8.3.4.1 Minimum Spanning Tree for Segmentation

Chapter Contents (Back)
Minimum Spanning Tree. See also Superpixel Region Extraction, Region Growing.

Jarvis, R.A.,
Computer Image Segmentation: First Partitions Using Shared Near Neighbor Clustering,
TC(20), No. 9, September 1971, pp. 1025-1034. BibRef 7109
And: Purdue-TR-77-43, November 1977. BibRef
And:
Computer Image Segmentation: Structured Merge Strategies,
Purdue-TR-77-44, November 1977. BibRef
And: (Similar title) Purdue-TR-75-45. Color. Bottom-up - image fragment conglomeration. Uses a variety of features and criteria to decide the merging of adjacent regions. Border count is one of them. Hard to predict the results analytically. Hypothesis concerning "low level" visual cohesion in intensity and color - excluding texture. (I.e., the region growing initialization step). (higher levels in TREE-75-44 and submitted for publication); neighborhood size, threshold of similarity rating; region grower initialization still same problem of using 8x8 elements as smallest element (no times given). (TC(20) is 1971, or is it TC(22)?) BibRef

Jarvis, R.A.,
Image Segmentation by Interactively Combining Line, Region, and Semantic Structure,
CGPR75(279-288). BibRef 7500

Jarvis, R.A.,
Shared Near Neighbor Maximal Spanning Trees for Cluster Analysis,
unknown location (UMd report?) Basic method: iteratively add the minimum link which adds a node to the tree. Add the least weight except when it causes a loop. Clustering: no unique optimal solution, any method gives different results on various non-linear transformations of measurement space. 7700
BibRef

Bentley, J.L.,
A Parallel Algorithm For Constructing Minimum Spanning Trees,
Algorithms(1), 1980, pp. 51-59. Minimal Spanning Tree. BibRef 8000

Hoffman, R., Jain, A.K.,
A Test of Randomness Based on the Minimal Spanning Tree,
PRL(1), 1983, pp. 175-180. BibRef 8300

Xu, Y.[Ying], Uberbacher, E.C.[Edward C.],
2D Image Segmentation Using Minimum Spanning-Trees,
IVC(15), No. 1, January 1997, pp. 47-57.
Elsevier DOI 9702
BibRef

Kwok, S.H., Constantinides, A.G.,
A Fast Recursive Shortest Spanning Tree for Image Segmentation and Edge-Detection,
IP(6), No. 2, February 1997, pp. 328-332.
IEEE DOI 9703
BibRef

Kwok, S.H., Constantinides, A.G., Siu, W.C.,
An Efficient Recursive Shortest Spanning Tree Algorithm Using Linking Properties,
CirSysVideo(14), No. 6, June 2004, pp. 852-863.
IEEE Abstract. 0407
BibRef

Tarabalka, Y., Chanussot, J., Benediktsson, J.A.,
Segmentation and classification of hyperspectral images using watershed transformation,
PR(43), No. 7, July 2010, pp. 2367-2379.
Elsevier DOI 1003
Hyperspectral images; Mathematical morphology; Watershed; Segmentation; Classification See also Multiple Spectral-Spatial Classification Approach for Hyperspectral Data. BibRef

Tarabalka, Y., Chanussot, J., Benediktsson, J.A.,
Segmentation and Classification of Hyperspectral Images Using Minimum Spanning Forest Grown From Automatically Selected Markers,
SMC-B(40), No. 5, October 2010, pp. 1267-1279.
IEEE DOI 1003
BibRef

Bernard, K., Tarabalka, Y., Angulo, J., Chanussot, J., Benediktsson, J.A.,
Spectral-Spatial Classification of Hyperspectral Data Based on a Stochastic Minimum Spanning Forest Approach,
IP(21), No. 4, April 2012, pp. 2008-2021.
IEEE DOI 1204
BibRef
Earlier:
A Stochastic Minimum Spanning Forest approach for spectral-spatial classification of hyperspectral images,
ICIP11(1265-1268).
IEEE DOI 1201
BibRef

Ghamisi, P., Couceiro, M.S., Martins, F.M.L., Benediktsson, J.A.,
Multilevel Image Segmentation Based on Fractional-Order Darwinian Particle Swarm Optimization,
GeoRS(52), No. 5, May 2014, pp. 2382-2394.
IEEE DOI 1403
Classification BibRef

Fabijanlska, A., Goclawski, J.,
New accelerated graph-based method of image segmentation applying minimum spanning tree,
IET-IPR(8), No. 4, April 2014, pp. 239-251.
DOI Link 1407
graph theory BibRef

Saglam, A.[Ali], Baykan, N.A.[Nurdan Akhan],
Sequential image segmentation based on minimum spanning tree representation,
PRL(87), No. 1, 2017, pp. 155-162.
Elsevier DOI 1703
Segmentation BibRef

Wang, M., Dong, Z., Cheng, Y., Li, D.,
Optimal Segmentation of High-Resolution Remote Sensing Image by Combining Superpixels With the Minimum Spanning Tree,
GeoRS(56), No. 1, January 2018, pp. 228-238.
IEEE DOI 1801
Clustering algorithms, Corporate acquisitions, Heuristic algorithms, Image color analysis, Image segmentation, superpixels BibRef

Xu, L.[Li], Luo, B.[Bing], Pei, Z.[Zheng],
Boundary-Aware Superpixel Segmentation Based on Minimum Spanning Tree,
IEICE(E101-D), No. 6, June 2018, pp. 1715-1719.
WWW Link. 1806
BibRef

Vargas-Muñoz, J.E., Chowdhury, A.S., Alexandre, E.B., Galvão, F.L., Miranda, P.A.V.[P. A. Vechiatto], Falcão, A.X.,
An Iterative Spanning Forest Framework for Superpixel Segmentation,
IP(28), No. 7, July 2019, pp. 3477-3489.
IEEE DOI 1906
computer vision, image segmentation, iterative methods, transforms, trees (mathematics), seed sampling strategy, superpixel/supervoxel segmentation BibRef

Belém, F.C., Guimarães, S.J.F., Falcão, A.X.,
Superpixel Segmentation Using Dynamic and Iterative Spanning Forest,
SPLetters(27), 2020, pp. 1440-1444.
IEEE DOI 2009
Forestry, Vegetation, Image segmentation, Estimation, Pipelines, Signal processing algorithms, Image reconstruction, superpixel segmentation BibRef

Galvão, F.L.[Felipe Lemes], Guimarães, S.J.F.[Silvio Jamil Ferzoli], Falcão, A.X.[Alexandre Xavier],
Image segmentation using dense and sparse hierarchies of superpixels,
PR(108), 2020, pp. 107532.
Elsevier DOI 2008
Superpixel segmentation, Hierarchical image segmentation, Image foresting transform, Iterative spanning forest, Irregular image pyramid BibRef

Castelo-Fernández, C.[César], Falcão, A.X.[Alexandre X.],
Learning Visual Dictionaries from Class-Specific Superpixel Segmentation,
CAIP19(I:171-182).
Springer DOI 1909
BibRef

Gigli, L.[Leonardo], Velasco-Forero, S.[Santiago], Marcotegui, B.[Beatriz],
On minimum spanning tree streaming for hierarchical segmentation,
PRL(138), 2020, pp. 155-162.
Elsevier DOI 2010
Minimum spanning tree, Streaming processing, Hierarchical segmentation, Mathematical morphology BibRef

Chai, D.F.[Deng-Feng],
Rooted Spanning Superpixels,
IJCV(128), No. 12, December 2020, pp. 2962-2978.
Springer DOI 2010
BibRef


Skurikhin, A.N.,
Patch-Based Image Segmentation of Satellite Imagery Using Minimum Spanning Tree Construction,
GEOBIA10(xx-yy).
PDF File. 1007
BibRef

Skurikhin, A.N.[Alexei N.],
Proximity Graphs Based Multi-scale Image Segmentation,
ISVC08(I: 298-307).
Springer DOI 0812
BibRef

Haxhimusa, Y.[Yll], Ion, A.[Adrian], Kropatsch, W.G.[Walter G.],
Irregular Pyramid Segmentations with Stochastic Graph Decimation Strategies,
CIARP06(277-286).
Springer DOI 0611
BibRef
And:
Evaluating Hierarchical Graph-based Segmentation,
ICPR06(II: 195-198).
IEEE DOI 0609
BibRef
And: A2, A3, A1:
Considerations Regarding the Minimum Spanning Tree Pyramid Segmentation Method (Why Does it Always Find the Lady?),
SSPR06(182-190).
Springer DOI 0608
BibRef

Haxhimusa, Y.[Yll], Ion, A.[Adrian], Kropatsch, W.G.[Walter G.], Illetschko, T.[Thomas],
Evaluating Minimum Spanning Tree Based Segmentation Algorithms,
CAIP05(579).
Springer DOI 0509
BibRef

Zhang, F.[Fan], Qiu, H.J.[Huai-Jun], Hancock, E.R.[Edwin R.],
Evolving Spanning Trees Using the Heat Equation,
CAIP05(272).
Springer DOI 0509
BibRef

Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Unsupervised Clustering and Optimal Clusters for Segmentation .


Last update:Nov 23, 2020 at 10:27:11