Tavallaee, M.,
Stakhanova, N.,
Ghorbani, A.A.,
Toward Credible Evaluation of Anomaly-Based Intrusion-Detection Methods,
SMC-C(40), No. 5, September 2010, pp. 516-524.
IEEE DOI
1008
BibRef
Garg, S.,
Kaur, K.,
Kumar, N.,
Rodrigues, J.J.P.C.[J. J. P. C.],
Hybrid Deep-Learning-Based Anomaly Detection Scheme for Suspicious
Flow Detection in SDN: A Social Multimedia Perspective,
MultMed(21), No. 3, March 2019, pp. 566-578.
IEEE DOI
1903
Boltzmann machines, computer network security, gradient methods,
learning (artificial intelligence), multimedia computing,
social multimedia
BibRef
Li, M.[Meng],
Zhang, K.[Keli],
Liu, J.[Jiamou],
Gong, H.X.[Han-Xiao],
Zhang, Z.J.[Zi-Jian],
Blockchain-based anomaly detection of electricity consumption in
smart grids,
PRL(138), 2020, pp. 476-482.
Elsevier DOI
1806
Smart grids, Electricity consumption, Anomaly detection, Blockchain
BibRef
Bayram, I.[Ilker],
Time-series estimation from randomly time-warped observations,
PRL(158), 2022, pp. 94-103.
Elsevier DOI
2205
Time warping, Curve alignment, Curve registration,
Graph centrality, Estimation, Anomaly measure
BibRef
Giannoulis, M.[Michail],
Harris, A.[Andrew],
Barra, V.[Vincent],
DITAN: A deep-learning domain agnostic framework for detection and
interpretation of temporally-based multivariate ANomalies,
PR(143), 2023, pp. 109814.
Elsevier DOI
2310
Multivariate time series, Anomaly detection, Neural networks,
Generic normality feature learning, Predictability modeling
BibRef
Yao, Y.Y.[Yue-Yue],
Ma, J.H.[Jiang-Hong],
Ye, Y.M.[Yun-Ming],
Regularizing autoencoders with wavelet transform for sequence anomaly
detection,
PR(134), 2023, pp. 109084.
Elsevier DOI
2212
Sequence anomaly detection, Autoencoder,
Discrete wavelet transform, Frequency domain regularization,
Sample-adaptive regularization weight
BibRef
Chen, J.Q.[Jun-Qi],
Tan, X.[Xu],
Rahardja, S.[Sylwan],
Yang, J.W.[Jia-Wei],
Rahardja, S.[Susanto],
Joint Selective State Space Model and Detrending for Robust Time
Series Anomaly Detection,
SPLetters(31), 2024, pp. 2050-2054.
IEEE DOI
2408
Time series analysis, Data models,
Context modeling, Kernel, Information filters, Training,
time series detrending
BibRef
Lee, D.[Daesoo],
Malacarne, S.[Sara],
Aune, E.[Erlend],
Explainable time series anomaly detection using masked latent
generative modeling,
PR(156), 2024, pp. 110826.
Elsevier DOI Code:
WWW Link.
2408
Time series anomaly detection (TSAD), TimeVQVAE-AD, TimeVQVAE,
Masked generative modeling, Explainable AI (XAI), Explainable anomaly detection
BibRef
Darban, Z.Z.[Zahra Zamanzadeh],
Webb, G.I.[Geoffrey I.],
Pan, S.R.[Shi-Rui],
Aggarwal, C.C.[Charu C.],
Salehi, M.[Mahsa],
CARLA: Self-supervised contrastive representation learning for time
series anomaly detection,
PR(157), 2025, pp. 110874.
Elsevier DOI
2409
Anomaly detection, Time series, Deep learning,
Contrastive learning, Representation learning, Self-supervised learning
BibRef
Zhang, Z.[Ze],
Yao, Y.[Yue],
Hutabarat, W.[Windo],
Farnsworth, M.[Michael],
Tiwari, D.[Divya],
Tiwari, A.[Ashutosh],
Time Series Anomaly Detection in Vehicle Sensors Using Self-Attention
Mechanisms,
ITS(25), No. 11, November 2024, pp. 15964-15976.
IEEE DOI
2411
Sensors, Anomaly detection, Feature extraction,
Time series analysis, Sensor systems,
intelligent transportation system (ITS)
BibRef
Darban, Z.Z.[Zahra Zamanzadeh],
Webb, G.I.[Geoffrey I.],
Pan, S.R.[Shi-Rui],
Aggarwal, C.[Charu],
Salehi, M.[Mahsa],
Deep Learning for Time Series Anomaly Detection: A Survey,
Surveys(57), No. 1, October 2024, pp. xx-yy.
DOI Link
2501
Anomaly detection, outlier detection, time series,
deep learning, multivariate time series, univariate time series
BibRef
Jin, M.[Ming],
Shi, G.[Guangsi],
Li, Y.F.[Yuan-Fang],
Xiong, B.[Bo],
Zhou, T.[Tian],
Salim, F.D.[Flora D.],
Zhao, L.[Liang],
Wu, L.F.[Ling-Fei],
Wen, Q.S.[Qing-Song],
Pan, S.R.[Shi-Rui],
Towards Expressive Spectral-Temporal Graph Neural Networks for Time
Series Forecasting,
PAMI(47), No. 6, June 2025, pp. 4926-4939.
IEEE DOI
2505
Time series analysis, Forecasting, Graph neural networks,
Convolution, Polynomials, Correlation, Australia, Training,
deep learning
BibRef
Jin, M.[Ming],
Koh, H.Y.[Huan Yee],
Wen, Q.S.[Qing-Song],
Zambon, D.[Daniele],
Alippi, C.[Cesare],
Webb, G.I.[Geoffrey I.],
King, I.[Irwin],
Pan, S.R.[Shi-Rui],
A Survey on Graph Neural Networks for Time Series: Forecasting,
Classification, Imputation, and Anomaly Detection,
PAMI(46), No. 12, December 2024, pp. 10466-10485.
IEEE DOI
2411
Time series analysis, Surveys, Task analysis,
Graph neural networks, Forecasting, Imputation, Anomaly detection,
anomaly detection
BibRef
Wang, S.Y.[Shu-Yuan],
Li, Q.[Qi],
Luo, H.Y.[Hui-Yuan],
Lv, C.K.[Cheng-Kan],
Zhang, Z.T.[Zheng-Tao],
Produce Once, Utilize Twice for Anomaly Detection,
CirSysVideo(34), No. 11, November 2024, pp. 11751-11767.
IEEE DOI
2412
Image reconstruction, Decoding, Anomaly detection,
Feature extraction, Accuracy, Semantics, Training data,
representations reusing
BibRef
Ho, T.K.K.[Thi Kieu Khanh],
Karami, A.[Ali],
Armanfard, N.[Narges],
Graph Anomaly Detection in Time Series: A Survey,
PAMI(47), No. 8, August 2025, pp. 6990-7009.
IEEE DOI
2507
Surveys, Reviews, Anomaly detection, Time series analysis, Videos,
Social networking (online), Market research,
videos
BibRef
Belay, M.A.[Mohammed Ayalew],
Rasheed, A.[Adil],
Rossi, P.S.[Pierluigi Salvo],
Sparse Non-Linear Vector Autoregressive Networks for Multivariate
Time Series Anomaly Detection,
SPLetters(32), 2025, pp. 331-335.
IEEE DOI
2501
Vectors, Anomaly detection, Sparse matrices, Training, Data models,
Time series analysis, Noise, Matrix decomposition, Deep learning,
vector autoregression
BibRef
Xing, Z.[Zeyu],
Mehmood, O.[Owais],
Smith, W.A.P.[William A.P.],
Unsupervised anomaly detection with a temporal continuation,
confidence-aware VAE-GAN,
PR(166), 2025, pp. 111699.
Elsevier DOI Code:
WWW Link.
2505
Time series anomaly detection, Unsupervised anomaly detection,
Variational autoencoder, VAE-GAN
BibRef
Nithi,
Dey, L.[Lipika],
Anomaly Detection from Call Data Records,
PReMI09(237-242).
Springer DOI
0912
BibRef
Chapter on New Unsorted Entries, and Other Miscellaneous Papers continues in
Time Series Warping, Time Warping .