26.1.5.1 Time Series Anomaly Detection

Chapter Contents (Back)
Time Series. Anomaly.
See also Anomalies, Anomaly Detection.

Tavallaee, M., Stakhanova, N., Ghorbani, A.A.,
Toward Credible Evaluation of Anomaly-Based Intrusion-Detection Methods,
SMC-C(40), No. 5, September 2010, pp. 516-524.
IEEE DOI 1008
BibRef

Garg, S., Kaur, K., Kumar, N., Rodrigues, J.J.P.C.[J. J. P. C.],
Hybrid Deep-Learning-Based Anomaly Detection Scheme for Suspicious Flow Detection in SDN: A Social Multimedia Perspective,
MultMed(21), No. 3, March 2019, pp. 566-578.
IEEE DOI 1903
Boltzmann machines, computer network security, gradient methods, learning (artificial intelligence), multimedia computing, social multimedia BibRef

Li, M.[Meng], Zhang, K.[Keli], Liu, J.[Jiamou], Gong, H.X.[Han-Xiao], Zhang, Z.J.[Zi-Jian],
Blockchain-based anomaly detection of electricity consumption in smart grids,
PRL(138), 2020, pp. 476-482.
Elsevier DOI 1806
Smart grids, Electricity consumption, Anomaly detection, Blockchain BibRef

Bayram, I.[Ilker],
Time-series estimation from randomly time-warped observations,
PRL(158), 2022, pp. 94-103.
Elsevier DOI 2205
Time warping, Curve alignment, Curve registration, Graph centrality, Estimation, Anomaly measure BibRef

Giannoulis, M.[Michail], Harris, A.[Andrew], Barra, V.[Vincent],
DITAN: A deep-learning domain agnostic framework for detection and interpretation of temporally-based multivariate ANomalies,
PR(143), 2023, pp. 109814.
Elsevier DOI 2310
Multivariate time series, Anomaly detection, Neural networks, Generic normality feature learning, Predictability modeling BibRef

Yao, Y.Y.[Yue-Yue], Ma, J.H.[Jiang-Hong], Ye, Y.M.[Yun-Ming],
Regularizing autoencoders with wavelet transform for sequence anomaly detection,
PR(134), 2023, pp. 109084.
Elsevier DOI 2212
Sequence anomaly detection, Autoencoder, Discrete wavelet transform, Frequency domain regularization, Sample-adaptive regularization weight BibRef

Chen, J.Q.[Jun-Qi], Tan, X.[Xu], Rahardja, S.[Sylwan], Yang, J.W.[Jia-Wei], Rahardja, S.[Susanto],
Joint Selective State Space Model and Detrending for Robust Time Series Anomaly Detection,
SPLetters(31), 2024, pp. 2050-2054.
IEEE DOI 2408
Time series analysis, Data models, Context modeling, Kernel, Information filters, Training, time series detrending BibRef

Lee, D.[Daesoo], Malacarne, S.[Sara], Aune, E.[Erlend],
Explainable time series anomaly detection using masked latent generative modeling,
PR(156), 2024, pp. 110826.
Elsevier DOI Code:
WWW Link. 2408
Time series anomaly detection (TSAD), TimeVQVAE-AD, TimeVQVAE, Masked generative modeling, Explainable AI (XAI), Explainable anomaly detection BibRef

Darban, Z.Z.[Zahra Zamanzadeh], Webb, G.I.[Geoffrey I.], Pan, S.R.[Shi-Rui], Aggarwal, C.C.[Charu C.], Salehi, M.[Mahsa],
CARLA: Self-supervised contrastive representation learning for time series anomaly detection,
PR(157), 2025, pp. 110874.
Elsevier DOI 2409
Anomaly detection, Time series, Deep learning, Contrastive learning, Representation learning, Self-supervised learning BibRef

Zhang, Z.[Ze], Yao, Y.[Yue], Hutabarat, W.[Windo], Farnsworth, M.[Michael], Tiwari, D.[Divya], Tiwari, A.[Ashutosh],
Time Series Anomaly Detection in Vehicle Sensors Using Self-Attention Mechanisms,
ITS(25), No. 11, November 2024, pp. 15964-15976.
IEEE DOI 2411
Sensors, Anomaly detection, Feature extraction, Time series analysis, Sensor systems, intelligent transportation system (ITS) BibRef

Darban, Z.Z.[Zahra Zamanzadeh], Webb, G.I.[Geoffrey I.], Pan, S.R.[Shi-Rui], Aggarwal, C.[Charu], Salehi, M.[Mahsa],
Deep Learning for Time Series Anomaly Detection: A Survey,
Surveys(57), No. 1, October 2024, pp. xx-yy.
DOI Link 2501
Anomaly detection, outlier detection, time series, deep learning, multivariate time series, univariate time series BibRef

Jin, M.[Ming], Shi, G.[Guangsi], Li, Y.F.[Yuan-Fang], Xiong, B.[Bo], Zhou, T.[Tian], Salim, F.D.[Flora D.], Zhao, L.[Liang], Wu, L.F.[Ling-Fei], Wen, Q.S.[Qing-Song], Pan, S.R.[Shi-Rui],
Towards Expressive Spectral-Temporal Graph Neural Networks for Time Series Forecasting,
PAMI(47), No. 6, June 2025, pp. 4926-4939.
IEEE DOI 2505
Time series analysis, Forecasting, Graph neural networks, Convolution, Polynomials, Correlation, Australia, Training, deep learning BibRef

Jin, M.[Ming], Koh, H.Y.[Huan Yee], Wen, Q.S.[Qing-Song], Zambon, D.[Daniele], Alippi, C.[Cesare], Webb, G.I.[Geoffrey I.], King, I.[Irwin], Pan, S.R.[Shi-Rui],
A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection,
PAMI(46), No. 12, December 2024, pp. 10466-10485.
IEEE DOI 2411
Time series analysis, Surveys, Task analysis, Graph neural networks, Forecasting, Imputation, Anomaly detection, anomaly detection BibRef

Wang, S.Y.[Shu-Yuan], Li, Q.[Qi], Luo, H.Y.[Hui-Yuan], Lv, C.K.[Cheng-Kan], Zhang, Z.T.[Zheng-Tao],
Produce Once, Utilize Twice for Anomaly Detection,
CirSysVideo(34), No. 11, November 2024, pp. 11751-11767.
IEEE DOI 2412
Image reconstruction, Decoding, Anomaly detection, Feature extraction, Accuracy, Semantics, Training data, representations reusing BibRef

Ho, T.K.K.[Thi Kieu Khanh], Karami, A.[Ali], Armanfard, N.[Narges],
Graph Anomaly Detection in Time Series: A Survey,
PAMI(47), No. 8, August 2025, pp. 6990-7009.
IEEE DOI 2507
Surveys, Reviews, Anomaly detection, Time series analysis, Videos, Social networking (online), Market research, videos BibRef

Belay, M.A.[Mohammed Ayalew], Rasheed, A.[Adil], Rossi, P.S.[Pierluigi Salvo],
Sparse Non-Linear Vector Autoregressive Networks for Multivariate Time Series Anomaly Detection,
SPLetters(32), 2025, pp. 331-335.
IEEE DOI 2501
Vectors, Anomaly detection, Sparse matrices, Training, Data models, Time series analysis, Noise, Matrix decomposition, Deep learning, vector autoregression BibRef

Xing, Z.[Zeyu], Mehmood, O.[Owais], Smith, W.A.P.[William A.P.],
Unsupervised anomaly detection with a temporal continuation, confidence-aware VAE-GAN,
PR(166), 2025, pp. 111699.
Elsevier DOI Code:
WWW Link. 2505
Time series anomaly detection, Unsupervised anomaly detection, Variational autoencoder, VAE-GAN BibRef


Chen, B.[Bei], Sinn, M.[Mathieu], Ploennigs, J.[Joern], Schumann, A.[Anika],
Statistical Anomaly Detection in Mean and Variation of Energy Consumption,
ICPR14(3570-3575)
IEEE DOI 1412
Buildings BibRef

Nithi, Dey, L.[Lipika],
Anomaly Detection from Call Data Records,
PReMI09(237-242).
Springer DOI 0912
BibRef

Chapter on New Unsorted Entries, and Other Miscellaneous Papers continues in
Time Series Warping, Time Warping .


Last update:Sep 10, 2025 at 12:00:25