Rabiner, L.R.,
A tutorial on Hidden Markov Models and selected applications in
speech recognition,
PIEEE(77), No. 2, February 1989, pp. 257-286.
BibRef
8902
Survey, HMM
BibRef
Zhao, Y.X.[Yun-Xin],
Zhuang, X.H.[Xin-Hua],
Atlas, L.[Les],
Anderson, L.[Lars],
Parameter Estimation and Restoration of Noisy Images Using
Gibbs Distributions in Hidden Markov Models,
GMIP(54), No. 3, May 1992, pp. 187-197.
BibRef
9205
Delignon, Y.,
Marzouki, A.,
Pieczynski, W.,
Estimation of Generalized Mixtures and Its Application in
Image Segmentation,
IP(6), No. 10, October 1997, pp. 1364-1375.
IEEE DOI
9710
See also Estimation of Fuzzy Gaussian Mixture and Unsupervised Statistical Image Segmentation.
BibRef
Fjørtoft, R.[Roger],
Pieczynski, W.[Wojciech],
Delignon, Y.[Yves],
Generalised Mixture Estimation and Unsupervised Classification based on
Hidden Markov Chains and Hidden Markov Random Fields,
SCIA01(O-Th3A).
0206
BibRef
Forchhammer, S.,
Rasmussen, T.S.,
Adaptive Partially Hidden Markov Models with Application to Bilevel
Image Coding,
IP(8), No. 11, November 1999, pp. 1516-1526.
IEEE DOI
9911
BibRef
Pieczynski, W.,
Bouvrais, J.,
Michel, C.,
Estimation of Generalized Mixture in the Case of Correlated Sensors,
IP(9), No. 2, February 2000, pp. 308-312.
IEEE DOI
0003
BibRef
Li, X.L.[Xiao-Lin],
Parizeau, M.[Marc],
Plamondon, R.[Rejean],
Training Hidden Markov Models with Multiple Observations:
A Combinatorial Method,
PAMI(22), No. 4, April 2000, pp. 371-377.
IEEE DOI
0006
BibRef
Kwong, S.,
Chau, C.W.,
Man, K.F.,
Tang, K.S.,
Optimisation of HMM topology and its model parameters by genetic
algorithms,
PR(34), No. 2, February 2001, pp. 509-522.
Elsevier DOI
0011
BibRef
Inoue, M.[Masashi],
Ueda, N.[Naonori],
Exploitation of unlabeled sequences in hidden Markov models,
PAMI(25), No. 12, December 2003, pp. 1570-1581.
IEEE Abstract.
0401
How to use unlabeled data in learning.
BibRef
Abou-Moustafa, K.T.,
Cheriet, M.,
Suen, C.Y.,
On the structure of hidden Markov models,
PRL(25), No. 8, June 2004, pp. 923-931.
Elsevier DOI
0405
BibRef
Li, J.[Jie],
Wang, J.X.[Jia-Xin],
Zhao, Y.N.[Yan-Nan],
Yang, Z.H.[Ze-Hong],
Self-adaptive design of hidden Markov models,
PRL(25), No. 2, January 2004, pp. 197-210.
Elsevier DOI
0401
BibRef
McCane, B.[Brendan],
Caelli, T.M.[Terry M.],
Diagnostic tools for evaluating and updating hidden Markov models,
PR(37), No. 7, July 2004, pp. 1325-1337.
Elsevier DOI
0405
BibRef
Earlier: A2, A1:
Components analysis of hidden Markov models in computer vision,
CIAP03(510-515).
IEEE DOI
0310
How parameter and topology estimation contribute.
BibRef
Dupont, P.,
Denis, F.,
Esposito, Y.,
Links between probabilistic automata and hidden Markov models:
probability distributions, learning models and induction algorithms,
PR(38), No. 9, September 2005, 1349-1371.
Elsevier DOI
0506
BibRef
Li, H.Z.[Hao-Zheng],
Liu, Z.Q.A.[Zhi-Qi-Ang],
Zhu, X.H.[Xiang-Hua],
Hidden Markov models with factored Gaussian mixtures densities,
PR(38), No. 11, November 2005, pp. 2022-2031.
Elsevier DOI
0509
BibRef
Bicego, M.[Manuele],
Castellani, U.[Umberto],
Murino, V.[Vittorio],
A Hidden Markov Model approach for appearance-based 3D object
recognition,
PRL(26), No. 16, December 2005, pp. 2588-2599.
Elsevier DOI
0512
BibRef
Ji, S.H.[Shi-Hao],
Krishnapuram, B.[Balaji],
Carin, L.[Lawrence],
Variational Bayes for Continuous Hidden Markov Models and Its
Application to Active Learning,
PAMI(28), No. 4, April 2006, pp. 522-532.
IEEE DOI
0604
BibRef
Johansson, M.,
Olofsson, T.,
Bayesian Model Selection for Markov, Hidden Markov, and Multinomial
Models,
SPLetters(14), No. 2, February 2007, pp. 129-132.
IEEE DOI
0703
BibRef
Pyun, K.[Kyungsuk],
Lim, J.,
Won, C.S.[Chee Sun],
Cray, R.M.,
Image Segmentation Using Hidden Markov Gauss Mixture Models,
IP(16), No. 7, July 2007, pp. 1902-1911.
IEEE DOI
0707
BibRef
Earlier: A1, A3, A2, A4:
Robust image classification based on a non-causal hidden markov gauss
mixture model,
ICIP02(III: 785-788).
IEEE DOI
0210
BibRef
Huda, S.[Shamsul],
Yearwood, J.[John],
Togneri, R.[Roberto],
A stochastic version of Expectation Maximization algorithm for better
estimation of Hidden Markov Model,
PRL(30), No. 14, 15 October 2009, pp. 1301-1309.
Elsevier DOI
0909
Hidden Markov Model; Expectation Maximization; Speech recognition;
Constraint-based Evolutionary Algorithm; Stochastic EM
BibRef
Pyun, K.,
Lim, J.,
Gray, R.M.,
A Robust Hidden Markov Gauss Mixture Vector Quantizer for a Noisy
Source,
IP(18), No. 7, July 2009, pp. 1385-1394.
IEEE DOI
0906
BibRef
Schwier, J.M.,
Brooks, R.R.,
Griffin, C.,
Bukkapatnam, S.,
Zero knowledge hidden Markov model inference,
PRL(30), No. 14, 15 October 2009, pp. 1273-1280.
Elsevier DOI
0909
Pattern recognition; Hidden Markov model; Pattern discovery
BibRef
Lim, J.,
Pyun, K.,
Cost-Effective Hidden Markov Model-Based Image Segmentation,
SPLetters(16), No. 3, March 2009, pp. 172-175.
IEEE DOI
0903
BibRef
Ji, S.H.[Shi-Hao],
Carin, L.[Lawrence],
Cost-sensitive feature acquisition and classification,
PR(40), No. 5, May 2007, pp. 1474-1485.
Elsevier DOI
0702
Cost-sensitive classification;
Partially observable Markov decision processes (POMDP);
Hidden Markov models (HMMs); Variational Bayes (VB)
BibRef
Bali, N.,
Mohammad-Djafari, A.,
Bayesian Approach With Hidden Markov Modeling and Mean Field
Approximation for Hyperspectral Data Analysis,
IP(17), No. 2, February 2008, pp. 217-225.
IEEE DOI
0801
BibRef
Bali, N.,
Mohammad-Djafari, A.,
Mohammadpoor, A.,
Joint Dimensionality Reduction, Classification and Segmentation of
Hyperspectral Images,
ICIP06(969-972).
IEEE DOI
0610
BibRef
Chatzis, S.P.[Sotirios P.],
Kosmopoulos, D.I.[Dimitrios I.],
Varvarigou, T.A.[Theodora A.],
Robust Sequential Data Modeling Using an Outlier Tolerant Hidden Markov
Model,
PAMI(31), No. 9, September 2009, pp. 1657-1669.
IEEE DOI
0907
BibRef
Chatzis, S.P.[Sotirios P.],
Kosmopoulos, D.I.[Dimitrios I.],
A variational Bayesian methodology for hidden Markov models utilizing
Student's-t mixtures,
PR(44), No. 2, February 2011, pp. 295-306.
Elsevier DOI
1011
Hidden Markov models; Student's-t distribution; Variational Bayes;
Speaker identification; Robotic task failure; Violence detection
BibRef
Chatzis, S.P.,
Kosmopoulos, D.I.,
Visual Workflow Recognition Using a Variational Bayesian Treatment of
Multistream Fused Hidden Markov Models,
CirSysVideo(22), No. 7, July 2012, pp. 1076-1086.
IEEE DOI
1208
BibRef
Chatzis, S.P.[Sotirios P.],
Hidden Markov Models with Nonelliptically Contoured State Densities,
PAMI(32), No. 12, December 2010, pp. 2297-2304.
IEEE DOI
1011
BibRef
Kosmopoulos, D.I.[Dimitrios I.],
Chatzis, S.P.[Sotirios P.],
Robust Visual Behavior Recognition,
SPMag(27), No. 5, 2010, pp. 34-45.
IEEE DOI
1003
BibRef
Chatzis, S.P.[Sotirios P.],
Tsechpenakis, G.[Gavriil],
The infinite Hidden Markov random field model,
ICCV09(654-661).
IEEE DOI
0909
BibRef
Chatzis, S.P.[Sotirios P.],
Demiris, Y.F.[Yi-Fannis],
A reservoir-driven non-stationary hidden Markov model,
PR(45), No. 11, November 2012, pp. 3985-3996.
Elsevier DOI
1206
Hidden Markov model; Dirichlet process; Reservoir
BibRef
Chatzis, S.P.[Sotirios P.],
Kosmopoulos, D.I.[Dimitrios I.],
Papadourakis, G.M.[George M.],
A Nonstationary Hidden Markov Model with Approximately Infinitely-Long
Time-Dependencies,
ISVC14(II: 51-62).
Springer DOI
1501
BibRef
Chatzis, S.P.[Sotirios P.],
Demiris, Y.F.[Yi-Fannis],
The Infinite-Order Conditional Random Field Model for Sequential Data
Modeling,
PAMI(35), No. 6, June 2013, pp. 1523-1534.
IEEE DOI
1305
learning applications.
nonparametric Bayesian approach for modeling label sequences.
mean-field-like approximation of the model marginal likelihood.
BibRef
Ji, S.H.[Shi-Hao],
Watson, L.T.[Layne T.],
Carin, L.[Lawrence],
Semisupervised Learning of Hidden Markov Models via a Homotopy Method,
PAMI(31), No. 2, February 2009, pp. 275-287.
IEEE DOI
0901
BibRef
Khreich, W.[Wael],
Granger, E.[Eric],
Miri, A.[Ali],
Sabourin, R.[Robert],
Adaptive ROC-based ensembles of HMMs applied to anomaly detection,
PR(45), No. 1, January 2012, pp. 208-230.
Elsevier DOI
1109
Classification; Multi-classifier systems; Incremental learning;
Adaptive systems; ROC; Information fusion; Hidden Markov models;
Anomaly detection; Computer and network security
BibRef
Zhu, H.[Hao],
He, Z.S.[Zhong-Shi],
Leung, H.,
Simultaneous Feature and Model Selection for Continuous Hidden Markov
Models,
SPLetters(19), No. 5, May 2012, pp. 279-282.
IEEE DOI
1204
BibRef
Perduca, V.,
Nuel, G.,
Measuring the Influence of Observations in HMMs Through the
Kullback-Leibler Distance,
SPLetters(20), No. 2, February 2013, pp. 145-148.
IEEE DOI
1302
BibRef
Henter, G.E.[Gustav Eje],
Kleijn, W.B.[W. Bastiaan],
Picking up the pieces:
Causal states in noisy data, and how to recover them,
PRL(34), No. 5, 1 April 2013, pp. 587-594.
Elsevier DOI
1303
Computational mechanics; Causal states; CSSR; Hidden Markov model; HMM;
Learnability
Markov model structure discovery.
BibRef
Henter, G.E.[Gustav Eje],
Kleijn, W.B.[W. Bastiaan],
Minimum Entropy Rate Simplification of Stochastic Processes,
PAMI(38), No. 12, December 2016, pp. 2487-2500.
IEEE DOI
1609
Density functional theory
BibRef
Cavalin, P.R.[Paulo R.],
Sabourin, R.[Robert],
Suen, C.Y.[Ching Y.],
LoGID: An adaptive framework combining local and global incremental
learning for dynamic selection of ensembles of HMMs,
PR(45), No. 9, September 2012, pp. 3544-3556.
Elsevier DOI
1206
Adaptive systems; Ensembles of classifiers; Incremental learning;
Dynamic selection; Hidden Markov models
BibRef
Cruz, R.M.O.[Rafael M.O.],
Sabourin, R.[Robert],
Cavalcanti, G.D.C.[George D.C.],
Ren, T.I.[Tsang Ing],
META-DES: A dynamic ensemble selection framework using meta-learning,
PR(48), No. 5, 2015, pp. 1925-1935.
Elsevier DOI
1502
BibRef
Earlier: A1, A2, A3, Only:
On Meta-learning for Dynamic Ensemble Selection,
ICPR14(1230-1235)
IEEE DOI
1412
Ensemble of classifiers
Accuracy
BibRef
Lindberg, D.V.,
Omre, H.,
Inference of the Transition Matrix in Convolved Hidden Markov Models
and the Generalized Baum-Welch Algorithm,
GeoRS(53), No. 12, December 2015, pp. 6443-6456.
IEEE DOI
1512
Bayes methods
BibRef
Lemeire, J.[Jan],
Cartella, F.[Francesco],
The Forward Procedure for HSMMs based on Expected Duration,
SPLetters(23), No. 8, August 2016, pp. 1116-1120.
IEEE DOI
1608
hidden semiMarkov models.
approximation theory
BibRef
Valera, I.[Isabel],
Ruiz, F.J.R.[Francisco J.R.],
Perez-Cruz, F.[Fernando],
Infinite Factorial Unbounded-State Hidden Markov Model,
PAMI(38), No. 9, September 2016, pp. 1816-1828.
IEEE DOI
1609
hidden Markov models
BibRef
Mattila, R.,
Rojas, C.R.,
Krishnamurthy, V.,
Wahlberg, B.,
Asymptotically Efficient Identification of Known-Sensor Hidden Markov
Models,
SPLetters(24), No. 12, December 2017, pp. 1813-1817.
IEEE DOI
1712
Newton-Raphson method, convex programming, hidden Markov models,
maximum likelihood estimation, probability,
system identification
BibRef
Souza, M.A.[Mariana A.],
Cavalcanti, G.D.C.[George D.C.],
Cruz, R.M.O.[Rafael M.O.],
Sabourin, R.[Robert],
Online local pool generation for dynamic classifier selection,
PR(85), 2019, pp. 132-148.
Elsevier DOI
1810
Multiple classifier systems, Instance hardness,
Pool generation, Dynamic classifier selection
BibRef
Roy, A.,
Cruz, R.M.O.[Rafael M.O.],
Sabourin, R.[Robert],
Cavalcanti, G.D.C.[George D.C.],
Meta-regression based pool size prediction scheme for dynamic
selection of classifiers,
ICPR16(216-221)
IEEE DOI
1705
Complexity theory, Computational modeling, Data models, Force,
Prediction algorithms, Predictive models, Training
BibRef
Palazón-González, V.[Vicente],
Marzal, A.[Andrés],
Vilar, J.M.[Juan Miguel],
On hidden Markov models and cyclic strings for shape recognition,
PR(47), No. 7, 2014, pp. 2490-2504.
Elsevier DOI
1404
BibRef
Earlier:
Cyclic Linear Hidden Markov Models for Shape Classification,
PSIVT07(152-165).
Springer DOI
0712
Hidden Markov models
BibRef
Palazón-González, V.[Vicente],
Marzal, A.[Andrés],
Cyclic Viterbi Score for Linear Hidden Markov Models,
IbPRIA07(II: 339-346).
Springer DOI
0706
BibRef
Soullard, Y.[Yann],
Saveski, M.[Martin],
Artières, T.[Thierry],
Joint semi-supervised learning of Hidden Conditional Random Fields
and Hidden Markov Models,
PRL(37), No. 1, 2014, pp. 161-171.
Elsevier DOI
1402
Hidden Markov Models
BibRef
Derrode, S.[Stéphane],
Benyoussef, L.[Lamia],
Pieczynski, W.[Wojciech],
Subsampling-based HMC parameter estimation with application to large
datasets classification,
SIViP(8), No. 5, July 2014, pp. 873-882.
Springer DOI
1407
Hidden Markov chain models.
BibRef
Bartolucci, F.[Francesco],
Pandolfi, S.[Silvia],
Comment on the paper 'On the memory complexity of the
forward-backward algorithm,',
PRL(38), No. 1, 2014, pp. 15-19.
Elsevier DOI
1402
Hidden Markov model
See also On the memory complexity of the forward-backward algorithm.
BibRef
Lindberg, D.V.,
Omre, H.,
Blind Categorical Deconvolution in Two-Level Hidden Markov Models,
GeoRS(52), No. 11, November 2014, pp. 7435-7447.
IEEE DOI
1407
Approximation methods
BibRef
Zhang, Z.,
Crawford, M.M.,
A Batch-Mode Regularized Multimetric Active Learning Framework for
Classification of Hyperspectral Images,
GeoRS(55), No. 11, November 2017, pp. 6594-6609.
IEEE DOI
1711
Diversity reception, Hidden Markov models, Hyperspectral imaging,
Measurement, Training, Uncertainty, Active learning (AL), batch mode,
classification, hyperspectral data, metric learning
BibRef
Zheng, Y.,
Jeon, B.,
Sun, L.,
Zhang, J.,
Zhang, H.,
Student's t-Hidden Markov Model for Unsupervised Learning Using
Localized Feature Selection,
CirSysVideo(28), No. 10, October 2018, pp. 2586-2598.
IEEE DOI
1811
Hidden Markov models, Data models, Unsupervised learning,
Bayes methods, Estimation, Clustering algorithms, Robustness,
Bayesian variational learning
BibRef
Yang, Y.[Yun],
Jiang, J.M.[Jian-Min],
Bi-weighted ensemble via HMM-based approaches for temporal data
clustering,
PR(76), No. 1, 2018, pp. 391-403.
Elsevier DOI
1801
Data clustering
BibRef
Su, B.[Bing],
Ding, X.Q.[Xiao-Qing],
Liu, C.S.[Chang-Song],
Wu, Y.[Ying],
Heteroscedastic Max-Min Distance Analysis for Dimensionality
Reduction,
IP(27), No. 8, August 2018, pp. 4052-4065.
IEEE DOI
1806
BibRef
Earlier:
Heteroscedastic max-min distance analysis,
CVPR15(4539-4547)
IEEE DOI
1510
Covariance matrices, Dimensionality reduction,
Hidden Markov models, Image processing, Minimization, Training,
trace quotient
BibRef
Khmag, A.[Asem],
Al Haddad, S.A.R.,
Ramlee, R.A.,
Kamarudin, N.[Noraziahtulhidayu],
Malallah, F.L.[Fahad Layth],
Natural image noise removal using nonlocal means and hidden Markov
models in transform domain,
VC(34), No. 12, December 2018, pp. 1661-1675.
Springer DOI
1811
BibRef
Dridi, N.,
Hadzagic, M.,
Akaike and Bayesian Information Criteria for Hidden Markov Models,
SPLetters(26), No. 2, February 2019, pp. 302-306.
IEEE DOI
1902
Bayes methods, blind source separation, channel estimation,
hidden Markov models, channel length, symbol detection,
blind estimation
BibRef
Chen, Y.K.[Yu-Kun],
Ye, J.B.[Jian-Bo],
Li, J.[Jia],
Aggregated Wasserstein Distance and State Registration for Hidden
Markov Models,
PAMI(42), No. 9, September 2020, pp. 2133-2147.
IEEE DOI
2008
Distance between two Hidden Markov Models.
Hidden Markov models, Monte Carlo methods, Gaussian distribution,
Measurement, Computational modeling, Approximation methods,
optimal transport
BibRef
Chen, M.[Mulin],
Wang, Q.[Qi],
Li, X.L.[Xue-Long],
Discriminant Analysis with Graph Learning for Hyperspectral Image
Classification,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
And:
Robust Adaptive Sparse Learning Method for Graph Clustering,
ICIP18(1618-1622)
IEEE DOI
1809
Robustness, Manifolds, Linear programming, Clustering algorithms,
Sparse matrices, Optimization, Toy manufacturing industry,
Sparse Learning
BibRef
He, F.[Fang],
Nie, F.P.[Fei-Ping],
Wang, R.[Rong],
Jia, W.M.[Wei-Min],
Zhang, F.G.[Feng-Gan],
Li, X.L.[Xue-Long],
Semisupervised Band Selection With Graph Optimization for
Hyperspectral Image Classification,
GeoRS(59), No. 12, December 2021, pp. 10298-10311.
IEEE DOI
2112
Optimization, Analytical models, Hyperspectral imaging,
Feature extraction, Hidden Markov models, Computational modeling,
semisupervised
BibRef
Hu, H.J.[Hao-Jie],
Ding, Y.[Yao],
He, F.[Fang],
Zhang, F.G.[Feng-Gan],
Zhao, J.W.[Jian-Wei],
Yao, M.[Minli],
Bi-Kernel Graph Neural Network with Adaptive Propagation Mechanism
for Hyperspectral Image Classification,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Fan, W.T.[Wen-Tao],
Wang, R.[Ru],
Bouguila, N.[Nizar],
Simultaneous positive sequential vectors modeling and unsupervised
feature selection via continuous hidden Markov models,
PR(119), 2021, pp. 108073.
Elsevier DOI
2106
Continuous hidden Markov models,
Generalized inverted Dirichlet, Mixture models, Localized feature selection
BibRef
Su, B.[Bing],
Zhou, J.H.[Jia-Huan],
Wen, J.R.[Ji-Rong],
Wu, Y.[Ying],
Linear and Deep Order-Preserving Wasserstein Discriminant Analysis,
PAMI(44), No. 6, June 2022, pp. 3123-3138.
IEEE DOI
2205
BibRef
Earlier: A1, A2, A4, Only:
Order-Preserving Wasserstein Discriminant Analysis,
ICCV19(9884-9893)
IEEE DOI
2004
Hidden Markov models, Feature extraction,
Dimensionality reduction, Joints, sequence classification.
image classification, image motion analysis,
image recognition, image representation, Prototypes
BibRef
Cheng, X.[Xiang],
Lei, H.[Hong],
Remote Sensing Scene Image Classification Based on mmsCNN-HMM
with Stacking Ensemble Model,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
Modified Multi-Scale Convolution Neural Network with HMM.
BibRef
Chen, Y.[Yukun],
Ye, J.B.[Jian-Bo],
Li, J.[Jia],
A Distance for HMMs Based on Aggregated Wasserstein Metric and State
Registration,
ECCV16(VI: 451-466).
Springer DOI
1611
dissimilarity measure or distance between two Hidden Markov Models
BibRef
Agudelo-España, D.[Diego],
Álvarez, M.A.[Mauricio A.],
Orozco, Á.A.[Álvaro A.],
Definition and Composition of Motor Primitives Using Latent Force
Models and Hidden Markov Models,
CIARP16(249-256).
Springer DOI
1703
BibRef
Orrite, C.[Carlos],
Rodriguez, M.[Mario],
Medrano, C.[Carlos],
One-shot learning of temporal sequences using a distance dependent
Chinese Restaurant Process,
ICPR16(2694-2699)
IEEE DOI
1705
Computational modeling, Encoding, Feature extraction,
Hidden Markov models, Kernel, Videos
BibRef
Rakicevic, N.,
Rudovic, O.,
Petridis, S.,
Pantic, M.,
Multi-modal Neural Conditional Ordinal Random Fields for agreement
level estimation,
ICPR16(2228-2233)
IEEE DOI
1705
Data models, Estimation, Feature extraction, Hidden Markov models,
Optimization, Standards, Visualization
BibRef
Feng, S.W.[Si-Wei],
Duarte, M.F.[Marco F.],
Parente, M.[Mario],
Universality of wavelet-based non-homogeneous hidden Markov chain
model features for hyperspectral signatures,
EarthObserv15(19-27)
IEEE DOI
1510
Hidden Markov models
BibRef
Minh, H.Q.[Ha Quang],
Cristani, M.[Marco],
Perina, A.[Alessandro],
Murino, V.[Vittorio],
A regularized spectral algorithm for Hidden Markov Models with
applications in computer vision,
CVPR12(2384-2391).
IEEE DOI
1208
BibRef
Lei, Y.J.[Yin-Jie],
Wong, W.[Wilson],
Liu, W.[Wei],
Bennamoun, M.[Mohammed],
An HMM-SVM-Based Automatic Image Annotation Approach,
ACCV10(IV: 115-126).
Springer DOI
1011
BibRef
Mittelman, R.[Roni],
Hero, A.O.[Alfred O.],
Hyperspectral image segmentation and unmixing using hidden Markov trees,
ICIP10(1373-1376).
IEEE DOI
1009
BibRef
Wang, L.H.[Li-Hua],
Ip, H.H.S.[Horace H. S.],
Combining multiple spatial hidden Markov models in image semantic
classification and annotation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Roth, V.[Volker],
Fischer, B.[Bernd],
The kernelHMM:
Learning Kernel Combinations in Structured Output Domains,
DAGM07(436-445).
Springer DOI
0709
Award, GCPR, HM.
BibRef
Davis, R.I.A.,
Lovell, B.C.,
Caelli, T.M.,
Improved estimation of hidden Markov model parameters from multiple
observation sequences,
ICPR02(II: 168-171).
IEEE DOI
0211
BibRef
Kaufmann, G.,
Bunke, H.,
Hadorn, M.,
Lexicon Reduction in an HMM-Framework Based on
Quantized Feature Vectors,
ICDAR97(1097-1101).
IEEE DOI
9708
BibRef
Hu, J.Y.[Jian-Ying],
Ray, B.[Bonnie],
Han, L.[Lanshan],
An Interweaved HMM/DTW Approach to Robust Time Series Clustering,
ICPR06(III: 145-148).
IEEE DOI
0609
BibRef
Duval, L.,
Nguyen, T.Q.,
Lapped transform domain denoising using hidden Markov trees,
ICIP03(I: 125-128).
IEEE DOI
0312
BibRef
Xuan, G.,
Zhang, W.,
Chai, P.,
EM Algorithms of Gaussian Mixture Model and Hidden Markov Model,
ICIP01(I: 145-148).
IEEE DOI
0108
BibRef
Kivinen, J.J.[Jyri J.],
Sudderth, E.B.[Erik B.],
Jordan, M.I.[Michael I.],
Image Denoising with Nonparametric Hidden Markov Trees,
ICIP07(III: 121-124).
IEEE DOI
0709
BibRef
Huang, R.[Rui],
Pavlovic, V.[Vladimir],
Metaxas, D.N.[Dimitris N.],
Embedded Profile Hidden Markov Models for Shape Analysis,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Earlier:
A Profile Hidden Markov Model Framework for Modeling and Analysis of
Shape,
ICIP06(2121-2124).
IEEE DOI
0610
BibRef
Kozintsev, I.,
On the Transmission of a Class of Hidden Markov Sources Over Gaussian
Channels with Applications to Image Communication,
ICIP00(Vol I: 363-366).
IEEE DOI
0008
BibRef
Morguet, P., and
Lang, M.,
A Universal HMM-Based Approach to Image Sequence Classification,
ICIP97(III: 146-149).
IEEE DOI
BibRef
9700
Aufmuth, C.,
Revealing the Hidden Markov Recognizer,
ICDAR97(560-563).
IEEE DOI
9708
BibRef
Bhanu, B.[Bir], and
Burger, W.[Wilhelm],
Signal-to-Symbol Conversion for Structural Object Recognition
Using Hidden Markov Models,
ARPA94(II:1287-1291).
It seems to say the problem remains.
BibRef
9400
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Computational Complexity Issues, Computation .