Devroye, L., and
Machell, F.,
Data Structures in Kernel Density Estimation,
PAMI(7), No. 3, May 1985, pp. 360-366.
BibRef
8505
Wu, M.,
Schölkopf, B., and
Bakir, G.,
A Direct Method for Building Sparse Kernel Learning Algorithms,
MachLearnRes(7), No. 4, 2006, pp. 603-624.
WWW Link.
BibRef
0600
Wu, M., and
Schölkopf, B.,
A Local Learning Approach for Clustering,
NIPS06(1529-1536).
WWW Link.
BibRef
0600
Wang, Z.[Zhe],
Chen, S.C.[Song-Can],
Sun, T.[Tingkai],
MultiK-MHKS: A Novel Multiple Kernel Learning Algorithm,
PAMI(30), No. 2, February 2008, pp. 348-353.
IEEE DOI
0712
BibRef
Tan, X.Y.[Xiao-Yang],
Chen, S.C.[Song-Can],
Li, J.[Jun],
Zhou, Z.H.[Zhi-Hua],
Learning Non-Metric Partial Similarity Based on Maximal Margin
Criterion,
CVPR06(I: 138-145).
IEEE DOI
0606
BibRef
El-Yaniv, R.[Ran],
Pechyony, D.[Dmitry],
Yom-Tov, E.[Elad],
Better multiclass classification via a margin-optimized single binary
problem,
PRL(29), No. 14, October 2008, pp. 1954-1959.
Elsevier DOI
0804
Multiclass classification; Support vector machines; Multiple kernel learning
BibRef
Filippone, M.[Maurizio],
Camastra, F.[Francesco],
Masulli, F.[Francesco],
Rovetta, S.[Stefano],
A survey of kernel and spectral methods for clustering,
PR(41), No. 1, January 2008, pp. 176-190.
Elsevier DOI
0710
Award, Pattern Recognition.
Survey, Clustering. Partitional clustering; Mercer kernels; Kernel clustering;
Kernel fuzzy clustering; Spectral clustering
BibRef
Gonen, M.[Mehmet],
Alpaydin, E.[Ethem],
Cost-conscious multiple kernel learning,
PRL(31), No. 9, 1 July 2010, pp. 959-965.
Elsevier DOI
1004
Support vector machines; Kernel combination; Multiple kernel learning
BibRef
Zeng, H.[Hong],
Cheung, Y.M.[Yiu-Ming],
A new feature selection method for Gaussian mixture clustering,
PR(42), No. 2, February 2009, pp. 243-250.
Elsevier DOI
0810
Gaussian mixture; Clustering; Feature selection; Relevance; Redundance
BibRef
Zeng, H.[Hong],
Cheung, Y.M.[Yiu-Ming],
Feature Selection and Kernel Learning for Local Learning-Based
Clustering,
PAMI(33), No. 8, August 2011, pp. 1532-1547.
IEEE DOI
1107
See also Direct Method for Building Sparse Kernel Learning Algorithms, A. LLC Wu and Scholkopf?
BibRef
Jia, H.[Hong],
Cheung, Y.M.[Yiu-Ming],
Liu, J.M.[Ji-Ming],
Cooperative and penalized competitive learning with application to
kernel-based clustering,
PR(47), No. 9, 2014, pp. 3060-3069.
Elsevier DOI
1406
Competitive learning
BibRef
Ulas, A.[Aydin],
Yildiz, O.T.[Olcay Taner],
Alpaydin, E.[Ethem],
Cost-conscious comparison of supervised learning algorithms over
multiple data sets,
PR(45), No. 4, 2012, pp. 1772-1781.
Elsevier DOI
1410
Machine learning
BibRef
Gonen, M.[Mehmet],
Alpaydin, E.[Ethem],
Regularizing multiple kernel learning using response surface
methodology,
PR(44), No. 1, January 2011, pp. 159-171.
Elsevier DOI
1011
Support vector machine; Multiple kernel learning; Regularization;
Response surface methodology
BibRef
Gönen, M.[Mehmet],
Alpaydin, E.[Ethem],
Localized algorithms for multiple kernel learning,
PR(46), No. 3, March 2013, pp. 795-807.
Elsevier DOI
1212
BibRef
Earlier:
Localized Multiple Kernel Regression,
ICPR10(1425-1428).
IEEE DOI
1008
Multiple kernel learning; Support vector machines; Support vector
regression; Classification; Regression; Selective attention
BibRef
Liang, Z.Z.[Zhi-Zheng],
Li, Y.F.[You-Fu],
Multiple kernels for generalised discriminant analysis,
IET-CV(4), No. 2, June 2010, pp. 117-128.
DOI Link
1007
BibRef
Yger, F.,
Rakotomamonjy, A.,
Wavelet kernel learning,
PR(44), No. 10-11, October-November 2011, pp. 2614-2629.
Elsevier DOI
1101
Wavelet; Multiple kernel learning; SVM; Quadratic mirror filter
BibRef
Lin, Y.Y.[Yen-Yu],
Liu, T.L.[Tyng-Luh],
Fuh, C.S.[Chiou-Shann],
Multiple Kernel Learning for Dimensionality Reduction,
PAMI(33), No. 6, June 2011, pp. 1147-1160.
IEEE DOI
1105
Multiple descriptors. Transform into unified space.
BibRef
Wang, S.H.[Shu-Hui],
Huang, Q.M.[Qing-Ming],
Jiang, S.Q.[Shu-Qiang],
Tian, Q.[Qi],
S3-MKL: Scalable Semi-Supervised Multiple Kernel
Learning for Real-World Image Applications,
MultMed(14), No. 4, 2012, pp. 1259-1274.
IEEE DOI
1208
BibRef
Earlier: A1, A3, A2, A4:
Multiple Kernel Learning with High Order Kernels,
ICPR10(2138-2141).
IEEE DOI
1008
BibRef
Han, Y.,
Yang, K.,
Liu, G.,
L_p Norm Localized Multiple Kernel Learning via Semi-Definite
Programming,
SPLetters(19), No. 10, October 2012, pp. 688-691.
IEEE DOI
1209
BibRef
Yang, J.J.[Jing-Jing],
Tian, Y.H.[Yong-Hong],
Duan, L.Y.[Ling-Yu],
Huang, T.,
Gao, W.[Wen],
Group-Sensitive Multiple Kernel Learning for Object Recognition,
IP(21), No. 5, May 2012, pp. 2838-2852.
IEEE DOI
1204
BibRef
Yang, J.J.[Jing-Jing],
Li, Y.N.[Yuan-Ning],
Tian, Y.H.[Yong-Hong],
Duan, L.Y.[Ling-Yu],
Gao, W.[Wen],
Group-sensitive multiple kernel learning for object categorization,
ICCV09(436-443).
IEEE DOI
0909
BibRef
Gu, Y.F.[Yan-Feng],
Wang, C.[Chen],
You, D.[Di],
Zhang, Y.H.[Yu-Hang],
Wang, S.Z.[Shi-Zhe],
Zhang, Y.[Ye],
Representative Multiple Kernel Learning for Classification in
Hyperspectral Imagery,
GeoRS(50), No. 7, July 2012, pp. 2852-2865.
IEEE DOI
1208
BibRef
Gu, Y.F.[Yan-Feng],
Wang, S.Z.[Shi-Zhe],
Jia, X.,
Spectral Unmixing in Multiple-Kernel Hilbert Space
for Hyperspectral Imagery,
GeoRS(51), No. 7, 2013, pp. 3968-3981.
IEEE DOI Hilbert space; spectral unmixing; support vector machines (SVMs)
1307
BibRef
Guo, Z.Y.[Zhen-Yu],
Wang, Z.J.,
Cross-Domain Object Recognition Via Input-Output Kernel Analysis,
IP(22), No. 8, 2013, pp. 3108-3119.
IEEE DOI
1307
cross-domain learning; vector-valued functions;
Multiple Kernel Learning
BibRef
Shang, F.H.[Fan-Hua],
Jiao, L.C.,
Liu, Y.Y.[Yuan-Yuan],
Tong, H.H.[Hang-Hang],
Semi-supervised learning with nuclear norm regularization,
PR(46), No. 8, August 2013, pp. 2323-2336.
Elsevier DOI
1304
Semi-supervised learning (SSL); Low-rank kernel learning; Graph
Laplacian; Nuclear norm regularization; Pairwise constraints
BibRef
Baghshah, M.S.[M. Soleymani],
Afsari, F.,
Shouraki, S.B.[S. Bagheri],
Eslami, E.,
Scalable semi-supervised clustering by spectral kernel learning,
PRL(45), No. 1, 2014, pp. 161-171.
Elsevier DOI
1407
Kernel learning
BibRef
Baghshah, M.S.[Mahdieh Soleymani],
Shouraki, S.B.[Saeed Bagheri],
Efficient Kernel Learning from Constraints and Unlabeled Data,
ICPR10(3364-3367).
IEEE DOI
1008
BibRef
Bucak, S.S.[Serhat Selcuk],
Jin, R.[Rong],
Jain, A.K.[Anil K.],
Multiple Kernel Learning for Visual Object Recognition: A Review,
PAMI(36), No. 7, July 2014, pp. 1354-1369.
IEEE DOI
1407
BibRef
Earlier:
Multi-label learning with incomplete class assignments,
CVPR11(2801-2808).
IEEE DOI
1106
Histograms
BibRef
Han, Y.[Yina],
Liu, G.Z.[Gui-Zhong],
Biologically inspired task oriented gist model for scene classification,
CVIU(117), No. 1, January 2013, pp. 76-95.
Elsevier DOI
1212
Scene classification; Scene gist; Localized multiple kernel learning;
SVM
BibRef
Lu, Y.T.[Yan-Ting],
Wang, L.T.[Lian-Tao],
Lu, J.F.[Jian-Feng],
Yang, J.Y.[Jing-Yu],
Shen, C.H.[Chun-Hua],
Multiple kernel clustering based on centered kernel alignment,
PR(47), No. 11, 2014, pp. 3656-3664.
Elsevier DOI
1407
Clustering
BibRef
Lu, Y.T.[Yan-Ting],
Lu, J.F.[Jian-Feng],
Yang, J.Y.[Jing-Yu],
Adaptive kernel learning based on centered alignment for hierarchical
classification,
ICPR12(569-572).
WWW Link.
1302
BibRef
Thiagarajan, J.J.,
Ramamurthy, K.N.,
Spanias, A.,
Multiple Kernel Sparse Representations for Supervised and
Unsupervised Learning,
IP(23), No. 7, July 2014, pp. 2905-2915.
IEEE DOI
1407
Clustering algorithms
BibRef
Song, H.,
Thiagarajan, J.J.,
Ramamurthy, K.N.,
Spanias, A.,
Auto-context modeling using multiple Kernel learning,
ICIP16(1868-1872)
IEEE DOI
1610
Computational modeling
BibRef
Tsai, J.T.[Jeng-Tsung],
Lin, Y.Y.[Yen-Yu],
Liao, H.Y.M.,
Per-Cluster Ensemble Kernel Learning for Multi-Modal Image Clustering
With Group-Dependent Feature Selection,
MultMed(16), No. 8, December 2014, pp. 2229-2241.
IEEE DOI
1502
feature selection
BibRef
Liu, K.H.[Keng-Hao],
Lin, Y.Y.[Yen-Yu],
Chen, C.S.[Chu-Song],
Linear Spectral Mixture Analysis via Multiple-Kernel Learning for
Hyperspectral Image Classification,
GeoRS(53), No. 4, April 2015, pp. 2254-2269.
IEEE DOI
1502
hyperspectral imaging
BibRef
Rossi, L.[Luca],
Torsello, A.[Andrea],
Hancock, E.R.[Edwin R.],
Unfolding Kernel embeddings of graphs:
Enhancing class separation through manifold learning,
PR(48), No. 11, 2015, pp. 3357-3370.
Elsevier DOI
1506
Kernel learning
BibRef
Bai, L.[Lu],
Cui, L.X.[Li-Xin],
Rossi, L.[Luca],
Xu, L.X.[Li-Xiang],
Bai, X.[Xiao],
Hancock, E.R.[Edwin R.],
Local-global nested graph kernels using nested complexity traces,
PRL(134), 2020, pp. 87-95.
Elsevier DOI
2005
BibRef
Earlier: A1, A3, A2, A5, Only:
A Nested Alignment Graph Kernel Through the Dynamic Time Warping
Framework,
GbRPR17(59-69).
Springer DOI
1706
Graph kernels, Depth-based complexity traces, Nested kernels
BibRef
Torsello, A.[Andrea],
Gasparetto, A.[Andrea],
Rossi, L.[Luca],
Bai, L.[Lu],
Hancock, E.R.[Edwin R.],
Transitive State Alignment for the Quantum Jensen-Shannon Kernel,
SSSPR14(22-31).
Springer DOI
1408
Kernel methods.
BibRef
Tarabalka, Y.,
Benediktsson, J.A.,
Chanussot, J.,
Tilton, J.C.,
Multiple Spectral-Spatial Classification Approach for Hyperspectral
Data,
GeoRS(48), No. 11, November 2010, pp. 4122-4132.
IEEE DOI
1011
See also Segmentation and classification of hyperspectral images using watershed transformation.
BibRef
Liu, T.,
Gu, Y.,
Jia, X.,
Benediktsson, J.A.,
Chanussot, J.,
Class-Specific Sparse Multiple Kernel Learning for Spectral-Spatial
Hyperspectral Image Classification,
GeoRS(54), No. 12, December 2016, pp. 7351-7365.
IEEE DOI
1612
hyperspectral imaging
See also Spectral-Spatial Hyperspectral Image Classification via Multiscale Adaptive Sparse Representation.
BibRef
Gu, Y.,
Chanussot, J.,
Jia, X.,
Benediktsson, J.A.,
Multiple Kernel Learning for Hyperspectral Image Classification:
A Review,
GeoRS(55), No. 11, November 2017, pp. 6547-6565.
IEEE DOI
1711
Data structures, Kernel, Neural networks,
Support vector machines, Classification, heterogeneous features,
hyperspectral images (HSIs), multiple kernel learning (MKL),
remote sensing
BibRef
Liu, T.,
Gu, Y.,
Chanussot, J.,
Dalla Mura, M.,
Multimorphological Superpixel Model for Hyperspectral Image
Classification,
GeoRS(55), No. 12, December 2017, pp. 6950-6963.
IEEE DOI
1712
Data mining, Feature extraction, Hyperspectral imaging, Kernel,
Shape, Spatial resolution, Hyperspectral images (HSIs),
superpixel
BibRef
Aptoula, E.,
Dalla Mura, M.,
Lefčvre, S.,
Vector Attribute Profiles for Hyperspectral Image Classification,
GeoRS(54), No. 6, June 2016, pp. 3208-3220.
IEEE DOI
1606
hyperspectral imaging
BibRef
Xia, J.S.[Jun-Shi],
Chanussot, J.,
Du, P.J.[Pei-Jun],
He, X.[Xiyan],
Spectral-Spatial Classification for Hyperspectral Data Using Rotation
Forests With Local Feature Extraction and Markov Random Fields,
GeoRS(53), No. 5, May 2015, pp. 2532-2546.
IEEE DOI
1502
Markov processes
BibRef
Xia, J.S.[Jun-Shi],
Chanussot, J.,
Du, P.J.[Pei-Jun],
He, X.[Xiyan],
Rotation-Based Support Vector Machine Ensemble in Classification of
Hyperspectral Data With Limited Training Samples,
GeoRS(54), No. 3, March 2016, pp. 1519-1531.
IEEE DOI
1603
Accuracy
BibRef
Xia, J.S.[Jun-Shi],
Dalla Mura, M.,
Chanussot, J.,
Du, P.J.[Pei-Jun],
He, X.[Xiyan],
Random Subspace Ensembles for Hyperspectral Image Classification With
Extended Morphological Attribute Profiles,
GeoRS(53), No. 9, September 2015, pp. 4768-4786.
IEEE DOI
1506
Feature extraction
BibRef
Gu, Y.,
Liu, T.,
Jia, X.,
Benediktsson, J.A.,
Chanussot, J.,
Nonlinear Multiple Kernel Learning With Multiple-Structure-Element
Extended Morphological Profiles for Hyperspectral Image
Classification,
GeoRS(54), No. 6, June 2016, pp. 3235-3247.
IEEE DOI
1606
geophysical image processing
BibRef
Wang, Q.,
Gu, Y.,
Tuia, D.,
Discriminative Multiple Kernel Learning for Hyperspectral Image
Classification,
GeoRS(54), No. 7, July 2016, pp. 3912-3927.
IEEE DOI
1606
Hilbert space
BibRef
Wang, Q.F.[Qi-Fan],
Si, L.[Luo],
Zhang, D.[Dan],
A Discriminative Data-Dependent Mixture-Model Approach for Multiple
Instance Learning in Image Classification,
ECCV12(IV: 660-673).
Springer DOI
1210
BibRef
Zhu, C.M.[Chang-Ming],
Gao, D.[Daqi],
Improved multi-kernel classification machine with Nyström
approximation technique,
PR(48), No. 4, 2015, pp. 1490-1509.
Elsevier DOI
1502
Multiple kernel learning
BibRef
Nazarpour, A.[Abdollah],
Adibi, P.[Peyman],
Two-stage multiple kernel learning for supervised dimensionality
reduction,
PR(48), No. 5, 2015, pp. 1854-1862.
Elsevier DOI
1502
Supervised dimensionality reduction
BibRef
Yuan, Y.[Ying],
Lu, W.M.[Wei-Ming],
Wu, F.[Fei],
Zhuang, Y.T.[Yue-Ting],
Multiple kernel learning with NOn-conVex group spArsity,
JVCIR(25), No. 7, 2014, pp. 1616-1624.
Elsevier DOI
1410
Multiple kernel learning
BibRef
Gevaert, C.M.[Caroline M.],
Persello, C.[Claudio],
Vosselman, G.[George],
Optimizing Multiple Kernel Learning for the Classification of UAV
Data,
RS(8), No. 12, 2016, pp. 1025.
DOI Link
1612
BibRef
Cui, Y.W.[Yan-Wei],
Chapel, L.[Laetitia],
Lefčvre, S.[Sébastien],
Scalable Bag of Subpaths Kernel for Learning on Hierarchical Image
Representations and Multi-Source Remote Sensing Data Classification,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Earlier:
A Subpath Kernel for Learning Hierarchical Image Representations,
GbRPR15(34-43).
Springer DOI
1511
BibRef
Wang, Y.Q.[Yue-Qing],
Liu, X.W.[Xin-Wang],
Dou, Y.[Yong],
Lv, Q.[Qi],
Lu, Y.[Yao],
Multiple kernel learning with hybrid kernel alignment maximization,
PR(70), No. 1, 2017, pp. 104-111.
Elsevier DOI
1706
Multiple kernel learning
BibRef
Liu, X.W.[Xin-Wang],
Incomplete Multiple Kernel Alignment Maximization for Clustering,
PAMI(46), No. 3, March 2024, pp. 1412-1424.
IEEE DOI Code:
WWW Link.
2402
Kernel, Clustering algorithms, Optimization, Task analysis,
Pattern analysis, Partitioning algorithms, Minimization,
kernel alignment maximization
BibRef
Zhang, T.J.[Tie-Jian],
Liu, X.W.[Xin-Wang],
Gong, L.[Lei],
Wang, S.W.[Si-Wei],
Niu, X.[Xin],
Shen, L.[Li],
Late Fusion Multiple Kernel Clustering With Local Kernel Alignment
Maximization,
MultMed(25), 2023, pp. 993-1007.
IEEE DOI
2303
Kernel, Clustering algorithms, Robustness, Partitioning algorithms,
Optimization, Manifolds, Benchmark testing, block diagonal structure
BibRef
Liu, X.W.[Xin-Wang],
Hyperparameter-Free Localized Simple Multiple Kernel K-means With
Global Optimum,
PAMI(45), No. 7, July 2023, pp. 8566-8576.
IEEE DOI
2306
Kernel, Optimization, Clustering algorithms, Task analysis,
Partitioning algorithms, Minimization, Standards,
clustering ensemble
BibRef
Liu, X.W.[Xin-Wang],
Zhou, S.H.[Si-Hang],
Liu, L.[Li],
Tang, C.[Chang],
Wang, S.W.[Si-Wei],
Liu, J.Y.[Ji-Yuan],
Zhang, Y.[Yi],
Localized Simple Multiple Kernel K-means,
ICCV21(9273-9281)
IEEE DOI
2203
Codes, Force, Clustering algorithms, Benchmark testing, Boosting,
Kernel, Transfer/Low-shot/Semi/Unsupervised Learning,
Optimization and learning methods
BibRef
Jiao, Y.L.[Yun-Long],
Vert, J.P.[Jean-Philippe],
The Kendall and Mallows Kernels for Permutations,
PAMI(40), No. 7, July 2018, pp. 1755-1769.
IEEE DOI
1806
Analytical models, Bioinformatics, Correlation, Data models,
Gene expression, Kernel, Sorting, Kendall tau correlation,
supervised classification of biomedical data
BibRef
Sedghi, M.,
Atia, G.,
Georgiopoulos, M.,
Robust Manifold Learning via Conformity Pursuit,
SPLetters(26), No. 3, March 2019, pp. 425-429.
IEEE DOI
1903
data analysis, data structures,
learning (artificial intelligence), matrix multiplication,
reproducing kernel
BibRef
Liu, T.,
Zhang, X.,
Gu, Y.,
Unsupervised Cross-Temporal Classification of Hyperspectral Images
With Multiple Geodesic Flow Kernel Learning,
GeoRS(57), No. 12, December 2019, pp. 9688-9701.
IEEE DOI
1912
Kernel, Manifolds, Hyperspectral imaging, Task analysis,
Support vector machines, Geodesic flow kernel (GFK),
unsupervised classification
BibRef
Wang, Z.[Zhe],
Zhu, Z.H.[Zong-Hai],
Li, D.D.[Dong-Dong],
Collaborative and geometric multi-kernel learning for multi-class
classification,
PR(99), 2020, pp. 107050.
Elsevier DOI
1912
Multi-class classification, Empirical kernel mapping,
Multiple empirical kernel learning, Regularized learning
BibRef
Liu, X.W.[Xin-Wang],
Zhu, X.Z.[Xin-Zhong],
Li, M.M.[Miao-Miao],
Wang, L.[Lei],
Zhu, E.[En],
Liu, T.L.[Tong-Liang],
Kloft, M.[Marius],
Shen, D.G.[Ding-Gang],
Yin, J.P.[Jian-Ping],
Gao, W.[Wen],
Multiple Kernel kk-Means with Incomplete Kernels,
PAMI(42), No. 5, May 2020, pp. 1191-1204.
IEEE DOI
2004
Kernel, Clustering algorithms, Optimization, Pattern analysis,
Information technology, Prediction algorithms,
incomplete kernel learning
BibRef
Liu, X.W.[Xin-Wang],
Wang, L.[Lei],
Zhu, X.Z.[Xin-Zhong],
Li, M.M.[Miao-Miao],
Zhu, E.[En],
Liu, T.L.[Tong-Liang],
Liu, L.[Li],
Dou, Y.[Yong],
Yin, J.P.[Jian-Ping],
Absent Multiple Kernel Learning Algorithms,
PAMI(42), No. 6, June 2020, pp. 1303-1316.
IEEE DOI
2005
Kernel, Optimization, Signal processing algorithms,
Clustering algorithms, Classification algorithms,
max-margin classification
BibRef
Tavassolipour, M.[Mostafa],
Motahari, S.A.[Seyed Abolfazl],
Shalmani, M.T.M.[Mohammad Taghi Manzuri],
Learning of Gaussian Processes in Distributed and Communication
Limited Systems,
PAMI(42), No. 8, August 2020, pp. 1928-1941.
IEEE DOI
2007
Kernel, Training, Machine learning, Gaussian processes,
Task analysis, Optimization, Distortion, Distributed learning,
vector quantization
BibRef
Malhotra, A.[Akshay],
Schizas, I.D.[Ioannis D.],
On unsupervised simultaneous kernel learning and data clustering,
PR(108), 2020, pp. 107518.
Elsevier DOI
2008
Clustering, Matrix factorization, Correlation analysis, Kernel learning
BibRef
Zhang, J.M.[Jia-Ming],
Ning, H.W.[Han-Wen],
Online kernel classification with adjustable bandwidth using
control-based learning approach,
PR(108), 2020, pp. 107566.
Elsevier DOI
2008
Online classification, Kernel learning, Adaptive learning,
Adjustable bandwidth, Control-based approach
BibRef
Li, H.L.[Hao-Liang],
Li, W.[Wen],
Wang, S.Q.[Shi-Qi],
Discovering and incorporating latent target-domains for domain
adaptation,
PR(108), 2020, pp. 107536.
Elsevier DOI
2008
Unsupervised domain adaptation, Latent domain, Multiple kernel learning
BibRef
Manna, S.[Supratim],
Khonglah, J.R.[Jessy Rimaya],
Mukherjee, A.[Anirban],
Saha, G.[Goutam],
Robust kernelized graph-based learning,
PR(110), 2021, pp. 107628.
Elsevier DOI
2011
Robust, Clustering, Semi-supervised classification,
Multiple kernels, Multiple views
BibRef
Jian, M.[Meng],
Jung, C.[Cheolkon],
Semi-supervised kernel matrix learning using adaptive
constraint-based seed propagation,
PR(112), 2021, pp. 107750.
Elsevier DOI
2102
Adaptive constraints, Constraint propagation, Kernel learning,
Seed propagation, Semi-supervised kernel matrix learning
BibRef
Jia, L.L.[Lin-Lin],
Gaüzčre, B.[Benoit],
Honeine, P.[Paul],
graphkit-learn: A Python library for graph kernels based on linear
patterns,
PRL(143), 2021, pp. 113-121.
Elsevier DOI
2102
Code, Graph Kernel. Graph kernels, Linear patterns, Python implementation
BibRef
Chamakura, L.[Lily],
Saha, G.[Goutam],
Localized multiple kernel learning using graph modularity,
PRL(155), 2022, pp. 27-33.
Elsevier DOI
2203
Multiple kernel combining, Multi-view data, SVM,
Heuristic approach, Graph modularity
BibRef
Huusari, R.[Riikka],
Capponi, C.[Cécile],
Villoutreix, P.[Paul],
Kadri, H.[Hachem],
Cross-View kernel transfer,
PR(129), 2022, pp. 108759.
Elsevier DOI
2206
Multi-view learning, Cross-view transfer, Kernel completion, Kernel learning
BibRef
Alavi, F.[Fatemeh],
Hashemi, S.[Sattar],
A bi-level formulation for multiple kernel learning via self-paced
training,
PR(129), 2022, pp. 108770.
Elsevier DOI
2206
Multiple kernel learning, Self-paced learning,
Bi-level optimization, Local kernel alignment, Global kernel alignment
BibRef
Gu, B.[Bin],
Dang, Z.Y.[Zhi-Yuan],
Huo, Z.Y.[Zhou-Yuan],
Deng, C.[Cheng],
Huang, H.[Heng],
Scaling Up Generalized Kernel Methods,
PAMI(44), No. 7, July 2022, pp. 3767-3778.
IEEE DOI
2206
Kernel, Training, Stochastic processes, Convergence,
Computational modeling, Scalability, Optimization, Kernel method,
random feature
BibRef
Chen, Y.Y.[Ying-Ying],
Yang, X.W.[Xiao-Wei],
Online Adaptive Kernel Learning with Random Features for Large-scale
Nonlinear Classification,
PR(131), 2022, pp. 108862.
Elsevier DOI
2208
Large-scale, Nonlinear classification, Online learning, Random feature map
BibRef
Fang, K.[Kun],
Liu, F.H.[Fang-Hui],
Huang, X.L.[Xiao-Lin],
Yang, J.[Jie],
End-to-end kernel learning via generative random Fourier features,
PR(134), 2023, pp. 109057.
Elsevier DOI
2212
Generative random Fourier features, Kernel learning,
End-to-end, One-stage, Generative network, Adversarial robustness
BibRef
Salim, A.[Asif],
Shiju, S.S.,
Sumitra, S.,
Neighborhood Preserving Kernels for Attributed Graphs,
PAMI(45), No. 1, January 2023, pp. 828-840.
IEEE DOI
2212
BibRef
Earlier: A2, A1, A3:
Formulation of Two Stage Multiple Kernel Learning Using Regression
Framework,
PReMI17(61-68).
Springer DOI
1711
Kernel, Support vector machines, Runtime, Feature extraction,
Extraterrestrial measurements, Directed acyclic graph, graph classification.
Multiple kernel learning (MKL).
BibRef
Wei, P.F.[Peng-Fei],
Vo, T.V.[Thanh Vinh],
Qu, X.H.[Xing-Hua],
Ong, Y.S.[Yew Soon],
Ma, Z.J.[Ze-Jun],
Transfer Kernel Learning for Multi-Source Transfer Gaussian Process
Regression,
PAMI(45), No. 3, March 2023, pp. 3862-3876.
IEEE DOI
2302
Kernel, Task analysis, Matrix decomposition, Optimization,
Gaussian processes, Covariance matrices, Adaptation models, transfer kernel
BibRef
Wei, P.F.[Peng-Fei],
Ke, Y.P.[Yi-Ping],
Ong, Y.S.[Yew-Soon],
Ma, Z.J.[Ze-Jun],
Adaptive Transfer Kernel Learning for Transfer Gaussian Process
Regression,
PAMI(45), No. 6, June 2023, pp. 7142-7156.
IEEE DOI
2305
Kernel, Task analysis, Matrix decomposition, Data models,
Adaptation models, Standards, Semantics, Transfer regression,
transfer kernel
BibRef
Ortega, T.[Tomas],
Jafarkhani, H.[Hamid],
Gossiped and Quantized Online Multi-Kernel Learning,
SPLetters(30), 2023, pp. 468-472.
IEEE DOI
2305
Kernel, Signal processing algorithms, Radio frequency,
Quantization (signal), Mathematical models, Task analysis, sensor networks
BibRef
Li, X.F.[Xing-Feng],
Sun, Y.H.[Ying-Hui],
Sun, Q.S.[Quan-Sen],
Ren, Z.W.[Zhen-Wen],
Consensus Cluster Center Guided Latent Multi-Kernel Clustering,
CirSysVideo(33), No. 6, June 2023, pp. 2864-2876.
IEEE DOI
2306
Kernel, Sun, Eigenvalues and eigenfunctions, Task analysis,
Computational complexity, Loss measurement, Convergence,
consensus cluster center
BibRef
Liu, L.[Li],
Sun, H.C.[Hao-Cheng],
Li, F.Z.[Fan-Zhang],
A Lie group kernel learning method for medical image classification,
PR(142), 2023, pp. 109735.
Elsevier DOI
2307
Medical image classification, Feature representation,
Lie group manifold, Lie group machine learning, Kernel learning
BibRef
Liu, J.Y.[Ji-Yuan],
Liu, X.W.[Xin-Wang],
Yang, Y.X.[Yue-Xiang],
Liao, Q.[Qing],
Xia, Y.Q.[Yuan-Qing],
Contrastive Multi-View Kernel Learning,
PAMI(45), No. 8, August 2023, pp. 9552-9566.
IEEE DOI
2307
Kernel, Hilbert space, Support vector machines, Semantics,
Partitioning algorithms, Optimization, Fuses, Contrastive learning,
multiple kernel clustering
BibRef
Ruiz-Moreno, E.[Emilio],
Beferull-Lozano, B.[Baltasar],
An Online Multiple Kernel Parallelizable Learning Scheme,
SPLetters(31), 2024, pp. 121-125.
IEEE DOI
2401
BibRef
Hicdurmaz, B.[Betul],
Calik, N.[Nurullah],
Ustebay, S.[Serpil],
Gauss-like Logarithmic Kernel Function to improve the performance of
kernel machines on the small datasets,
PRL(179), 2024, pp. 178-184.
Elsevier DOI
2403
Kernel learning, Support vector machine, Gaussian-like kernel, Small sample size
BibRef
Liu, Z.[Zheng],
Huang, S.[Shiluo],
Jin, W.[Wei],
Mu, Y.[Ying],
Local kernels based graph learning for multiple kernel clustering,
PR(150), 2024, pp. 110300.
Elsevier DOI
2403
Kernel, Graph, Multiple kernel learning, Clustering
BibRef
Liang, W.X.[Wei-Xuan],
Tang, C.[Chang],
Liu, X.W.[Xin-Wang],
Liu, Y.[Yong],
Liu, J.Y.[Ji-Yuan],
Zhu, E.[En],
He, K.L.[Kun-Lun],
On the Consistency and Large-Scale Extension of Multiple Kernel
Clustering,
PAMI(46), No. 10, October 2024, pp. 6935-6947.
IEEE DOI
2409
Kernel, Clustering algorithms, Training, Matrix decomposition,
Upper bound, Standards, Eigenvalues and eigenfunctions,
large-scale extension
BibRef
Liu, Y.[Yantao],
Rossi, L.[Luca],
Torsello, A.[Andrea],
A Novel Graph Kernel Based on the Wasserstein Distance and Spectral
Signatures,
SSSPR22(122-131).
Springer DOI
2301
BibRef
Winter, D.[Daniel],
Bian, A.[Ang],
Jiang, X.Y.[Xiao-Yi],
Layer-Wise Relevance Propagation Based Sample Condensation for Kernel
Machines,
CAIP21(I:487-496).
Springer DOI
2112
BibRef
Sreekar, P.A.[P. Aditya],
Tiwari, U.[Ujjwal],
Namboodiri, A.[Anoop],
Reducing the Variance of Variational Estimates of Mutual Information
by Limiting the Critic's Hypothesis Space to RKHS,
ICPR21(10666-10674)
IEEE DOI
2105
Reproducing Hilbert Kernel Space.
Neural networks, Probability distribution,
Complexity theory, Random variables, Reliability
BibRef
Cheng, M.[Miao],
You, X.G.[Xin-Ge],
Adaptive Matching of Kernel Means,
ICPR21(2498-2505)
IEEE DOI
2105
Data analysis, Data handling, Estimation, Knowledge discovery,
Complexity theory, Kernel, Intelligent systems, calculation efficiency
BibRef
Zhang, Z.M.[Zi-Ming],
An Efficient Empirical Solver for Localized Multiple Kernel Learning
via DNNs,
ICPR21(647-654)
IEEE DOI
2105
Training, Multilayer perceptrons, Benchmark testing,
Pattern recognition, Kernel, Computational complexity
BibRef
Li, J.F.[Jun-Fan],
Liao, S.Z.[Shi-Zhong],
An Online Kernel Selection Wrapper via Multi-Armed Bandit Model,
ICPR18(1307-1312)
IEEE DOI
1812
Kernel, Computational modeling, Probability distribution,
Learning systems, Loss measurement, Prediction algorithms, Training
BibRef
Vo, P.D.[Phong D.],
Sahbi, H.[Hichem],
Contextual kernel map learning for scene transduction,
ICIP15(3797-3801)
IEEE DOI
1512
BibRef
Earlier:
Modeling label dependencies in kernel learning for image annotation,
ICIP14(5886-5890)
IEEE DOI
1502
BibRef
Earlier:
Transductive inference and kernel design for object class segmentation,
ICIP12(2173-2176).
IEEE DOI
1302
context; kernel map learning; scene understanding; transductive inference.
Kernel
BibRef
Peluffo-Ordóńez, D.H.[Diego Hernán],
Castro-Ospina, A.E.[Andrés Eduardo],
Alvarado-Pérez, J.C.[Juan Carlos],
Revelo-Fuelagán, E.J.[Edgardo Javier],
Multiple Kernel Learning for Spectral Dimensionality Reduction,
CIARP15(626-634).
Springer DOI
1511
BibRef
Gu, Y.F.[Yan-Feng],
Wang, Q.W.[Qing-Wang],
Liu, P.G.[Pi-Gang],
Zuo, D.[Deshan],
Linear discriminant multiple kernel learning for multispectral image
classification,
ICIP14(5052-5056)
IEEE DOI
1502
Accuracy
BibRef
Guo, D.Y.[Dong-Yan],
Zhang, J.[Jian],
Liu, X.W.[Xin-Wang],
Cui, Y.[Ying],
Zhao, C.X.[Chun-Xia],
Multiple Kernel Learning Based Multi-view Spectral Clustering,
ICPR14(3774-3779)
IEEE DOI
1412
Clustering algorithms
BibRef
Tonde, C.[Chetan],
Elgammal, A.M.[Ahmed M.],
Simultaneous Twin Kernel Learning Using Polynomial Transformations
for Structured Prediction,
CVPR14(995-1002)
IEEE DOI
1409
kernel learning
BibRef
Ni, B.B.[Bing-Bing],
Li, T.[Teng],
Moulin, P.[Pierre],
Beta Process Multiple Kernel Learning,
CVPR14(963-970)
IEEE DOI
1409
Beta process
BibRef
Uzair, M.[Muhammad],
Mahmood, A.[Arif],
Mian, A.S.[Ajmal S.],
Sparse Kernel Learning for Image Set Classification,
ACCV14(II: 617-631).
Springer DOI
1504
BibRef
Hino, H.[Hideitsu],
Ogawa, T.[Tetsuji],
An improved entropy-based multiple kernel learning,
ICPR12(1189-1192).
WWW Link.
1302
BibRef
Liu, X.Z.[Xiao-Zhang],
Feng, G.C.[Guo-Can],
Multiple kernel discriminant analysis,
ICPR12(1691-1694).
WWW Link.
1302
BibRef
Huang, K.C.[Kuan-Chieh],
Lin, Y.Y.[Yen-Yu],
Cheng, J.Z.[Jie-Zhi],
Cluster-dependent feature selection by multiple kernel self-organizing
map,
ICPR12(589-592).
WWW Link.
1302
BibRef
Liang, Z.Z.[Zhi-Zheng],
Xia, S.X.[Shi-Xiong],
Liu, J.[Jin],
Zhou, Y.[Yong],
Zhang, L.[Lei],
A Majorization-Minimization Approach to Lq Norm Multiple Kernel
Learning,
ACPR13(366-370)
IEEE DOI
1408
data handling
BibRef
Gal, V.[Viktor],
Kerre, E.E.[Etienne E.],
Nachtegael, M.[Mike],
Multiple kernel learning based modality classification for medical
images,
MCV12(76-83).
IEEE DOI
1207
BibRef
Zhang, X.Z.[Xin-Zheng],
Yuan, C.G.[Cong-Gui],
Predict water quality based on multiple kernel least squares support
vector regression and genetic algorithm,
ICARCV12(1597-1600).
IEEE DOI
1304
BibRef
Inoue, N.[Naoya],
Yamashita, Y.[Yukihiko],
Simultaneous Learning of Localized Multiple Kernels and Classifier with
Weighted Regularization,
SSSPR12(354-362).
Springer DOI
1211
BibRef
Blaschko, M.B.[Matthew B.],
Lampert, C.H.[Christoph H.],
Correlational spectral clustering,
CVPR08(1-8).
IEEE DOI
0806
BibRef
And: A2, A1:
A Multiple Kernel Learning Approach to Joint Multi-class Object
Detection,
DAGM08(xx-yy).
Springer DOI
0806
Award, GCPR.
BibRef
Koide, N.[Naoya],
Yamashita, Y.[Yukihiko],
Asymmetric kernel method and its application to Fisher's discriminant,
ICPR06(II: 820-824).
IEEE DOI
0609
BibRef
Jhuo, I.H.[I-Hong],
Lee, D.T.,
Boosted Multiple Kernel Learning for Scene Category Recognition,
ICPR10(3504-3507).
IEEE DOI
1008
BibRef
Zhang, Z.M.[Zi-Ming],
Li, Z.N.[Ze-Nian],
Drew, M.S.[Mark S.],
AdaMKL: A Novel Biconvex Multiple Kernel Learning Approach,
ICPR10(2126-2129).
IEEE DOI
1008
BibRef
Kembhavi, A.[Aniruddha],
Siddiquie, B.[Behjat],
Miezianko, R.[Roland],
McCloskey, S.[Scott],
Davis, L.S.[Larry S.],
Incremental Multiple Kernel Learning for Object Recognition,
ICCV09(638-645).
IEEE DOI
PDF File.
0909
To obtain task specific datasets, incrementally update descriptions.
BibRef
Fu, S.[Siyao],
Guo, S.Y.[Sheng-Yang],
Hou, Z.G.[Zeng-Guang],
Liang, Z.Z.[Zi-Ze],
Tan, M.[Min],
Multiple kernel learning from sets of partially matching image features,
ICPR08(1-4).
IEEE DOI
0812
SVM with multiple kernels.
BibRef
Siddiquie, B.[Behjat],
Vitaladevuni, S.N.[Shiv N.],
Davis, L.S.[Larry S.],
Combining multiple kernels for efficient image classification,
WACV09(1-8).
IEEE DOI
0912
Multiple features for recognition, combine classifications.
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Nearest Neighbor Classification .