Jarvis, R.A.,
Computer Image Segmentation: First Partitions Using
Shared Near Neighbor Clustering,
TC(20), No. 9, September 1971, pp. 1025-1034.
BibRef
7109
And:
Purdue-TR-77-43, November 1977.
BibRef
And:
Computer Image Segmentation: Structured Merge Strategies,
Purdue-TR-77-44, November 1977.
BibRef
And:
(Similar title)
Purdue-TR-75-45.
Color. Bottom-up - image fragment conglomeration. Uses a variety of
features and criteria to decide the merging of adjacent regions.
Border count is one of them. Hard to predict the results
analytically. Hypothesis concerning "low level" visual cohesion in
intensity and color - excluding texture. (I.e., the region growing
initialization step). (higher levels in TREE-75-44 and submitted
for publication); neighborhood size, threshold of similarity
rating; region grower initialization still same problem of using
8x8 elements as smallest element (no times given).
(TC(20) is 1971, or is it TC(22)?)
BibRef
Jarvis, R.A.,
Image Segmentation by Interactively Combining Line, Region, and Semantic
Structure,
CGPR75(279-288).
BibRef
7500
Jarvis, R.A.,
Shared Near Neighbor Maximal Spanning Trees for Cluster Analysis,
unknown location (UMd report?) Basic method: iteratively add the
minimum link which adds a node to the tree. Add the least weight
except when it causes a loop.
Clustering: no unique optimal solution, any method gives
different results on various non-linear transformations of
measurement space.
7700
BibRef
Bentley, J.L.,
A Parallel Algorithm For Constructing Minimum Spanning Trees,
Algorithms(1), 1980, pp. 51-59.
Minimal Spanning Tree.
BibRef
8000
Hoffman, R.,
Jain, A.K.,
A Test of Randomness Based on the Minimal Spanning Tree,
PRL(1), 1983, pp. 175-180.
BibRef
8300
Xu, Y.[Ying],
Uberbacher, E.C.[Edward C.],
2D Image Segmentation Using Minimum Spanning-Trees,
IVC(15), No. 1, January 1997, pp. 47-57.
Elsevier DOI
9702
BibRef
Kwok, S.H.,
Constantinides, A.G.,
A Fast Recursive Shortest Spanning Tree for
Image Segmentation and Edge-Detection,
IP(6), No. 2, February 1997, pp. 328-332.
IEEE DOI
9703
BibRef
Kwok, S.H.,
Constantinides, A.G.,
Siu, W.C.,
An Efficient Recursive Shortest Spanning Tree Algorithm Using Linking
Properties,
CirSysVideo(14), No. 6, June 2004, pp. 852-863.
IEEE Abstract.
0407
BibRef
Tarabalka, Y.,
Chanussot, J.,
Benediktsson, J.A.,
Segmentation and classification of hyperspectral images using watershed
transformation,
PR(43), No. 7, July 2010, pp. 2367-2379.
Elsevier DOI
1003
Hyperspectral images; Mathematical morphology; Watershed;
Segmentation; Classification
See also Multiple Spectral-Spatial Classification Approach for Hyperspectral Data.
BibRef
Tarabalka, Y.,
Chanussot, J.,
Benediktsson, J.A.,
Segmentation and Classification of Hyperspectral Images Using Minimum
Spanning Forest Grown From Automatically Selected Markers,
SMC-B(40), No. 5, October 2010, pp. 1267-1279.
IEEE DOI
1003
BibRef
Bernard, K.,
Tarabalka, Y.,
Angulo, J.,
Chanussot, J.,
Benediktsson, J.A.,
Spectral-Spatial Classification of Hyperspectral Data Based on a
Stochastic Minimum Spanning Forest Approach,
IP(21), No. 4, April 2012, pp. 2008-2021.
IEEE DOI
1204
BibRef
Earlier:
A Stochastic Minimum Spanning Forest approach for spectral-spatial
classification of hyperspectral images,
ICIP11(1265-1268).
IEEE DOI
1201
BibRef
Ghamisi, P.,
Couceiro, M.S.,
Martins, F.M.L.,
Benediktsson, J.A.,
Multilevel Image Segmentation Based on Fractional-Order Darwinian
Particle Swarm Optimization,
GeoRS(52), No. 5, May 2014, pp. 2382-2394.
IEEE DOI
1403
Classification
BibRef
Fabijanlska, A.,
Goclawski, J.,
New accelerated graph-based method of image segmentation applying
minimum spanning tree,
IET-IPR(8), No. 4, April 2014, pp. 239-251.
DOI Link
1407
graph theory
BibRef
Saglam, A.[Ali],
Baykan, N.A.[Nurdan Akhan],
Sequential image segmentation based on minimum spanning tree
representation,
PRL(87), No. 1, 2017, pp. 155-162.
Elsevier DOI
1703
Segmentation
BibRef
Wang, M.,
Dong, Z.,
Cheng, Y.,
Li, D.,
Optimal Segmentation of High-Resolution Remote Sensing Image by
Combining Superpixels With the Minimum Spanning Tree,
GeoRS(56), No. 1, January 2018, pp. 228-238.
IEEE DOI
1801
Clustering algorithms, Corporate acquisitions,
Heuristic algorithms, Image color analysis, Image segmentation,
superpixels
BibRef
Xu, L.[Li],
Luo, B.[Bing],
Pei, Z.[Zheng],
Boundary-Aware Superpixel Segmentation Based on Minimum Spanning Tree,
IEICE(E101-D), No. 6, June 2018, pp. 1715-1719.
WWW Link.
1806
BibRef
Vargas-Muñoz, J.E.,
Chowdhury, A.S.,
Alexandre, E.B.,
Galvão, F.L.,
Miranda, P.A.V.[P. A. Vechiatto],
Falcão, A.X.,
An Iterative Spanning Forest Framework for Superpixel Segmentation,
IP(28), No. 7, July 2019, pp. 3477-3489.
IEEE DOI
1906
image segmentation, iterative methods, transforms,
trees (mathematics), seed sampling strategy,
superpixel/supervoxel segmentation
BibRef
Belém, F.C.,
Guimarães, S.J.F.,
Falcão, A.X.,
Superpixel Segmentation Using Dynamic and Iterative Spanning Forest,
SPLetters(27), 2020, pp. 1440-1444.
IEEE DOI
2009
Forestry, Vegetation, Image segmentation, Estimation, Pipelines,
Signal processing algorithms, Image reconstruction,
superpixel segmentation
BibRef
Galvão, F.L.[Felipe Lemes],
Guimarães, S.J.F.[Silvio Jamil Ferzoli],
Falcão, A.X.[Alexandre Xavier],
Image segmentation using dense and sparse hierarchies of superpixels,
PR(108), 2020, pp. 107532.
Elsevier DOI
2008
Superpixel segmentation, Hierarchical image segmentation,
Image foresting transform, Iterative spanning forest,
Irregular image pyramid
BibRef
Castelo-Fernández, C.[César],
Falcão, A.X.[Alexandre X.],
Learning Visual Dictionaries from Class-Specific Superpixel
Segmentation,
CAIP19(I:171-182).
Springer DOI
1909
BibRef
Gigli, L.[Leonardo],
Velasco-Forero, S.[Santiago],
Marcotegui, B.[Beatriz],
On minimum spanning tree streaming for hierarchical segmentation,
PRL(138), 2020, pp. 155-162.
Elsevier DOI
2010
Minimum spanning tree, Streaming processing,
Hierarchical segmentation, Mathematical morphology
BibRef
Chai, D.F.[Deng-Feng],
Rooted Spanning Superpixels,
IJCV(128), No. 12, December 2020, pp. 2962-2978.
Springer DOI
2010
BibRef
And:
Correction:
IJCV(129), No. 3, March 2021, pp. 803-803.
Springer DOI
2103
BibRef
Xi, D.[Dian],
Yang, H.Z.[Heng-Zhan],
Tan, B.[Bo],
Stereo matching algorithm based on improved census transform and
minimum spanning tree cost aggregation,
JVCIR(98), 2024, pp. 104023.
Elsevier DOI
2402
Stereo matching, Census transform, Guided filter,
Minimum spanning tree, Image segmentation
BibRef
Skurikhin, A.N.,
Patch-Based Image Segmentation of Satellite Imagery Using Minimum
Spanning Tree Construction,
GEOBIA10(xx-yy).
PDF File.
1007
BibRef
Skurikhin, A.N.[Alexei N.],
Proximity Graphs Based Multi-scale Image Segmentation,
ISVC08(I: 298-307).
Springer DOI
0812
BibRef
Haxhimusa, Y.[Yll],
Ion, A.[Adrian],
Kropatsch, W.G.[Walter G.],
Irregular Pyramid Segmentations with Stochastic Graph Decimation
Strategies,
CIARP06(277-286).
Springer DOI
0611
BibRef
And:
Evaluating Hierarchical Graph-based Segmentation,
ICPR06(II: 195-198).
IEEE DOI
0609
BibRef
And: A2, A3, A1:
Considerations Regarding the Minimum Spanning Tree Pyramid Segmentation
Method (Why Does it Always Find the Lady?),
SSPR06(182-190).
Springer DOI
0608
BibRef
Haxhimusa, Y.[Yll],
Ion, A.[Adrian],
Kropatsch, W.G.[Walter G.],
Illetschko, T.[Thomas],
Evaluating Minimum Spanning Tree Based Segmentation Algorithms,
CAIP05(579).
Springer DOI
0509
BibRef
Zhang, F.[Fan],
Qiu, H.J.[Huai-Jun],
Hancock, E.R.[Edwin R.],
Evolving Spanning Trees Using the Heat Equation,
CAIP05(272).
Springer DOI
0509
BibRef
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Unsupervised Clustering and Optimal Clusters for Segmentation .