. 3, March 2017, pp. 294-298.
IEEE DOI
1702
Computer science
BibRef
Llorente, F.,
Martino, L.,
Delgado, D.,
Parallel Metropolis-Hastings Coupler,
SPLetters(26), No. 6, June 2019, pp. 953-957.
IEEE DOI
1906
Sociology, Proposals, Couplers, TV, Kernel, Monte Carlo methods,
Bayesian inference, MCMC algorithms, normal kernel coupler,
population MCMC
BibRef
Huang, X.,
Xu, S.,
Zhang, C.,
Zhang, J.,
Robust CP Tensor Factorization With Skew Noise,
SPLetters(27), 2020, pp. 785-789.
IEEE DOI
2006
Tensor factorization, mixture of asymmetric Laplacians,
expectation-maximization (EM) algorithm
BibRef
Yang, X.[Xu],
Liu, Z.Y.[Zhi-Yong],
A Doubly Graduated Method for Inference in Markov Random Field,
SIIMS(14), No. 3, 2021, pp. 1354-1373.
DOI Link
2110
BibRef
Domokos, C.[Csaba],
Schmidt, F.R.[Frank R.],
Cremers, D.[Daniel],
MRF Optimization with Separable Convex Prior on Partially Ordered
Labels,
ECCV18(VIII: 341-356).
Springer DOI
1810
BibRef
Khandelwal, D.,
Singla, P.,
Arora, C.,
Learning Higher Order Potentials for MRFs,
WACV18(812-820)
IEEE DOI
1806
Markov processes, gradient methods,
inference mechanisms, learning (artificial intelligence),
Training
BibRef
Xie, J.W.[Jian-Wen],
Xu, Y.F.[Yi-Fei],
Nijkamp, E.[Erik],
Wu, Y.N.[Ying Nian],
Zhu, S.C.[Song-Chun],
Generative Hierarchical Learning of Sparse FRAME Models,
CVPR17(1933-1941)
IEEE DOI
1711
FRAME: Filters, Random field, And Maximum Entropy.
Computational modeling, Deformable models, Mathematical model,
Stochastic processes, Strain, Training, Visualization
BibRef
Pagnozzi, A.M.,
Dowson, N.,
Bradley, A.P.,
Boyd, R.N.,
Bourgeat, P.,
Rose, S.,
Expectation-Maximization with Image-Weighted Markov Random Fields to
Handle Severe Pathology,
DICTA15(1-6)
IEEE DOI
1603
Markov processes
BibRef
Meir, O.[Omer],
Galun, M.[Meirav],
Yagev, S.[Stav],
Basri, R.[Ronen],
Yavneh, I.[Irad],
A Multiscale Variable-Grouping Framework for MRF Energy Minimization,
ICCV15(1805-1813)
IEEE DOI
1602
Crosstalk
BibRef
Li, Y.,
Min, D.,
Brown, M.S.,
Do, M.N.,
Lu, J.,
SPM-BP: Sped-Up PatchMatch Belief Propagation for Continuous MRFs,
ICCV15(4006-4014)
IEEE DOI
1602
Adaptive optics
BibRef
Ahmed, F.,
Tarlow, D.,
Batra, D.,
Optimizing Expected Intersection-Over-Union with
Candidate-Constrained CRFs,
ICCV15(1850-1858)
IEEE DOI
1602
Bayes methods
BibRef
Ha, J.M.[Jeong Mok],
Jeon, B.[Byeongchan],
Jeon, J.[Jea_Young],
Jo, S.Y.[Sung Yong],
Jeong, H.[Hong],
Cost aggregation table: A theoretic derivation on the Markov random
field and its relation to message passing,
ICIP15(2224-2228)
IEEE DOI
1512
Markov random field
BibRef
Sun, Q.[Qing],
Laddha, A.[Ankit],
Batra, D.[Dhruv],
Active learning for structured probabilistic models with histogram
approximation,
CVPR15(3612-3621)
IEEE DOI
1510
e.g. Conditional Random Fields.
BibRef
Wang, Z.H.[Zhen-Hua],
Zhang, Z.Y.[Zhi-Yi],
Geng, N.[Nan],
A Message Passing Algorithm for MRF Inference with Unknown Graphs and
Its Applications,
ACCV14(IV: 288-302).
Springer DOI
1504
BibRef
Wang, J.Y.[Jun-Yan],
Yeung, S.K.[Sai-Kit],
A Compact Linear Programming Relaxation for Binary Sub-modular MRF,
EMMCVPR15(29-42).
Springer DOI
1504
BibRef
Husain, F.[Farzad],
Dellen, L.[Labette],
Torras, C.[Carme],
Recognizing Point Clouds Using Conditional Random Fields,
ICPR14(4257-4262)
IEEE DOI
1412
Graphical models
BibRef
Drory, A.[Amnon],
Haubold, C.[Carsten],
Avidan, S.[Shai],
Hamprecht, F.A.[Fred A.],
Semi-Global Matching:
A Principled Derivation in Terms of Message Passing,
GCPR14(43-53).
Springer DOI
1411
Derived from dense stereo, method to minimize the energy of
a pairwise multi-label Markov Random Field.
BibRef
Shekhovtsov, A.[Alexander],
Maximum Persistency in Energy Minimization,
CVPR14(1162-1169)
IEEE DOI
1409
energy minimization; max-sum; partial optimality; persistency; wcsp
BibRef
Savchynskyy, B.,
Schmidt, S.,
Getting Feasible Variable Estimates from Infeasible Ones:
MRF Local Polytope Study,
PGMs13(267-274)
IEEE DOI
1403
Markov processes
BibRef
Turmukhambetov, D.[Daniyar],
Campbell, N.D.F.[Neill D.F.],
Prince, S.J.D.[Simon J.D.],
Kautz, J.[Jan],
Modeling object appearance using Context-Conditioned Component
Analysis,
CVPR15(4156-4164)
IEEE DOI
1510
BibRef
Campbell, N.D.F.[Neill D.F.],
Subr, K.[Kartic],
Kautz, J.[Jan],
Fully-Connected CRFs with Non-Parametric Pairwise Potential,
CVPR13(1658-1665)
IEEE DOI
1309
Conditional Random Fields: CRF; machine learning; non-parametric
BibRef
Saito, M.[Masaki],
Okatani, T.[Takayuki],
Deguchi, K.[Koichiro],
Discrete MRF Inference of Marginal Densities for Non-uniformly
Discretized Variable Space,
CVPR13(57-64)
IEEE DOI
1309
Markov Random Fields
BibRef
Nasihatkon, B.,
Hartley, R.I.,
Move-Based Algorithms for the Optimization of an Isotropic Gradient MRF
Model,
DICTA12(1-8).
IEEE DOI
1303
BibRef
Schelten, K.[Kevin],
Roth, S.[Stefan],
Mean Field for Continuous High-order MRFs,
DAGM12(52-61).
Springer DOI
1209
BibRef
Saito, M.[Masaki],
Okatani, T.[Takayuki],
Deguchi, K.[Koichiro],
Application of the mean field methods to MRF optimization in computer
vision,
CVPR12(1680-1687).
IEEE DOI
1208
BibRef
Zheng, Y.[Yun],
Chen, P.[Pei],
Cao, J.Z.[Jiang-Zhong],
MAP-MRF inference based on extended junction tree representation,
CVPR12(1696-1703).
IEEE DOI
1208
BibRef
Vineet, V.[Vibhav],
Warrell, J.[Jonathan],
Torr, P.H.S.[Philip H.S.],
A tiered move-making algorithm for general pairwise MRFs,
CVPR12(1632-1639).
IEEE DOI
1208
BibRef
Kwon, D.J.[Dong-Jin],
Lee, K.J.[Kyong Joon],
Yun, I.D.[Il Dong],
Lee, S.U.[Sang Uk],
Solving MRFs with Higher-Order Smoothness Priors Using Hierarchical
Gradient Nodes,
ACCV10(I: 121-134).
Springer DOI
1011
BibRef
Gallagher, A.C.[Andrew C.],
Batra, D.[Dhruv],
Parikh, D.[Devi],
Inference for order reduction in Markov random fields,
CVPR11(1857-1864).
IEEE DOI
1106
BibRef
Batra, D.[Dhruv],
Gallagher, A.C.,
Parikh, D.[Devi],
Chen, T.H.[Tsu-Han],
Beyond trees: MRF inference via outer-planar decomposition,
CVPR10(2496-2503).
IEEE DOI
1006
unify approximate methods for
Maximum a posteriori (MAP) inference in Markov Random Fields.
BibRef
Zach, C.[Christopher],
Niethammer, M.[Marc],
Frahm, J.M.[Jan-Michael],
Continuous maximal flows and Wulff shapes: Application to MRFs,
CVPR09(1911-1918).
IEEE DOI
0906
Extend the continuous, isotropic maximal flow framework to the
anisotropic case.
BibRef
Ali, A.M.[Asem M.],
Farag, A.A.[Aly A.],
Gimel'farb, G.L.[Georgy L.],
Optimizing Binary MRFs with Higher Order Cliques,
ECCV08(III: 98-111).
Springer DOI
0810
Analysis of MRFs to use pairwise results at higher orders.
Energy minimization.
BibRef
Datta, R.[Ritendra],
Hu, J.Y.[Jian-Ying],
Ray, B.[Bonnie],
On efficient Viterbi decoding for hidden semi-Markov models,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Szummer, M.[Martin],
Kohli, P.[Pushmeet],
Hoiem, D.[Derek],
Learning CRFs Using Graph Cuts,
ECCV08(II: 582-595).
Springer DOI
0810
BibRef
Tappen, M.F.[Marshall F.],
Utilizing Variational Optimization to Learn Markov Random Fields,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Rother, C.[Carsten],
Kolmogorov, V.[Vladimir],
Lempitsky, V.[Victor],
Szummer, M.[Martin],
Optimizing Binary MRFs via Extended Roof Duality,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Tiwari, S.,
Gallager, S.,
Machine learning and multiscale methods in the identification of
bivalve larvae,
ICCV03(494-500).
IEEE DOI
0311
BibRef
And:
Optimizing multiscale texture invariants for the identification of
bivalve larvae,
ICIP03(III: 1061-1064).
IEEE DOI
0312
BibRef
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Hidden Markov Models, General Problems, Computation, Use .