Zhang, M.L.[Min-Ling],
Zhou, Z.H.[Zhi-Hua],
ML-KNN: A lazy learning approach to multi-label learning,
PR(40), No. 7, July 2007, pp. 2038-2048.
Elsevier DOI
0704
Machine learning; Multi-label learning; Lazy learning; K-nearest neighbor;
Functional genomics; Natural scene classification; Text categorization
BibRef
Park, C.H.[Cheong Hee],
Lee, M.H.[Moon-Hwi],
On applying linear discriminant analysis for multi-labeled problems,
PRL(29), No. 7, 1 May 2008, pp. 878-887.
Elsevier DOI
0804
Dimension reduction; Linear discriminant analysis;
Multi-labeled problems; Text categorization
BibRef
Han, Y.,
Wu, F.,
Zhuang, Y.T.,
He, X.,
Multi-Label Transfer Learning With Sparse Representation,
CirSysVideo(20), No. 8, August 2010, pp. 1110-1121.
IEEE DOI
1008
BibRef
Diez, J.,
del Coz, J.J.,
Bahamonde, A.,
A semi-dependent decomposition approach to learn hierarchical
classifiers,
PR(43), No. 11, November 2010, pp. 3795-3804.
Elsevier DOI
1008
Hierarchical classification; Multi-label learning; Structured output
classification; Cost-sensitive learning; Support vector machines
BibRef
Barranquero, J.[Jose],
Díez, J.[Jorge],
del Coz, J.J.[Juan José],
Quantification-oriented learning based on reliable classifiers,
PR(48), No. 2, 2015, pp. 591-604.
Elsevier DOI
1411
Quantification
BibRef
Xu, J.H.[Jian-Hua],
Fast multi-label core vector machine,
PR(46), No. 3, March 2013, pp. 885-898.
Elsevier DOI
1212
Support vector machine; Core vector machine; Multi-label
classification; Frank-Wolfe method; Linear programming; Quadratic
programming
BibRef
Xu, J.H.[Jian-Hua],
Multi-label core vector machine with a zero label,
PR(47), No. 7, 2014, pp. 2542-2557.
Elsevier DOI
1404
Multi-label classification
BibRef
Park, S.[Sunho],
Choi, S.J.[Seung-Jin],
Max-margin embedding for multi-label learning,
PRL(34), No. 3, 1 February 2013, pp. 292-298.
Elsevier DOI
1301
Multi-label learning; Label embedding; Max-margin learning;
Cost-sensitive multi-label hinge loss; One versus all (OVA)
BibRef
Yuan, Y.[Ying],
Wu, F.[Fei],
Shao, J.[Jian],
Zhuang, Y.T.[Yue-Ting],
Image annotation by semi-supervised cross-domain learning with group
sparsity,
JVCIR(24), No. 2, February 2013, pp. 95-102.
Elsevier DOI
1302
Cross-domain; Manifold regularization; Group sparsity; Multiple kernel
learning; Multi-label; Image annotation; Semi-supervise; Discriminant
analysis
BibRef
Kocev, D.[Dragi],
Vens, C.[Celine],
Struyf, J.[Jan],
Deroski, S.[Sao],
Tree ensembles for predicting structured outputs,
PR(46), No. 3, March 2013, pp. 817-833.
Elsevier DOI
1212
Ensemble methods; Predictive clustering trees; Structured outputs;
Multi-target regression; Multi-target classification; Hierarchical
multi-label classification
BibRef
Naula, P.[Pekka],
Airola, A.[Antti],
Salakoski, T.[Tapio],
Pahikkala, T.[Tapio],
Multi-label learning under feature extraction budgets,
PRL(40), No. 1, 2014, pp. 56-65.
Elsevier DOI
1403
Feature selection
BibRef
Wang, S.F.[Shang-Fei],
Wang, J.[Jun],
Wang, Z.Y.[Zhao-Yu],
Ji, Q.A.[Qi-Ang],
Enhancing multi-label classification by modeling dependencies among
labels,
PR(47), No. 10, 2014, pp. 3405-3413.
Elsevier DOI
1406
Multi-label classification
BibRef
Montańes, E.[Elena],
Senge, R.[Robin],
Barranquero, J.[Jose],
Quevedo, J.R.[José Ramón],
del Coz, J.J.[Juan José],
Hüllermeier, E.[Eyke],
Dependent binary relevance models for multi-label classification,
PR(47), No. 3, 2014, pp. 1494-1508.
Elsevier DOI
1312
Multi-label classification
BibRef
Wever, M.[Marcel],
Tornede, A.[Alexander],
Mohr, F.[Felix],
Hüllermeier, E.[Eyke],
AutoML for Multi-Label Classification:
Overview and Empirical Evaluation,
PAMI(43), No. 9, September 2021, pp. 3037-3054.
IEEE DOI
2108
Tools, Pipelines, Machine learning, Loss measurement,
Search problems, Complexity theory, Training,
Bayesian optimization
BibRef
Madjarov, G.[Gjorgji],
Gjorgjevikj, D.[Dejan],
Deroski, S.[Sao],
Two stage architecture for multi-label learning,
PR(45), No. 3, March 2012, pp. 1019-1034.
Elsevier DOI
1111
BibRef
And:
Dual Layer Voting Method for Efficient Multi-label Classification,
IbPRIA11(232-239).
Springer DOI
1106
Multi-label learning; Multi-label ranking; Multi-label classification;
Two stage architecture; Classifier chain
BibRef
Madjarov, G.[Gjorgji],
Kocev, D.[Dragi],
Gjorgjevikj, D.[Dejan],
Deroski, S.[Sao],
An extensive experimental comparison of methods for multi-label
learning,
PR(45), No. 9, September 2012, pp. 3084-3104.
Elsevier DOI
1206
Multi-label ranking; Multi-label classification; Comparison of
multi-label learning methods
BibRef
Luo, Y.,
Tao, D.C.,
Geng, B.,
Xu, C.,
Maybank, S.J.,
Manifold Regularized Multitask Learning for Semi-Supervised Multilabel
Image Classification,
IP(22), No. 2, February 2013, pp. 523-536.
IEEE DOI
1302
BibRef
Gong, C.[Chen],
Tao, D.C.[Da-Cheng],
Maybank, S.J.[Stephen J.],
Liu, W.[Wei],
Kang, G.L.[Guo-Liang],
Yang, J.[Jie],
Multi-Modal Curriculum Learning for Semi-Supervised Image
Classification,
IP(25), No. 7, July 2016, pp. 3249-3260.
IEEE DOI
1606
image classification
BibRef
Liu, Q.,
Sun, Y.,
Wang, C.,
Liu, T.,
Tao, D.,
Elastic Net Hypergraph Learning for Image Clustering and
Semi-Supervised Classification,
IP(26), No. 1, January 2017, pp. 452-463.
IEEE DOI
1612
graph theory
BibRef
Quevedo, J.R.[José Ramón],
Luaces, O.[Oscar],
Bahamonde, A.[Antonio],
Multilabel classifiers with a probabilistic thresholding strategy,
PR(45), No. 2, February 2012, pp. 876-883.
Elsevier DOI
1110
Multilabel classification; Thresholding strategies; Posterior
probability; Expected loss
BibRef
Lastra, G.[Gerardo],
Luaces, O.[Oscar],
Bahamonde, A.[Antonio],
Interval prediction for graded multi-label classification,
PRL(49), No. 1, 2014, pp. 171-176.
Elsevier DOI
1410
Graded multi-label classification
BibRef
Dimitrovski, I.[Ivica],
Kocev, D.[Dragi],
Loskovska, S.[Suzana],
Deroski, S.[Sao],
Fast and efficient visual codebook construction for multi-label
annotation using predictive clustering trees,
PRL(38), No. 1, 2014, pp. 38-45.
Elsevier DOI
1402
Automatic image annotation
BibRef
Sun, F.M.[Fu-Ming],
Tang, J.H.[Jin-Hui],
Li, H.J.[Hao-Jie],
Qi, G.J.[Guo-Jun],
Huang, T.S.,
Multi-Label Image Categorization With Sparse Factor Representation,
IP(23), No. 3, March 2014, pp. 1028-1037.
IEEE DOI
1403
multi-label classification reveals underlying correlations.
correlation methods
BibRef
Pei, Y.L.[Yuan-Li],
Fern, X.L.Z.[Xiao-Li Z.],
Constrained instance clustering in multi-instance multi-label
learning,
PRL(37), No. 1, 2014, pp. 107-114.
Elsevier DOI
1402
MIML
BibRef
Pham, A.T.,
Raich, R.,
Fern, X.Z.,
Dynamic Programming for Instance Annotation in Multi-Instance
Multi-Label Learning,
PAMI(39), No. 12, December 2017, pp. 2381-2394.
IEEE DOI
1711
Computational modeling, Data models, Dynamic programming,
Graphical models, Labeling, Probabilistic logic,
Multi-instance multi-label learning,
expectation maximization, instance annotation
BibRef
Sucar, L.E.[L. Enrique],
Bielza, C.[Concha],
Morales, E.F.[Eduardo F.],
Hernandez-Leal, P.[Pablo],
Zaragoza, J.H.[Julio H.],
Larrańaga, P.[Pedro],
Multi-label classification with Bayesian network-based chain
classifiers,
PRL(41), No. 1, 2014, pp. 14-22.
Elsevier DOI
1403
Multi-label classification
BibRef
Zhang, Q.,
Chen, L.,
Li, B.,
Max-Margin Multiattribute Learning With Low-Rank Constraint,
IP(23), No. 7, July 2014, pp. 2866-2876.
IEEE DOI
1407
Accuracy
BibRef
Gönen, M.[Mehmet],
Coupled dimensionality reduction and classification for supervised
and semi-supervised multilabel learning,
PRL(38), No. 1, 2014, pp. 132-141.
Elsevier DOI
1402
Multilabel learning
BibRef
Zhang, M.L.[Min-Ling],
Wu, L.[Lei],
Lift: Multi-Label Learning with Label-Specific Features,
PAMI(37), No. 1, January 2015, pp. 107-120.
IEEE DOI
1412
Algorithm design and analysis
BibRef
Hang, J.Y.[Jun-Yi],
Zhang, M.L.[Min-Ling],
Collaborative Learning of Label Semantics and Deep Label-Specific
Features for Multi-Label Classification,
PAMI(44), No. 12, December 2022, pp. 9860-9871.
IEEE DOI
2212
Semantics, Feature extraction, Correlation, Deep learning,
Representation learning, Encoding, Collaboration, Machine learning,
collaborative learning
BibRef
Yu, Z.B.[Ze-Bang],
Zhang, M.L.[Min-Ling],
Multi-Label Classification With Label-Specific Feature Generation:
A Wrapped Approach,
PAMI(44), No. 9, September 2022, pp. 5199-5210.
IEEE DOI
2208
Correlation, Task analysis, Wrapping, Training, Predictive models,
Optimization, Analytical models, Multi-label classification,
wrapped procedure
BibRef
Kim, M.Y.[Min-Young],
Multiple-concept feature generative models for multi-label image
classification,
CVIU(136), No. 1, 2015, pp. 69-78.
Elsevier DOI
1506
Probabilistic graphical models
BibRef
Kim, M.Y.[Min-Young],
Sparse conditional copula models for structured output regression,
PR(60), No. 1, 2016, pp. 761-769.
Elsevier DOI
1609
Multiple output regression
BibRef
Lim, H.K.[Hyun-Ki],
Lee, J.S.[Jae-Sung],
Kim, D.W.[Dae-Won],
Multi-Label Learning Using Mathematical Programming,
IEICE(E98-D), No. 1, January 2015, pp. 197-200.
WWW Link.
1503
BibRef
Li, X.M.[Xi-Ming],
Ouyang, J.H.[Ji-Hong],
Zhou, X.T.[Xiao-Tang],
Centroid prior topic model for multi-label classification,
PRL(62), No. 1, 2015, pp. 8-13.
Elsevier DOI
1507
Multi-label classification
BibRef
Destercke, S.[Sébastien],
Multilabel predictions with sets of probabilities:
The Hamming and ranking loss cases,
PR(48), No. 11, 2015, pp. 3757-3765.
Elsevier DOI
1506
Multilabel
BibRef
Ivasic-Kos, M.[Marina],
Pobar, M.[Miran],
Ribaric, S.[Slobodan],
Two-tier image annotation model based on a multi-label classifier and
fuzzy-knowledge representation scheme,
PR(52), No. 1, 2016, pp. 287-305.
Elsevier DOI
1601
Image annotation
BibRef
Li, X.,
Zhao, X.,
Zhang, Z.,
Wu, F.,
Zhuang, Y.,
Wang, J.,
Li, X.,
Joint Multilabel Classification With Community-Aware Label Graph
Learning,
IP(25), No. 1, January 2016, pp. 484-493.
IEEE DOI
1601
Computer vision
BibRef
Triguero, I.[Isaac],
Vens, C.[Celine],
Labelling strategies for hierarchical multi-label classification
techniques,
PR(56), No. 1, 2016, pp. 170-183.
Elsevier DOI
1604
Hierarchical multi-label classification
BibRef
Jing, X.Y.,
Wu, F.,
Li, Z.,
Hu, R.,
Zhang, D.,
Multi-Label Dictionary Learning for Image Annotation,
IP(25), No. 6, June 2016, pp. 2712-2725.
IEEE DOI
1605
Computational modeling
BibRef
Li, Q.[Qiang],
Xie, B.[Bo],
You, J.[Jane],
Bian, W.[Wei],
Tao, D.C.[Da-Cheng],
Correlated Logistic Model With Elastic Net Regularization for
Multilabel Image Classification,
IP(25), No. 8, August 2016, pp. 3801-3813.
IEEE DOI
1608
correlation methods
BibRef
Pu, J.M.[Jia-Meng],
Zhang, Q.,
Zhang, L.,
Du, B.,
You, J.[Jane],
Multiview clustering based on Robust and Regularized Matrix
Approximation,
ICPR16(2550-2555)
IEEE DOI
1705
Approximation algorithms, Clustering algorithms,
Linear programming, Manifolds, Matrix decomposition, Optimization, Robustness
BibRef
Liu, B.[Bin],
Xu, Z.L.[Zeng-Lin],
Wu, S.[Shuang],
Wang, F.[Fei],
Manifold regularized matrix completion for multilabel classification,
PRL(80), No. 1, 2016, pp. 58-63.
Elsevier DOI
1609
Multi-label learning
BibRef
Pillai, I.[Ignazio],
Fumera, G.[Giorgio],
Roli, F.[Fabio],
Designing multi-label classifiers that maximize F measures:
State of the art,
PR(61), No. 1, 2017, pp. 394-404.
Elsevier DOI
1705
BibRef
Earlier:
Learning of Multilabel Classifiers,
ICPR14(3452-3456)
IEEE DOI
1412
Multi-label classification.
Algorithm design and analysis
BibRef
Read, J.[Jesse],
Martino, L.[Luca],
Hollmén, J.[Jaakko],
Multi-label methods for prediction with sequential data,
PR(63), No. 1, 2017, pp. 45-55.
Elsevier DOI
1612
Multi-label classification
BibRef
Wang, M.,
Luo, C.,
Hong, R.,
Tang, J.,
Feng, J.,
Beyond Object Proposals:
Random Crop Pooling for Multi-Label Image Recognition,
IP(25), No. 12, December 2016, pp. 5678-5688.
IEEE DOI
1612
image recognition
BibRef
Xia, Y.,
Nie, L.,
Zhang, L.,
Yang, Y.,
Hong, R.,
Li, X.,
Weakly Supervised Multilabel Clustering and its Applications in
Computer Vision,
Cyber(46), No. 12, December 2016, pp. 3220-3232.
IEEE DOI
1612
Clustering algorithms
BibRef
Du, B.[Bo],
Wang, Z.,
Zhang, L.F.[Le-Fei],
Zhang, L.P.[Liang-Pei],
Tao, D.C.[Da-Cheng],
Robust and Discriminative Labeling for Multi-Label Active Learning
Based on Maximum Correntropy Criterion,
IP(26), No. 4, April 2017, pp. 1694-1707.
IEEE DOI
1704
data mining
BibRef
Wang, Z.M.[Zeng-Mao],
Du, B.[Bo],
Zhang, L.F.[Le-Fei],
Zhang, L.P.[Liang-Pei],
Fang, M.[Meng],
Tao, D.C.[Da-Cheng],
Multi-label Active Learning Based on Maximum Correntropy Criterion:
Towards Robust and Discriminative Labeling,
ECCV16(III: 453-468).
Springer DOI
1611
BibRef
Akbarnejad, A.[Amirhossein],
Baghshah, M.S.[Mahdieh Soleymani],
A probabilistic multi-label classifier with missing and noisy labels
handling capability,
PRL(89), No. 1, 2017, pp. 18-24.
Elsevier DOI
1704
Multi-label classification
BibRef
Wu, J.[Jian],
Ye, C.[Chen],
Sheng, V.S.[Victor S.],
Zhang, J.[Jing],
Zhao, P.P.[Peng-Peng],
Cui, Z.M.[Zhi-Ming],
Active Learning with Label Correlation Exploration for Multi-Label
Image Classification,
IET-CV(11), No. 7, October 2017, pp. 577-584.
DOI Link
1709
BibRef
Earlier: A1, A3, A4, A5, A6, Only:
Multi-Label Active Learning for Image Classification,
ICIP14(5227-5231)
IEEE DOI
1502
BibRef
And: A2, A1, A3, A5, A6, Only:
Multi-Label Active Learning with Label Correlation for Image
Classification,
ICIP15(3437-3441)
IEEE DOI
1512
Accuracy.
Multi-label
BibRef
Du, G.D.[Guo-Dong],
Zhang, J.[Jia],
Zhang, N.[Ning],
Wu, H.R.[Han-Rui],
Wu, P.L.[Pei-Liang],
Li, S.Z.[Shao-Zi],
Semi-Supervised Imbalanced Multi-Label Classification with Label
Propagation,
PR(150), 2024, pp. 110358.
Elsevier DOI
2403
Label propagation, Class-imbalance learning,
Semi-supervised multi-label learning, Collaboration technique
BibRef
Tan, A.[Anhui],
Liang, J.[Jiye],
Wu, W.Z.[Wei-Zhi],
Zhang, J.[Jia],
Semi-Supervised Partial Multi-Label Classification via Consistency
Learning,
PR(131), 2022, pp. 108839.
Elsevier DOI
2208
Semi-supervised partial multi-label learning,
Label correlation, HSIC
BibRef
Barezi, E.J.[Elham J.],
Kwok, J.T.[James T.],
Rabiee, H.R.[Hamid R.],
Multi-Label learning in the independent label sub-spaces,
PRL(97), No. 1, 2017, pp. 8-12.
Elsevier DOI
1709
BibRef
And:
Corrigendum:
PRL(112), 2018, pp. 152.
Elsevier DOI
1809
Large scale learning
BibRef
Sun, L.[Lu],
Kudo, M.[Mineichi],
Optimization of classifier chains via conditional likelihood
maximization,
PR(74), No. 1, 2018, pp. 503-517.
Elsevier DOI
1711
Multi-label classification
BibRef
Trajdos, P.[Pawel],
Kurzynski, M.[Marek],
Weighting scheme for a pairwise multi-label classifier based on the
fuzzy confusion matrix,
PRL(103), 2018, pp. 60-67.
Elsevier DOI
1802
Multi-label classification, Label pairwise transformation,
Random reference classifier, Confusion matrix,
Entropy
BibRef
Zhang, H.[Hu],
Wu, W.[Wei],
Wang, D.[Ding],
Multi-instance multi-label learning of natural scene images: via sparse
coding and multi-layer neural network,
IET-CV(12), No. 3, April 2018, pp. 305-311.
DOI Link
1804
BibRef
Wang, S.F.[Shang-Fei],
Chen, S.Y.[Shi-Yu],
Chen, T.F.[Tan-Fang],
Shi, X.X.[Xiao-Xiao],
Learning with privileged information for multi-Label classification,
PR(81), 2018, pp. 60-70.
Elsevier DOI
1806
Privileged information, Multi-label classification, Similarity constraints
BibRef
Ahmadi, Z.[Zahra],
Kramer, S.[Stefan],
A label compression method for online multi-label classification,
PRL(111), 2018, pp. 64-71.
Elsevier DOI
1808
Data stream classification, Multi-label data, Label compression
BibRef
Zhang, J.,
Wu, Q.,
Shen, C.,
Zhang, J.,
Lu, J.,
Multilabel Image Classification With Regional Latent Semantic
Dependencies,
MultMed(20), No. 10, October 2018, pp. 2801-2813.
IEEE DOI
1810
image classification, learning (artificial intelligence),
recurrent neural nets, multilabel image classification,
deep neural network
BibRef
Jin, C.[Cong],
Jin, S.W.[Shu-Wei],
Multi-label automatic image annotation approach based on multiple
improvement strategies,
IET-IPR(13), No. 4, March 2019, pp. 623-633.
DOI Link
1903
BibRef
Kumar, V.[Vikas],
Pujari, A.K.[Arun K],
Padmanabhan, V.[Vineet],
Kagita, V.R.[Venkateswara Rao],
Group preserving label embedding for multi-label classification,
PR(90), 2019, pp. 23-34.
Elsevier DOI
1903
Multi-label classification, Label embedding, Matrix factorization
BibRef
Nguyen, T.T.[Tien Thanh],
Nguyen, T.T.T.[Thi Thu Thuy],
Luong, A.V.[Anh Vu],
Nguyen, Q.V.H.[Quoc Viet Hung],
Liew, A.W.C.[Alan Wee-Chung],
Stantic, B.[Bela],
Multi-label classification via label correlation and first order
feature dependance in a data stream,
PR(90), 2019, pp. 35-51.
Elsevier DOI
1903
Multi-label classification, Multi-label learning,
Online learning, Data stream, Concept drift, Label correlation,
Feature dependence
BibRef
Yu, W.J.[Wan-Jin],
Chen, Z.D.[Zhen-Duo],
Luo, X.[Xin],
Liu, W.[Wu],
Xu, X.S.[Xin-Shun],
DELTA: A deep dual-stream network for multi-label image
classification,
PR(91), 2019, pp. 322-331.
Elsevier DOI
1904
Deep neural network, Dual-stream network,
Multi-label image classification, Multi-instance learning
BibRef
Zhang, J.[Juli],
Zhang, J.[Junyi],
Dai, T.[Tao],
He, Z.Z.[Zhan-Zhuang],
Exploring Weighted Dual Graph Regularized Non-Negative Matrix
Tri-Factorization Based Collaborative Filtering Framework for
Multi-Label Annotation of Remote Sensing Images,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Lyu, F.[Fan],
Wu, Q.[Qi],
Hu, F.Y.[Fu-Yuan],
Wu, Q.Y.[Qing-Yao],
Tan, M.K.[Ming-Kui],
Attend and Imagine: Multi-Label Image Classification With Visual
Attention and Recurrent Neural Networks,
MultMed(21), No. 8, August 2019, pp. 1971-1981.
IEEE DOI
1908
image classification, recurrent neural nets,
multilabel image classification, recurrent neural networks,
Recurrent Neural Network (RNN)
BibRef
Chen, L.[Long],
Wang, R.G.[Rong-Gui],
Yang, J.[Juan],
Xue, L.X.[Li-Xia],
Hu, M.[Min],
Multi-label image classification with recurrently learning semantic
dependencies,
VC(35), No. 10, October 2018, pp. 1361-1371.
WWW Link.
1909
BibRef
Xue, L.X.[Li-Xia],
Jiang, D.[Di],
Wang, R.G.[Rong-Gui],
Yang, J.[Juan],
Hu, M.[Min],
Learning semantic dependencies with channel correlation for multi-label
classification,
VC(36), No. 7, July 2020, pp. 1325-1335.
WWW Link.
2005
BibRef
Huang, S.J.[Sheng-Jun],
Gao, W.[Wei],
Zhou1, Z.H.[Zhi-Hua],
Fast Multi-Instance Multi-Label Learning,
PAMI(41), No. 11, November 2019, pp. 2614-2627.
IEEE DOI
1910
Task analysis, Computational modeling, Semantics,
Predictive models, Prediction algorithms,
sub-concepts
BibRef
Zhang, Y.[Yu],
Wang, Y.[Yin],
Liu, X.Y.[Xu-Ying],
Mi, S.[Siya],
Zhang, M.L.[Min-Ling],
Large-scale multi-label classification using unknown streaming images,
PR(99), 2020, pp. 107100.
Elsevier DOI
1912
Multi-label image classification,
Recurrent novel-class detector, Streaming images
BibRef
Vanegas, J.A.[Jorge A.],
Beltrán, V.[Viviana],
Escalante, H.J.[Hugo Jair],
González, F.A.[Fabio A.],
Transductive non-linear semantic embedding for multi-class
classification,
PRL(128), 2019, pp. 370-377.
Elsevier DOI
1912
Semantic representation, Semi-supervised learning,
Transductive learning, Learning on a budget, Multi-class classification
BibRef
Dai, Y.[Yong],
Li, Y.[Yi],
Li, S.T.[Shu-Tao],
Multi-label learning for concept-oriented labels of product image
data,
IVC(93), 2020, pp. 103821.
Elsevier DOI
2001
Multi-label learning, Concept-oriented labels,
Product image data, Feature correlation learning, Gram matrices
BibRef
Xia, Y.X.[Yuan-Xin],
d'Angelo, P.[Pablo],
Tian, J.J.[Jiao-Jiao],
Fraundorfer, F.[Friedrich],
Reinartz, P.[Peter],
Multi-Label Learning based Semi-Global Matching Forest,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Yeh, M.C.[Mei-Chen],
Li, Y.N.[Yi-Nan],
Multilabel Deep Visual-Semantic Embedding,
PAMI(42), No. 6, June 2020, pp. 1530-1536.
IEEE DOI
2005
Semantics, Computational modeling, Visualization, Training,
Task analysis, Convolutional neural networks, Redundancy,
convolutional neural networks
BibRef
Hu, L.[Liang],
Li, Y.H.[Yong-Hao],
Gao, W.F.[Wan-Fu],
Zhang, P.[Ping],
Hu, J.C.[Jun-Cheng],
Multi-label feature selection with shared common mode,
PR(104), 2020, pp. 107344.
Elsevier DOI
2005
Feature selection, Multi-label learning,
Coupled matrix factorization, Classification
BibRef
Cevikalp, H.[Hakan],
Benligiray, B.[Burak],
Gerek, O.N.[Omer Nezih],
Semi-supervised robust deep neural networks for multi-label image
classification,
PR(100), 2020, pp. 107164.
Elsevier DOI
2005
Multi-label classification, Semi-supervised learning,
Ramp loss, Image classification, Deep learning
BibRef
Zhu, P.P.[Pan-Pan],
Tan, Y.M.[Yu-Min],
Zhang, L.Q.[Li-Qiang],
Wang, Y.B.[Yue-Bin],
Mei, J.[Jie],
Liu, H.[Hao],
Wu, M.F.[Meng-Fan],
Deep Learning for Multilabel Remote Sensing Image Annotation With
Dual-Level Semantic Concepts,
GeoRS(58), No. 6, June 2020, pp. 4047-4060.
IEEE DOI
2005
Attention mechanism, dual-level semantic concepts,
remote sensing (RS) image multilabel annotation, triplet loss
BibRef
Hua, Y.S.[Yuan-Sheng],
Mou, L.C.[Li-Chao],
Zhu, X.X.[Xiao Xiang],
Relation Network for Multilabel Aerial Image Classification,
GeoRS(58), No. 7, July 2020, pp. 4558-4572.
IEEE DOI
2006
Feature extraction, Semantics, Cognition, Correlation,
Remote sensing, Task analysis, Soil, Attentional region extraction,
multilabel classification
BibRef
Ma, Z.C.[Zhong-Chen],
Chen, S.C.[Song-Can],
Expand globally, shrink locally: Discriminant multi-label learning
with missing labels,
PR(111), 2021, pp. 107675.
Elsevier DOI
2012
Multi-label learning, Missing labels,
Local low-rank label structure, Label discriminant information
BibRef
Lv, J.Q.[Jia-Qi],
Wu, T.R.[Tian-Ran],
Peng, C.L.[Cheng-Lun],
Liu, Y.P.[Yun-Peng],
Xu, N.[Ning],
Geng, X.[Xin],
Compact learning for multi-label classification,
PR(113), 2021, pp. 107833.
Elsevier DOI
2103
Machine learning, Multi-label classification,
Label compression, Compact learning
BibRef
Quintanilla, E.[Erik],
Rawat, Y.[Yogesh],
Sakryukin, A.[Andrey],
Shah, M.[Mubarak],
Kankanhalli, M.S.[Mohan S.],
Adversarial Learning for Personalized Tag Recommendation,
MultMed(23), 2021, pp. 1083-1094.
IEEE DOI
2103
Visualization, Tagging, Deep learning,
Convolutional neural networks, Encoding, adversarial learning
BibRef
Yun, D.J.[Dong-Joo],
Ryu, J.[Jongbin],
Lim, J.W.[Jong-Woo],
Dual aggregated feature pyramid network for multi label
classification,
PRL(144), 2021, pp. 75-81.
Elsevier DOI
2103
Deep learning, Multi-label classification, Aggregation
BibRef
Xu, C.[Chao],
Gu, S.L.[Shi-Lin],
Tao, H.[Hong],
Hou, C.P.[Chen-Ping],
Fragmentary label distribution learning via graph regularized maximum
entropy criteria,
PRL(145), 2021, pp. 147-156.
Elsevier DOI
2104
Label distribution learning, Fragmentary label,
Graph regularization, Label reconstruction
BibRef
Xu, J.H.[Jia-Hao],
Tian, H.D.[Hong-Da],
Wang, Z.Y.[Zhi-Yong],
Wang, Y.[Yang],
Kang, W.X.[Wen-Xiong],
Chen, F.[Fang],
Joint Input and Output Space Learning for Multi-Label Image
Classification,
MultMed(23), 2021, pp. 1696-1707.
IEEE DOI
2106
Feature extraction, Correlation, Task analysis, Semantics,
Deep learning, Visualization, Benchmark testing,
deep learning
BibRef
Chu, W.T.[Wei-Ta],
Huang, S.H.[Si-Heng],
Multi-label image recognition by using semantics consistency, object
correlation, and multiple samples,
JVCIR(77), 2021, pp. 103067.
Elsevier DOI
2106
Multi-label image recognition, Object correlation,
Semantics consistency, Multiple samples
BibRef
Sun, S.L.[Shi-Liang],
Zong, D.M.[Dao-Ming],
LCBM: A Multi-View Probabilistic Model for Multi-Label Classification,
PAMI(43), No. 8, August 2021, pp. 2682-2696.
IEEE DOI
2107
Probabilistic logic, Task analysis, Prediction algorithms,
Support vector machines, Kernel, Training, Semantics,
variational autoencoder
BibRef
Gao, B.B.[Bin-Bin],
Zhou, H.Y.[Hong-Yu],
Learning to Discover Multi-Class Attentional Regions for Multi-Label
Image Recognition,
IP(30), 2021, pp. 5920-5932.
IEEE DOI
2107
Streaming media, Image recognition, Semantics, Proposals,
Visualization, Task analysis, Reinforcement learning, Multi-label,
global to local
BibRef
Song, G.L.[Guo-Li],
Wang, S.H.[Shu-Hui],
Huang, Q.M.[Qing-Ming],
Tian, Q.[Qi],
Learning Feature Representation and Partial Correlation for
Multimodal Multi-Label Data,
MultMed(23), 2021, pp. 1882-1894.
IEEE DOI
2107
Semantics, Correlation, Task analysis, Data models, Learning systems,
Kernel, Deep learning, Cross-modal retrieval, correlation learning,
partial correlation
BibRef
Fan, Y.L.[Yu-Ling],
Liu, J.H.[Jing-Hua],
Liu, P.Z.[Pei-Zhong],
Du, Y.Z.[Yong-Zhao],
Lan, W.Y.[Wei-Yao],
Wu, S.X.[Shun-Xiang],
Manifold learning with structured subspace for multi-label feature
selection,
PR(120), 2021, pp. 108169.
Elsevier DOI
2109
Multi-label learning, Feature selection, Manifold learning,
Structured subspace, Instance correlations, Label correlations
BibRef
Fan, Y.L.[Yu-Ling],
Liu, J.H.[Jing-Hua],
Tang, J.E.[Jian-Eng],
Liu, P.Z.[Pei-Zhong],
Lin, Y.[Yaojin],
Du, Y.Z.[Yong-Zhao],
Learning correlation information for multi-label feature selection,
PR(145), 2024, pp. 109899.
Elsevier DOI
2311
Multi-label feature selection, Label correlations,
Feature redundancy, Manifold framework, Adaptive spectral graph
BibRef
Zhang, P.[Ping],
Liu, G.X.[Gui-Xia],
Gao, W.[Wanfu],
Song, J.Z.[Jia-Zhi],
Multi-label feature selection considering label supplementation,
PR(120), 2021, pp. 108137.
Elsevier DOI
2109
Multi-label learning, Multi-label feature selection,
Information theory, Label relationships
BibRef
Zhang, P.[Ping],
Liu, G.X.[Gui-Xia],
Song, J.Z.[Jia-Zhi],
MFSJMI: Multi-label feature selection considering join mutual
information and interaction weight,
PR(138), 2023, pp. 109378.
Elsevier DOI
2303
Multi-label learning, Multi-label feature selection,
Information theory, Underlying assumptions
BibRef
Zhang, M.L.[Min-Ling],
Fang, J.P.[Jun-Peng],
Partial Multi-Label Learning via Credible Label Elicitation,
PAMI(43), No. 10, October 2021, pp. 3587-3599.
IEEE DOI
2109
Training, Computational complexity, Sensitivity analysis,
Benchmark testing, Standards, Machine learning,
credible label elicitation
BibRef
Nakano, F.K.[Felipe Kenji],
Pliakos, K.[Konstantinos],
Vens, C.[Celine],
Deep tree-ensembles for multi-output prediction,
PR(121), 2022, pp. 108211.
Elsevier DOI
2109
Ensemble learning, Deep-forest, Multi-output prediction,
Multi-target regression, Multi-label classification
BibRef
Li, J.L.[Jun-Long],
Li, P.P.[Pei-Pei],
Hu, X.G.[Xue-Gang],
Yu, K.[Kui],
Learning common and label-specific features for multi-Label
classification with correlation information,
PR(121), 2022, pp. 108259.
Elsevier DOI
2109
Multi-label classification, Label-specific features,
Common features, Instance correlation
BibRef
Ma, X.K.[Xiao-Ke],
Tan, S.Y.[Shi-Yin],
Xie, X.H.[Xiang-Hua],
Zhong, X.X.[Xiao-Xiong],
Deng, J.J.[Jing-Jing],
Joint multi-label learning and feature extraction for temporal link
prediction,
PR(121), 2022, pp. 108216.
Elsevier DOI
2109
Temporal link prediction, Non-negative matrix factorization,
Multi-label learning, Dynamic networks
BibRef
Guan, Y.Y.[Yuan-Yuan],
Zhang, B.[Boxiang],
Li, W.H.[Wen-Hui],
Wang, Y.[Ying],
Semi-supervised partial multi-label classification with low-rank and
manifold constraints,
PRL(151), 2021, pp. 112-119.
Elsevier DOI
2110
Multi-label classification, Semi-supervised, Partial multi-label
BibRef
Wen, S.P.[Shi-Ping],
Liu, W.W.[Wei-Wei],
Yang, Y.[Yin],
Zhou, P.[Pan],
Guo, Z.Y.[Zhen-Yuan],
Yan, Z.[Zheng],
Chen, Y.[Yiran],
Huang, T.W.[Ting-Wen],
Multilabel Image Classification via Feature/Label Co-Projection,
SMCS(51), No. 11, November 2021, pp. 7250-7259.
IEEE DOI
2110
Feature extraction, Correlation, Sports equipment, Visualization,
Image recognition, Task analysis, Pipelines, Deep learning,
neural network
BibRef
Lin, D.[Dan],
Lin, J.Z.[Jian-Zhe],
Zhao, L.[Liang],
Wang, Z.J.[Z. Jane],
Chen, Z.K.[Zhi-Kui],
Multilabel Aerial Image Classification With a Concept Attention Graph
Neural Network,
GeoRS(60), 2022, pp. 1-12.
IEEE DOI
2112
Correlation, Feature extraction, Task analysis, Semantics,
Deep learning, Graph neural networks, Software, Aerial images,
multilabel image classification
BibRef
Nguyen, T.[Tam],
Raich, R.[Raviv],
Incomplete Label Multiple Instance Multiple Label Learning,
PAMI(44), No. 3, March 2022, pp. 1320-1337.
IEEE DOI
2202
Labeling, Training, Phase locked loops, Birds, Numerical models,
Graphical models, Standards, Incomplete-label learning,
probabilistic models
BibRef
Pei, Y.L.[Yuan-Li],
Fern, X.L.[Xiao-Li],
Raich, R.[Raviv],
Learning with Latent Label Hierarchy from Incomplete Multi-Label Data,
ICPR18(2075-2080)
IEEE DOI
1812
Labeling, Graphical models, Maximum likelihood estimation,
Message passing, Probabilistic logic, Training, Dynamic programming
BibRef
Sun, L.J.[Li-Juan],
Feng, S.H.[Song-He],
Liu, J.[Jun],
Lyu, G.Y.[Geng-Yu],
Lang, C.Y.[Cong-Yan],
Global-Local Label Correlation for Partial Multi-Label Learning,
MultMed(24), 2022, pp. 581-593.
IEEE DOI
2202
Correlation, Noise measurement, Predictive models,
Matrix decomposition, Task analysis, Manifolds, Sparse matrices,
label manifold
BibRef
Shen, X.B.[Xiao-Bo],
Dong, G.H.[Guo-Hua],
Zheng, Y.H.[Yu-Hui],
Lan, L.[Long],
Tsang, I.W.[Ivor W.],
Sun, Q.S.[Quan-Sen],
Deep Co-Image-Label Hashing for Multi-Label Image Retrieval,
MultMed(24), 2022, pp. 1116-1126.
IEEE DOI
2203
Codes, Semantics, Image retrieval, Hash functions, Prototypes,
Quantization (signal), Hamming distance, Hashing, multi-label, image retrieval
BibRef
Huang, S.[Shiluo],
Liu, Z.[Zheng],
Jin, W.[Wei],
Mu, Y.[Ying],
Bag dissimilarity regularized multi-instance learning,
PR(126), 2022, pp. 108583.
Elsevier DOI
2204
Multi-instance learning (MIL), Dissimilarity regularization, Fisher score
BibRef
Liu, S.[Siyu],
Song, X.H.[Xue-Hua],
Ma, Z.C.[Zhong-Chen],
Ganaa, E.D.[Ernest Domanaanmwi],
Shen, X.J.[Xiang-Jun],
MoRE: Multi-output residual embedding for multi-label classification,
PR(126), 2022, pp. 108584.
Elsevier DOI
2204
Distance metric, Low-rank structure, Residual embedding
BibRef
Wang, Z.[Zhe],
Fang, Z.[Zhongli],
Li, D.D.[Dong-Dong],
Yang, H.[Hai],
Du, W.L.[Wen-Li],
Semantic Supplementary Network With Prior Information for Multi-Label
Image Classification,
CirSysVideo(32), No. 4, April 2022, pp. 1848-1859.
IEEE DOI
2204
Semantics, Feature extraction, Predictive models,
Image recognition, Task analysis, Sports, Deep learning, deep neural network
BibRef
Ge, X.[Xiou],
Wang, Y.C.[Yun-Cheng],
Wang, B.[Bin],
Kuo, C.C.J.[C.C. Jay],
CORE: A knowledge graph entity type prediction method via complex
space regression and embedding,
PRL(157), 2022, pp. 97-103.
Elsevier DOI
2205
Knowledge graph, Complex space embedding,
Entity type prediction, Self-adversarial negative samplin,
Multi-label classification
BibRef
Li, P.[Peng],
Chen, P.[Peng],
Zhang, D.Z.[De-Zheng],
Cross-Modal Feature Representation Learning and Label Graph Mining in
a Residual Multi-Attentional CNN-LSTM Network for Multi-Label Aerial
Scene Classification,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Xie, M.K.[Ming-Kun],
Huang, S.J.[Sheng-Jun],
Partial Multi-Label Learning With Noisy Label Identification,
PAMI(44), No. 7, July 2022, pp. 3676-3687.
IEEE DOI
2206
Noise measurement, Task analysis, Training, Labeling, Crowdsourcing,
Correlation, Phase locked loops, Multi-lable learning,
multi-instance multi-label learning
BibRef
Xie, M.K.[Ming-Kun],
Huang, S.J.[Sheng-Jun],
CCMN: A General Framework for Learning With Class-Conditional
Multi-Label Noise,
PAMI(45), No. 1, January 2023, pp. 154-166.
IEEE DOI
2212
Task analysis, Noise measurement, Training, Robustness, Labeling,
Training data, Risk management, Class-conditional noise,
partial multi-label learning
BibRef
Zhou, F.T.[Feng-Tao],
Huang, S.[Sheng],
Liu, B.[Bo],
Yang, D.[Dan],
Multi-Label Image Classification via Category Prototype Compositional
Learning,
CirSysVideo(32), No. 7, July 2022, pp. 4513-4525.
IEEE DOI
2207
Semantics, Prototypes, Feature extraction, Task analysis,
Convolutional neural networks, Computational modeling, Dogs,
decomposing network
BibRef
Zhu, X.L.[Xue-Lin],
Liu, J.[Jian],
Liu, W.J.[Wei-Jia],
Ge, J.W.[Jia-Wei],
Liu, B.[Bo],
Cao, J.X.[Jiu-Xin],
Scene-Aware Label Graph Learning for Multi-Label Image Classification,
ICCV23(1473-1482)
IEEE DOI
2401
BibRef
Chen, J.Z.[Jing-Zhou],
Wang, P.[Peng],
Liu, J.[Jian],
Qian, Y.T.[Yun-Tao],
Label Relation Graphs Enhanced Hierarchical Residual Network for
Hierarchical Multi-Granularity Classification,
CVPR22(4848-4857)
IEEE DOI
2210
Code, Classification.
WWW Link. Image quality, Representation learning, Knowledge engineering,
Machine vision, Semantics, Probabilistic logic,
Vision applications and systems
BibRef
Li, D.[Dan],
Du, C.D.[Chang-De],
Wang, H.B.[Hai-Bao],
Zhou, Q.Y.[Qiong-Yi],
He, H.G.[Hui-Guang],
Deep Modality Assistance Co-Training Network for Semi-Supervised
Multi-Label Semantic Decoding,
MultMed(24), 2022, pp. 3287-3299.
IEEE DOI
2207
Semantics, Task analysis, Decoding, Correlation, Generators,
Face recognition, Training, Multi-label, Modality, Assistance,
Semi-supervised
BibRef
Zeng, H.Z.[Huan-Ze],
Chen, A.[Argon],
Multivariate multi-layer classifier,
PR(131), 2022, pp. 108896.
Elsevier DOI
2208
Classification, Classifiers, Multivariate decision tree,
Machine learning, Tree construction
BibRef
Wang, J.[Jing],
Geng, X.[Xin],
Xue, H.[Hui],
Re-Weighting Large Margin Label Distribution Learning for
Classification,
PAMI(44), No. 9, September 2022, pp. 5445-5459.
IEEE DOI
2208
Label Distribution Learning.
Training, Support vector machines, Sun, Error probability,
Predictive models, Faces, Computational modeling,
generalization
BibRef
Liu, W.W.[Wei-Wei],
Wang, H.[Haobo],
Shen, X.B.[Xiao-Bo],
Tsang, I.W.[Ivor W.],
The Emerging Trends of Multi-Label Learning,
PAMI(44), No. 11, November 2022, pp. 7955-7974.
IEEE DOI
2210
Deep learning, Task analysis, Market research, Training, Testing,
Noise measurement, Correlation, Extreme multi-label learning,
new applications
BibRef
Wang, D.B.[Deng-Bao],
Zhang, M.L.[Min-Ling],
Li, L.[Li],
Adaptive Graph Guided Disambiguation for Partial Label Learning,
PAMI(44), No. 12, December 2022, pp. 8796-8811.
IEEE DOI
2212
Training, Labeling, Predictive models, Task analysis, Manifolds, Faces,
Tagging, Machine learning, weakly supervised learning, label disambiguation
BibRef
Wu, H.J.[Hong-Jun],
Xu, C.[Cheng],
Liu, H.Z.[Hong-Zhe],
SMART: Semantic-Aware Masked Attention Relational Transformer for
Multi-label Image Recognition,
SPLetters(29), 2022, pp. 2158-2162.
IEEE DOI
2212
Transformers, Task analysis, Image recognition, Semantics,
Correlation, Convolution, Visualization,
masked attention
BibRef
Li, Y.H.[Yong-Hao],
Hu, L.[Liang],
Gao, W.[Wanfu],
Multi-label feature selection via robust flexible sparse
regularization,
PR(134), 2023, pp. 109074.
Elsevier DOI
2212
Multi-label learning, Feature selection, Sparse regularization, Classification
BibRef
Li, Y.H.[Yong-Hao],
Hu, L.[Liang],
Gao, W.[Wanfu],
Robust sparse and low-redundancy multi-label feature selection with
dynamic local and global structure preservation,
PR(134), 2023, pp. 109120.
Elsevier DOI
2212
Feature selection, Multi-label learning, Sparse learning, Label correlations
BibRef
Gao, W.[Wanfu],
Hao, P.T.[Ping-Ting],
Wu, Y.[Yang],
Zhang, P.[Ping],
A unified low-order information-theoretic feature selection framework
for multi-label learning,
PR(134), 2023, pp. 109111.
Elsevier DOI
2212
Feature selection, Multi-label learning, Information theory,
Low-order information-theoretic terms, Probability distribution assumption
BibRef
Maltoudoglou, L.[Lysimachos],
Paisios, A.[Andreas],
Lenc, L.[Ladislav],
Martínek, J.[Jirí],
Král, P.[Pavel],
Papadopoulos, H.[Harris],
Well-calibrated confidence measures for multi-label text
classification with a large number of labels,
PR(122), 2022, pp. 108271.
Elsevier DOI
2112
Text classification, Multi-label, Word2vec, Bert,
Conformal prediction, Label powerset,
Confidence measure
BibRef
Zhai, T.T.[Ting-Ting],
Wang, H.[Hao],
Tang, H.C.[Hong-Cheng],
Joint optimization of scoring and thresholding models for online
multi-label classification,
PR(136), 2023, pp. 109167.
Elsevier DOI
2301
online multi-label classification, online thresholding,
adaptive thresholding, online learning
BibRef
Qian, K.[Kun],
Min, X.Y.[Xue-Yang],
Cheng, Y.S.[Yu-Sheng],
Min, F.[Fan],
Weight matrix sharing for multi-label learning,
PR(136), 2023, pp. 109156.
Elsevier DOI
2301
Low-rank, Missing labels, Multi-label learning, Shared weight, Sparse
BibRef
Zhou, W.[Wei],
Dou, P.[Peng],
Su, T.[Tao],
Hu, H.F.[Hai-Feng],
Zheng, Z.J.[Zhi-Jie],
Feature Learning Network with Transformer for Multi-Label Image
Classification,
PR(136), 2023, pp. 109203.
Elsevier DOI
2301
Multi-label classification, Transformer, Multi-scale features,
Spatial attention, Salient features, Feature suppression
BibRef
Zhou, W.[Wei],
Zheng, Z.J.[Zhi-Jie],
Su, T.[Tao],
Hu, H.F.[Hai-Feng],
DATran: Dual Attention Transformer for Multi-Label Image
Classification,
CirSysVideo(34), No. 1, January 2024, pp. 342-356.
IEEE DOI
2401
BibRef
Wang, Y.[Yun],
Zhang, T.[Tong],
Zhou, C.[Chuanwei],
Cui, Z.[Zhen],
Yang, J.[Jian],
Instance-Aware Deep Graph Learning for Multi-Label Classification,
MultMed(25), 2023, pp. 90-99.
IEEE DOI
2301
Correlation, Adaptation models, Task analysis, Feature extraction,
Image recognition, Convolutional neural networks, Sports,
variational inference
BibRef
Stoimchev, M.[Marjan],
Kocev, D.[Dragi],
Deroski, S.[Sao],
Deep Network Architectures as Feature Extractors for Multi-Label
Classification of Remote Sensing Images,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Zang, L.G.[Li-Guang],
Li, Y.C.[Yuan-Cheng],
Chen, H.[Hui],
Multilabel Recognition Algorithm With Multigraph Structure,
CirSysVideo(33), No. 2, February 2023, pp. 782-792.
IEEE DOI
2302
Task analysis, Correlation, Feature extraction,
Image edge detection, Training, Semantics, Periodic structures,
multilabel image recognition
BibRef
Lu, W.[Wei],
Lin, J.X.[Jia-Xin],
Jing, P.G.[Pei-Guang],
Su, Y.T.[Yu-Ting],
A Multimodal Aggregation Network With Serial Self-Attention Mechanism
for Micro-Video Multi-Label Classification,
SPLetters(30), 2023, pp. 60-64.
IEEE DOI
2302
Feature extraction, Visualization, Correlation, Trajectory,
Task analysis, Mobile ad hoc networks, Measurement, Micro-video,
self-attention
BibRef
Cui, C.[Can],
Huo, H.[Hong],
Fang, T.[Tao],
Deep Hashing With Multi-Central Ranking Loss for Multi-Label Image
Retrieval,
SPLetters(30), 2023, pp. 135-139.
IEEE DOI
2303
Semantics, Feature extraction, Training, Image retrieval,
Correlation, Extraterrestrial measurements, hash center update scheme
BibRef
Jia, B.B.[Bin-Bin],
Zhang, M.L.[Min-Ling],
Multi-dimensional multi-label classification: Towards encompassing
heterogeneous label spaces and multi-label annotations,
PR(138), 2023, pp. 109357.
Elsevier DOI
2303
Machine learning, Supervised learning,
Multi-dimensional classification, Multi-label classification,
Multi-dimensional multi-label classification
BibRef
Fallah-Tehrani, A.[Ali],
Modeling andness in multilabel classification to recognize mutual
information,
PRL(167), 2023, pp. 98-106.
Elsevier DOI
2303
Andness, Multi-label classification, Mutual information
BibRef
Guo, M.H.[Meng-Hao],
Liu, Z.N.[Zheng-Ning],
Mu, T.J.[Tai-Jiang],
Hu, S.M.[Shi-Min],
Beyond Self-Attention: External Attention Using Two Linear Layers for
Visual Tasks,
PAMI(45), No. 5, May 2023, pp. 5436-5447.
IEEE DOI
2304
Task analysis, Visualization, Transformers, Computer architecture,
Semantics, Point cloud compression, Image synthesis, Deep learning,
multi-layer perceptrons
BibRef
Xu, N.[Ning],
Shu, J.[Jun],
Zheng, R.Y.[Ren-Yi],
Geng, X.[Xin],
Meng, D.Y.[De-Yu],
Zhang, M.L.[Min-Ling],
Variational Label Enhancement,
PAMI(45), No. 5, May 2023, pp. 6537-6551.
IEEE DOI
2304
Training, Predictive models, Task analysis, Linear programming, Sun,
Correlation, Estimation, Label enhancement, label ambiguity
BibRef
Dai, Y.[Yong],
Song, W.W.[Wei-Wei],
Gao, Z.[Zhi],
Fang, L.Y.[Le-Yuan],
Global-guided weakly-supervised learning for multi-label image
classification,
JVCIR(93), 2023, pp. 103823.
Elsevier DOI
2305
Global correlation, Feature disentanglement,
Label-related regions, Weakly-supervised learning, Multi-label classification
BibRef
Klonecki, T.[Tomasz],
Teisseyre, P.[Pawel],
Lee, J.[Jaesung],
Cost-constrained feature selection in multilabel classification using
an information-theoretic approach,
PR(141), 2023, pp. 109605.
Elsevier DOI
2306
Multilabel learning, Multilabel feature selection,
Cost-constrained feature selection, Cost factor optimization,
Mutual information
BibRef
Zhang, J.[Jialu],
Ren, J.F.[Jian-Feng],
Zhang, Q.[Qian],
Liu, J.[Jiang],
Jiang, X.D.[Xu-Dong],
Spatial Context-Aware Object-Attentional Network for Multi-Label
Image Classification,
IP(32), 2023, pp. 3000-3012.
IEEE DOI
2306
Semantics, Image classification, Task analysis, Feature extraction,
Context modeling, Object detection, Correlation,
spatial semantic attention
BibRef
Wang, Y.X.[Ying-Xu],
Chen, L.[Long],
Zhou, J.[Jin],
Li, T.J.[Tian-Jun],
Yu, Y.F.[Yu-Feng],
Low-rank kernel regression with preserved locality for multi-class
analysis,
PR(141), 2023, pp. 109601.
Elsevier DOI
2306
Kernel ridge regression, Low-rank learning,
Locality preserving, Random feature space
BibRef
Masuyama, N.[Naoki],
Nojima, Y.[Yusuke],
Loo, C.K.[Chu Kiong],
Ishibuchi, H.[Hisao],
Multi-Label Classification via Adaptive Resonance Theory-Based
Clustering,
PAMI(45), No. 7, July 2023, pp. 8696-8712.
IEEE DOI
2306
Clustering algorithms, Bayes methods, Training,
Machine learning algorithms, Kernel, Subspace constraints,
correntropy
BibRef
Wang, R.[Ran],
Chen, S.[Shuyue],
Yu, Y.[Yu],
Extending version-space theory to multi-label active learning with
imbalanced data,
PR(142), 2023, pp. 109690.
Elsevier DOI
2307
Multi-label active learning, Sample-label pairs, Inconsistency,
Version space, Imbalanced data
BibRef
Gupta, A.[Akshita],
Narayan, S.[Sanath],
Khan, S.[Salman],
Khan, F.S.[Fahad Shahbaz],
Shao, L.[Ling],
van de Weijer, J.[Joost],
Generative Multi-Label Zero-Shot Learning,
PAMI(45), No. 12, December 2023, pp. 14611-14624.
IEEE DOI
2311
BibRef
Narayan, S.[Sanath],
Gupta, A.[Akshita],
Khan, S.[Salman],
Khan, F.S.[Fahad Shahbaz],
Shao, L.[Ling],
Shah, M.[Mubarak],
Discriminative Region-based Multi-Label Zero-Shot Learning,
ICCV21(8711-8720)
IEEE DOI
2203
Visualization, Codes, Semantics, Benchmark testing, Cognition,
Spatial resolution, Recognition and classification
BibRef
Lu, Y.[Yunan],
Li, W.W.[Wei-Wei],
Li, H.X.[Hua-Xiong],
Jia, X.[Xiuyi],
Predicting Label Distribution From Tie-Allowed Multi-Label Ranking,
PAMI(45), No. 12, December 2023, pp. 15364-15379.
IEEE DOI
2311
BibRef
Zou, Y.Z.[Yi-Zhang],
Hu, X.[Xuegang],
Li, P.P.[Pei-Pei],
Gradient-based multi-label feature selection considering three-way
variable interaction,
PR(145), 2024, pp. 109900.
Elsevier DOI
2311
Multi-label learning, Feature selection,
Gradient-based methods, Three-way interaction, Information theory
BibRef
Teng, Z.[Zeyu],
Cao, P.[Peng],
Huang, M.[Min],
Gao, Z.M.[Zhe-Ming],
Wang, X.W.[Xing-Wei],
Multi-label borderline oversampling technique,
PR(145), 2024, pp. 109953.
Elsevier DOI
2311
Multi-label learning, Class imbalance, Borderline sample, Oversampling
BibRef
Dai, J.H.[Jian-Hua],
Huang, W.Y.[Wei-Yi],
Zhang, C.[Chucai],
Liu, J.[Jie],
Multi-label feature selection by strongly relevant label gain and
label mutual aid,
PR(145), 2024, pp. 109945.
Elsevier DOI
2311
Fuzzy rough set, Fuzzy conditional mutual information,
Multi-label feature selection, Strongly relevant label gain, Label mutual aid
BibRef
Liu, J.H.[Jing-Hua],
Wei, W.[Wei],
Lin, Y.[Yaojin],
Yang, L.J.[Li-Jie],
Zhang, H.B.[Hong-Bo],
Learning implicit labeling-importance and label correlation for
multi-label feature selection with streaming labels,
PR(147), 2024, pp. 110081.
Elsevier DOI
2312
Multi-label feature selection, Streaming labels,
Labeling-importance, Label correlation
BibRef
Zhang, Y.[Yong],
Jiang, Y.Q.[Yu-Qing],
Zhang, Q.[Qi],
Liu, D.[Da],
Multi-label learning based on instance correlation and feature
redundancy,
PRL(176), 2023, pp. 123-130.
Elsevier DOI
2312
Multi-label classification, Label-specific features,
Instance correlation, Feature selection
BibRef
Haidar, S.[Salma],
Oramas, J.[José],
Training Methods of Multi-Label Prediction Classifiers for
Hyperspectral Remote Sensing Images,
RS(15), No. 24, 2023, pp. 5656.
DOI Link
2401
BibRef
Wu, Z.N.[Zheng-Ning],
He, T.Y.[Tian-Yu],
Xia, X.B.[Xiao-Bo],
Yu, J.[Jun],
Shen, X.[Xu],
Liu, T.L.[Tong-Liang],
Conditional Consistency Regularization for Semi-Supervised
Multi-Label Image Classification,
MultMed(26), 2024, pp. 4206-4216.
IEEE DOI
2403
Predictive models, Image classification, Data models, Motorcycles,
Manifolds, Training, Deep learning, Image classification,
consistency regularization
BibRef
Guo, W.L.[Wei-Long],
Li, S.Y.[Sheng-Yang],
Chen, F.X.[Fei-Xiang],
Sun, Y.H.[Yu-Han],
Gu, Y.F.[Yan-Feng],
Satellite Video Multi-Label Scene Classification With Spatial and
Temporal Feature Cooperative Encoding: A Benchmark Dataset and Method,
IP(33), 2024, pp. 2238-2251.
IEEE DOI
2404
Satellites, Scene classification, Image coding, Feature extraction,
Long short term memory, Task analysis, Semantics, Satellite video,
feature encoding
BibRef
Hu, Y.[Yan],
Fang, X.Z.[Xiao-Zhao],
Kang, P.P.[Pei-Pei],
Chen, Y.H.[Yong-Hao],
Fang, Y.T.[Yu-Ting],
Xie, S.L.[Sheng-Li],
Dual Noise Elimination and Dynamic Label Correlation Guided Partial
Multi-Label Learning,
MultMed(26), 2024, pp. 5641-5656.
IEEE DOI
2404
Correlation, Matrix decomposition, Training, Phase locked loops,
Laplace equations, Task analysis, Sun, dynamic Laplacian matrix
BibRef
Wang, H.B.[Hao-Bo],
Xiao, R.X.[Rui-Xuan],
Li, Y.X.[Yi-Xuan],
Feng, L.[Lei],
Niu, G.[Gang],
Chen, G.[Gang],
Zhao, J.[Junbo],
PiCO+: Contrastive Label Disambiguation for Robust Partial Label
Learning,
PAMI(46), No. 5, May 2024, pp. 3183-3198.
IEEE DOI
2404
Phase locked loops, Noise measurement, Training, Standards,
Robustness, Classification algorithms, Task analysis,
prototype-based disambiguation
BibRef
Lv, J.Q.[Jia-Qi],
Liu, B.[Biao],
Feng, L.[Lei],
Xu, N.[Ning],
Xu, M.[Miao],
An, B.[Bo],
Niu, G.[Gang],
Geng, X.[Xin],
Sugiyama, M.[Masashi],
On the Robustness of Average Losses for Partial-Label Learning,
PAMI(46), No. 5, May 2024, pp. 2569-2583.
IEEE DOI
2404
Phase locked loops, Training, Robustness, Noise measurement,
Reliability theory, Predictive models, Deep learning,
weakly supervised learning
BibRef
He, S.[Shuo],
Yang, G.W.[Guo-Wu],
Feng, L.[Lei],
Candidate-Aware Selective Disambiguation Based on Normalized Entropy
for Instance-Dependent Partial-Label Learning,
ICCV23(1792-1801)
IEEE DOI
2401
BibRef
Hu, P.[Ping],
Sun, X.[Ximeng],
Sclaroff, S.[Stan],
Saenko, K.[Kate],
DualCoOp++: Fast and Effective Adaptation to Multi-Label Recognition
With Limited Annotations,
PAMI(46), No. 5, May 2024, pp. 3450-3462.
IEEE DOI
2404
Image recognition, Task analysis, Visualization, Annotations,
Training, Semantics, Correlation, Multi-label image recognition,
zero-shot recognition
BibRef
Zhang, Y.[Yao],
Huo, W.[Wei],
Tang, J.[Jun],
Multi-label feature selection via latent representation learning and
dynamic graph constraints,
PR(151), 2024, pp. 110411.
Elsevier DOI Code:
WWW Link.
2404
Multi-label learning, Feature selection,
Latent representation learning, Dynamic graph, Manifold learning
BibRef
Garcia-Pedrajas, N.E.[NicolĄs E.],
Cuevas-Munoz, J.M.[JosŠ M.],
Cerruela-Garcia, G.[Gonzalo],
de Haro-Garcia, A.[Aida],
A thorough experimental comparison of multilabel methods for
classification performance,
PR(151), 2024, pp. 110342.
Elsevier DOI
2404
Multilabel learning, Performance comparison, Study of models
BibRef
Ma, P.[Peirong],
He, Z.Q.[Zhi-Quan],
Ran, W.[Wu],
Lu, H.[Hong],
A Transferable Generative Framework for Multi-Label Zero-Shot
Learning,
CirSysVideo(34), No. 5, May 2024, pp. 3409-3423.
IEEE DOI
2405
Semantics, Task analysis, Image recognition, Feature extraction,
Training, Transforms, Visualization,
multi-label feature generation networks
BibRef
Li, J.X.[Jia-Xuan],
Zhu, X.Y.[Xiao-Yan],
Zhang, W.[Weichu],
Wang, J.Y.[Jia-Yin],
A ranking-based problem transformation method for weakly supervised
multi-label learning,
PR(153), 2024, pp. 110505.
Elsevier DOI
2405
Multi-label learning, Problem transformation,
Pairwise label correlation, Ensemble learning,
Partial multi-label learning
BibRef
Chen, J.L.[Jia-Le],
Xu, F.[Feng],
Zeng, T.[Tao],
Li, X.[Xin],
Chen, S.J.[Shang-Jing],
Yu, J.[Jie],
MSFA: Multi-Stage Feature Aggregation Network for Multi-Label Image
Recognition,
IET-IPR(18), No. 7, 2024, pp. 1862-1877.
DOI Link
2405
feature extraction, image classification, object recognition
BibRef
Zhang, X.F.[Xin-Feng],
Shao, J.[Jie],
Bian, H.[Haonan],
Li, H.[Hui],
Jia, M.[Maoshen],
Liu, X.M.[Xiao-Min],
TIM-Net: A multi-label classification network for TCM tongue images
fusing global-local features,
IET-IPR(18), No. 7, 2024, pp. 1878-1891.
DOI Link
2405
convolutional neural nets, image classification, medical image processing
BibRef
Yin, T.[Tengyu],
Chen, H.M.[Hong-Mei],
Wang, Z.H.[Zhi-Hong],
Liu, K.Y.[Ke-Yu],
Yuan, Z.[Zhong],
Horng, S.J.[Shi-Jinn],
Li, T.R.[Tian-Rui],
Feature selection for multilabel classification with missing labels
via multi-scale fusion fuzzy uncertainty measures,
PR(154), 2024, pp. 110580.
Elsevier DOI
2406
Multi-scale fuzzy rough sets, Multilabel feature selection,
Missing labels, Uncertainty measures
BibRef
Jia, Q.W.[Qing-Wei],
Deng, T.Q.[Ting-Quan],
Wang, Y.[Yan],
Wang, C.Z.[Chang-Zhong],
Discriminative label correlation based robust structure learning for
multi-label feature selection,
PR(154), 2024, pp. 110583.
Elsevier DOI
2406
Multi-label learning, Feature selection, Feature redundancy,
Discriminative label correlation
BibRef
Proszewska, M.[Magdalena],
Wolczyk, M.[Maciej],
Zieba, M.[Maciej],
Wielopolski, P.[Patryk],
Maziarka, L.[Lukasz],
Smieja, M.[Marek],
Multi-Label Conditional Generation From Pre-Trained Models,
PAMI(46), No. 9, September 2024, pp. 6185-6198.
IEEE DOI
2408
Training, Computational modeling, Adaptation models, Vectors,
Data models, Aerospace electronics, Conditional generation, VAEs
BibRef
Jiang, J.F.[Jie-Fang],
Zhang, X.Y.[Xian-Yong],
Yuan, Z.[Zhong],
Multi-label feature selection using self-information in
divergence-based fuzzy neighborhood rough sets,
PR(155), 2024, pp. 110684.
Elsevier DOI
2408
Divergence-based fuzzy neighborhood rough sets,
Multi-label learning, Feature selection, Self-information, Feature significance
BibRef
Zhu, K.[Ke],
Fu, M.H.[Ming-Hao],
Wu, J.X.[Jian-Xin],
Multi-Label Self-Supervised Learning with Scene Images,
ICCV23(6671-6680)
IEEE DOI
2401
BibRef
Li, M.[Miaoge],
Wang, D.S.[Dong-Sheng],
Liu, X.Y.[Xin-Yang],
Zeng, Z.Q.[Ze-Qun],
Lu, R.Y.[Rui-Ying],
Chen, B.[Bo],
Zhou, M.Y.[Ming-Yuan],
PatchCT: Aligning Patch Set and Label Set with Conditional Transport
for Multi-Label Image Classification,
ICCV23(15302-15312)
IEEE DOI
2401
BibRef
Verelst, T.[Thomas],
Rubenstein, P.K.[Paul K.],
Eichner, M.[Marcin],
Tuytelaars, T.[Tinne],
Berman, M.[Maxim],
Spatial Consistency Loss for Training Multi-Label Classifiers from
Single-Label Annotations,
WACV23(3868-3878)
IEEE DOI
2302
Training, Heating systems, Annotations, Text categorization, Crops,
Standards, Algorithms: Machine learning architectures,
and algorithms (including transfer)
BibRef
Hsieh, C.Y.[Cheng-Yen],
Chang, C.J.[Chih-Jung],
Yang, F.E.[Fu-En],
Wang, Y.C.A.F.[Yu-Chi-Ang Frank],
Self-Supervised Pyramid Representation Learning for Multi-Label
Visual Analysis and Beyond,
WACV23(2695-2704)
IEEE DOI
2302
Representation learning, Adaptation models, Visualization,
Correlation, Aggregates, Semantics, Prototypes,
and algorithms (including transfer)
BibRef
Kimura, K.[Keigo],
Bao, J.Q.[Jia-Qi],
Kudo, M.[Mineichi],
Sun, L.[Lu],
Retargeted Regression Methods for Multi-label Learning,
SSSPR22(203-212).
Springer DOI
2301
BibRef
Yazici, V.O.[Vacit Oguz],
van de Weijer, J.[Joost],
Yu, L.L.[Long-Long],
Visual Transformers with Primal Object Queries for Multi-Label Image
Classification,
ICPR22(3014-3020)
IEEE DOI
2212
Training, Measurement, Visualization, Object detection, Transformers,
Decoding
BibRef
Zhou, D.H.[Dong-Hao],
Chen, P.F.[Peng-Fei],
Wang, Q.[Qiong],
Chen, G.Y.[Guang-Yong],
Heng, P.A.[Pheng-Ann],
Acknowledging the Unknown for Multi-Label Learning with Single Positive
Labels,
ECCV22(XXIV:423-440).
Springer DOI
2211
BibRef
Ke, B.[Bo],
Zhu, Y.Q.[Yun-Quan],
Li, M.[Mengtian],
Shu, X.J.[Xiu-Jun],
Qiao, R.Z.[Rui-Zhi],
Ren, B.[Bo],
Hyperspherical Learning in Multi-Label Classification,
ECCV22(XXV:38-55).
Springer DOI
2211
BibRef
Lin, D.[Dan],
Chen, Z.K.[Zhi-Kui],
Zhao, L.[Liang],
Wang, K.[Kai],
Multi-label Aerial Image Classification Based on Image-Specific
Concept Graphs,
ICIP22(121-125)
IEEE DOI
2211
Computational modeling, Image edge detection, Semantics,
Image representation, Feature extraction, Task analysis,
Graph convolutional network
BibRef
Lan, Z.[Ziwen],
Maeda, K.[Keisuke],
Ogawa, T.[Takahiro],
Haseyama, M.[Miki],
GCN-Based Multi-Modal Multi-Label Attribute Classification in Anime
Illustration Using Domain-Specific Semantic Features,
ICIP22(2021-2025)
IEEE DOI
2211
Semantics, Production, Animation, Task analysis, Anime illustration,
graph convolutional networks, semantic feature, image captioning
BibRef
Dong, N.Q.[Nan-Qing],
Wang, J.Y.[Jia-Yi],
Voiculescu, I.[Irina],
Revisiting Vicinal Risk Minimization for Partially Supervised
Multi-Label Classification Under Data Scarcity,
L3D-IVU22(4211-4219)
IEEE DOI
2210
Bridges, Costs, Supervised learning, Entropy, Data models
BibRef
Kim, Y.[Youngwook],
Kim, J.M.[Jae Myung],
Akata, Z.[Zeynep],
Lee, J.[Jungwoo],
Large Loss Matters in Weakly Supervised Multi-Label Classification,
CVPR22(14136-14145)
IEEE DOI
2210
Training, Costs, Codes, Annotations, Computational modeling,
Pattern recognition, Recognition: detection, categorization,
Self- semi- meta- unsupervised learning
BibRef
Ben-Baruch, E.[Emanuel],
Ridnik, T.[Tal],
Friedman, I.[Itamar],
Ben-Cohen, A.[Avi],
Zamir, N.[Nadav],
Noy, A.[Asaf],
Zelnik-Manor, L.[Lihi],
Multi-label Classification with Partial Annotations using Class-aware
Selective Loss,
CVPR22(4754-4762)
IEEE DOI
2210
Training, Deep learning, Codes, Annotations, Computational modeling,
Estimation, Recognition: detection, categorization, retrieval,
Machine learning
BibRef
Ben-Cohen, A.[Avi],
Zamir, N.[Nadav],
Baruch, E.B.[Emanuel Ben],
Friedman, I.[Itamar],
Zelnik-Manor, L.[Lihi],
Semantic Diversity Learning for Zero-Shot Multi-label Classification,
ICCV21(620-630)
IEEE DOI
2203
Training, Image recognition, Computational modeling, Semantics,
Image retrieval, Neural networks, Recognition and classification,
Representation learning
BibRef
Hu, S.[Shu],
Ke, L.P.[Li-Peng],
Wang, X.[Xin],
Lyu, S.W.[Si-Wei],
TkML-AP: Adversarial Attacks to Top-k Multi-Label Learning,
ICCV21(7629-7637)
IEEE DOI
2203
Learning systems, Text analysis, Perturbation methods, Semantics,
Image annotation, Dogs, Benchmark testing, Adversarial learning,
BibRef
Zhu, K.[Ke],
Wu, J.X.[Jian-Xin],
Residual Attention: A Simple but Effective Method for Multi-Label
Recognition,
ICCV21(184-193)
IEEE DOI
2203
Training, Visualization, Image recognition, Codes,
Computational modeling, Task analysis,
BibRef
Chen, M.[Ming],
Wang, G.J.[Gui-Jin],
Xue, J.H.[Jing-Hao],
Ding, Z.J.[Zi-Jian],
Sun, L.[Li],
Enhance Via Decoupling: Improving Multi-Label Classifiers With
Variational Feature Augmentation,
ICIP21(1329-1333)
IEEE DOI
2201
Deep learning, Visualization, Image recognition, Benchmark testing,
Network architecture, Feature extraction, Deep Learning,
Pedestrian Attribute Recognition
BibRef
Guo, H.[Hao],
Wang, S.[Song],
Long-Tailed Multi-Label Visual Recognition by Collaborative Training
on Uniform and Re-balanced Samplings,
CVPR21(15084-15093)
IEEE DOI
2111
Training, Visualization, Head, Collaboration,
Collaborative work, Pattern recognition
BibRef
Lanchantin, J.[Jack],
Wang, T.L.[Tian-Lu],
Ordonez, V.[Vicente],
Qi, Y.J.[Yan-Jun],
General Multi-label Image Classification with Transformers,
CVPR21(16473-16483)
IEEE DOI
2111
Training, Deep learning, Visualization, Genomics, Transformers,
Encoding, Pattern recognition
BibRef
Magri, L.[Luca],
Leveni, F.[Filippo],
Boracchi, G.[Giacomo],
MultiLink: Multi-class Structure Recovery via Agglomerative
Clustering and Model Selection,
CVPR21(1853-1862)
IEEE DOI
2111
Couplings, Codes, Fitting, Clustering algorithms,
Tools, Data models
BibRef
Song, Z.[Zeyu],
Chang, D.L.[Dong-Liang],
Ma, Z.Y.[Zhan-Yu],
Li, X.X.[Xiao-Xu],
Tan, Z.H.[Zheng-Hua],
CC-Loss: Channel Correlation Loss for Image Classification,
ICPR21(7601-7608)
IEEE DOI
2105
Training, Deep learning, Correlation, Euclidean distance,
Feature extraction, Entropy, Deep Learning,
Channel Attention
BibRef
Li, Y.N.[Ya-Ning],
Yang, L.[Liu],
More Correlations Better Performance: Fully Associative Networks for
Multi-label Image Classification,
ICPR21(9437-9444)
IEEE DOI
2105
Fans, Visualization, Correlation, Image recognition, Convolution,
Predictive models, Image representation
BibRef
Koßmann, D.[Dominik],
Wilhelm, T.[Thorsten],
Fink, G.A.[Gernot A.],
Towards Tackling Multi-Label Imbalances in Remote Sensing Imagery,
ICPR21(5782-5789)
IEEE DOI
2105
Measurement, Earth, Image analysis, Computational modeling,
Neural networks, Employment, Encoding,
Scene understanding
BibRef
Campos, L.S.[Leonardo S.],
Salvadeo, D.H.P.[Denis H. P.],
Multi-label Classification of Panoramic Radiographic Images Using a
Convolutional Neural Network,
ISVC20(I:346-358).
Springer DOI
2103
BibRef
Maeda, K.[Keisuke],
Takahashi, S.[Sho],
Ogawa, T.[Takahiro],
Haseyama, M.[Miki],
Feature Integration Via Geometrical Supervised Multi-View Multi-Label
Canonical Correlation For Incomplete Label Assignment,
ICIP20(46-50)
IEEE DOI
2011
Correlation, Linear programming, Training, Covariance matrices,
Visualization, Semantics, Task analysis, Incomplete label,
canonical correlation.
BibRef
Ma, J.H.[Jiang-Hong],
Liu, Y.[Yang],
Latent Topic-aware Multi-label Classification,
ECCV20(XIV:558-573).
Springer DOI
2011
BibRef
Li, J.B.[Jun-Bing],
Zhang, C.Q.[Chang-Qing],
Zhu, P.F.[Peng-Fei],
Wu, B.Y.[Bao-Yuan],
Chen, L.[Lei],
Hu, Q.H.[Qing-Hua],
SPL-MLL: Selecting Predictable Landmarks for Multi-label Learning,
ECCV20(IX:783-799).
Springer DOI
2011
BibRef
Wu, T.[Tong],
Huang, Q.Q.[Qing-Qiu],
Liu, Z.W.[Zi-Wei],
Wang, Y.[Yu],
Lin, D.[Dahua],
Distribution-balanced Loss for Multi-label Classification in
Long-tailed Datasets,
ECCV20(IV:162-178).
Springer DOI
2011
BibRef
Oguz Yazici, V.,
Gonzalez-Garcia, A.,
Ramisa, A.,
Twardowski, B.,
van de Weijer, J.,
Orderless Recurrent Models for Multi-Label Classification,
CVPR20(13437-13446)
IEEE DOI
2008
Task analysis, Training, Predictive models, Computational modeling,
Logic gates, Correlation, Computer architecture
BibRef
Rajat,
Varshney, M.,
Singh, P.,
Namboodiri, V.P.,
Minimizing Supervision in Multi-label Categorization,
TCV20(93-102)
IEEE DOI
2008
Measurement, Task analysis, Machine learning, Welding,
Feature extraction, Uncertainty, Computational modeling
BibRef
Huynh, D.,
Elhamifar, E.,
Interactive Multi-Label CNN Learning With Partial Labels,
CVPR20(9420-9429)
IEEE DOI
2008
Training, Loss measurement, Training data, Manifolds,
Memory management, Image recognition, Standards
BibRef
Guan, Z.Q.[Zi-Qiao],
Yager, K.G.[Kevin G.],
Yu, D.T.[Dan-Tong],
Qin, H.[Hong],
Multi-Label Visual Feature Learning with Attentional Aggregation,
WACV20(2190-2198)
IEEE DOI
2006
identifying weak scattered patterns with diffuse background interference.
X-ray scattering, Active appearance model, Visualization, Imaging,
Training, X-ray imaging, Detectors
BibRef
Trajdos, P.[Pawel],
Kurzynski, M.[Marek],
Dynamic Classifier Chains for Multi-label Learning,
GCPR19(567-580).
Springer DOI
1911
BibRef
Wang, Q.,
Jia, N.,
Breckon, T.P.,
A Baseline for Multi-Label Image Classification Using an Ensemble of
Deep Convolutional Neural Networks,
ICIP19(644-648)
IEEE DOI
1910
Multi-Label Image Classification,
Deep Convolutional Neural Network, Data Augmentation
BibRef
Chen, Z.,
Lin, J.,
Wang, Z.,
Chandrasekhar, V.,
Lin, W.,
Beyond Ranking Loss:
Deep Holographic Networks for Multi-Label Video Search,
ICIP19(879-883)
IEEE DOI
1910
Video Search, Multi-label, Deep Metric Learning, Feature Composition
BibRef
Abdelfattah, R.[Rabab],
Guo, Q.[Qing],
Li, X.G.[Xiao-Guang],
Wang, X.F.[Xiao-Feng],
Wang, S.[Song],
CDUL: CLIP-Driven Unsupervised Learning for Multi-Label Image
Classification,
ICCV23(1348-1357)
IEEE DOI
1806
BibRef
Abdelfattah, R.[Rabab],
Zhang, X.[Xin],
Wu, Z.Y.[Zhen-Yao],
Wu, X.Y.[Xin-Yi],
Wang, X.F.[Xiao-Feng],
Wang, S.[Song],
Plmcl: Partial-label Momentum Curriculum Learning for Multi-label Image
Classification,
LLID22(39-55).
Springer DOI
2304
BibRef
Zhang, M.Y.[Meng-Ying],
Li, C.S.[Chang-Sheng],
Wang, X.F.[Xiang-Feng],
Multi-View Metric Learning for Multi-Label Image Classification,
ICIP19(2134-2138)
IEEE DOI
1910
Multi-label image classification, distance metric learning, multi-view learning
BibRef
Jiang, B.,
Zhou, L.,
Lin, L.,
Xu, B.,
Yu, J.,
Zheng, X.,
Wu, K.,
A Real-Time Multi-Label Classification System for Short Videos,
ICIP19(534-538)
IEEE DOI
1910
Short-video analysis, multi-label classification, deep learning,
real-time inference
BibRef
Guo, B.,
Hou, C.,
Shan, J.,
Yi, D.,
Low Rank Multi-Label Classification with Missing Labels,
ICPR18(417-422)
IEEE DOI
1812
Correlation, Optimization, Semantics, Linear programming, Matrices,
Data models, Training
BibRef
Firman, M.[Michael],
Campbell, N.D.F.[Neill D. F.],
Agapito, L.[Lourdes],
Brostow, G.J.[Gabriel J.],
DiverseNet: When One Right Answer is not Enough,
CVPR18(5598-5607)
IEEE DOI
1812
Training, Task analysis, Aerospace electronics,
Supervised learning, Training data
BibRef
Chu, H.M.[Hong-Min],
Yeh, C.K.[Chih-Kuan],
Wang, Y.C.A.F.[Yu-Chi-Ang Frank],
Deep Generative Models for Weakly-Supervised Multi-Label Classification,
ECCV18(II: 409-425).
Springer DOI
1810
BibRef
Hong, D.F.[Dan-Feng],
Yokoya, N.[Naoto],
Xu, J.[Jian],
Zhu, X.X.[Xiao-Xiang],
Joint and Progressive Learning from High-Dimensional Data for
Multi-label Classification,
ECCV18(VIII: 478-493).
Springer DOI
1810
BibRef
Raimundo, M.M.[Marcos M.],
von Zuben, F.J.[Fernando J.],
Many-Objective Ensemble-Based Multilabel Classification,
CIARP17(365-373).
Springer DOI
1802
BibRef
Xie, P.,
Salakhutdinov, R.,
Mou, L.,
Xing, E.P.,
Deep Determinantal Point Process for Large-Scale Multi-label
Classification,
ICCV17(473-482)
IEEE DOI
1802
image classification, learning (artificial intelligence),
neural nets, Deep Determinantal Point Process model, MLC,
Visualization
BibRef
Ghosh, A.[Aritra],
Sekhar, C.C.[C. Chandra],
Label Correlation Propagation for Semi-supervised Multi-label Learning,
PReMI17(52-60).
Springer DOI
1711
BibRef
Singh, A.K.[Abhiram Kumar],
Sekhar, C.C.[C. Chandra],
A Two-Stage Conditional Random Field Model Based Framework for
Multi-Label Classification,
PReMI17(69-76).
Springer DOI
1711
BibRef
Yang, H.,
Zhou, J.T.,
Cai, J.,
Ong, Y.S.,
MIML-FCN+: Multi-Instance Multi-Label Learning via Fully
Convolutional Networks with Privileged Information,
CVPR17(5996-6004)
IEEE DOI
1711
Correlation, Image recognition, Machine learning,
Proposals, Training
BibRef
Gong, M.G.[Mao-Guo],
Gao, Y.[Yuan],
Wu, Y.[Yue],
Zhang, Y.Q.[Yuan-Qiao],
Qin, A.K.,
Ong, Y.S.[Yew-Soon],
Heterogeneous Multi-Party Learning With Data-Driven Network Sampling,
PAMI(45), No. 11, November 2023, pp. 13328-13343.
IEEE DOI
2310
BibRef
Zhu, F.[Feng],
Li, H.S.[Hong-Sheng],
Ouyang, W.L.[Wan-Li],
Yu, N.H.[Neng-Hai],
Wang, X.G.[Xiao-Gang],
Learning Spatial Regularization with Image-Level Supervisions for
Multi-label Image Classification,
CVPR17(2027-2036)
IEEE DOI
1711
Kernel, Neural networks, Semantics, Training, Visualization
BibRef
Kimura, K.,
Kudo, M.,
Sun, L.[Lu],
Koujaku, S.,
Fast random k-labELsets for large-scale multi-label classification,
ICPR16(438-443)
IEEE DOI
1705
Algorithm design and analysis, Complexity theory,
Computational modeling, Support vector machines, Testing, Training
BibRef
Guo, Y.M.[Yu-Meng],
Chung, F.L.[Fu-Lai],
Li, G.Z.[Guo-Zheng],
Multi-label learning with globAl densiTy fusiOn Mapping features,
ICPR16(462-467)
IEEE DOI
1705
Algorithm design and analysis, Clustering algorithms,
Image reconstruction, Prediction algorithms, Space exploration,
Training, Uniform, resource, locators
BibRef
Sun, L.,
Kudo, M.,
Kimura, K.,
Multi-label classification with meta-label-specific features,
ICPR16(1612-1617)
IEEE DOI
1705
Complexity theory, Correlation, Feature extraction,
Prediction algorithms, Semantics, Sparse matrices, Text, categorization
BibRef
Norov-Erdene, B.,
Kudo, M.,
Sun, L.,
Kimura, K.,
Locality in multi-label classification problems,
ICPR16(2319-2324)
IEEE DOI
1705
Biology, Clustering algorithms, Entropy, Pattern recognition,
Regression tree analysis, Testing, Training
BibRef
Kanehira, A.,
Shin, A.,
Harada, T.,
True-negative label selection for large-scale multi-label learning,
ICPR16(3673-3678)
IEEE DOI
1705
Computational modeling, Convergence, Dogs,
Fasteners, Optimization, Training
BibRef
Li, C.H.[Cheng-Hua],
Kang, Q.[Qi],
Ge, G.J.[Guo-Jing],
Song, Q.[Qiang],
Lu, H.Q.[Han-Qing],
Cheng, J.[Jian],
DeepBE: Learning Deep Binary Encoding for Multi-label Classification,
ChaLearn16(744-751)
IEEE DOI
1612
BibRef
Wang, J.,
Yang, Y.,
Mao, J.,
Huang, Z.,
Huang, C.,
Xu, W.,
CNN-RNN: A Unified Framework for Multi-label Image Classification,
CVPR16(2285-2294)
IEEE DOI
1612
BibRef
Yang, H.[Hao],
Zhou, J.T.Y.[Joey Tian-Yi],
Cai, J.F.[Jian-Fei],
Improving Multi-label Learning with Missing Labels by Structured
Semantic Correlations,
ECCV16(I: 835-851).
Springer DOI
1611
BibRef
Kimura, K.[Keigo],
Kudo, M.[Mineichi],
Sun, L.[Lu],
Simultaneous Nonlinear Label-Instance Embedding for Multi-label
Classification,
SSSPR16(15-25).
Springer DOI
1611
BibRef
Kwok, J.T.,
Learning from High-Dimensional Data in Multitask/Multilabel
Classification,
ACPR13(16-17)
IEEE DOI
1408
learning (artificial intelligence)
BibRef
Sun, F.M.[Fu-Ming],
Xu, M.X.[Mei-Xiang],
Jiang, X.J.[Xiao-Jun],
Robust Multi-Label Image Classification with Semi-Supervised Learning
and Active Learning,
MMMod15(II: 512-523).
Springer DOI
1501
BibRef
Sechidis, K.[Konstantinos],
Nikolaou, N.[Nikolaos],
Brown, G.[Gavin],
Information Theoretic Feature Selection in Multi-label Data through
Composite Likelihood,
SSSPR14(143-152).
Springer DOI
1408
BibRef
Zhang, L.F.[Ling-Feng],
Shah, S.K.[Shishir K.],
Kakadiaris, I.A.[Ioannis A.],
Hierarchical Multi-label Classification using Fully Associative
Ensemble Learning,
PR(70), No. 1, 2017, pp. 89-103.
Elsevier DOI
1706
BibRef
Earlier:
Fully Associative Ensemble Learning for Hierarchical Multi-Label
Classification,
BMVC14(xx-yy).
HTML Version.
1410
Hierarchical Multi-label
BibRef
Reyes-Pupo, O.G.[Oscar Gabriel],
Morell, C.[Carlos],
Ventura-Soto, S.[Sebastián],
ReliefF-ML: An Extension of ReliefF Algorithm to Multi-label Learning,
CIARP13(II:528-535).
Springer DOI
1311
BibRef
Cai, X.[Xiao],
Nie, F.P.[Fei-Ping],
Cai, W.D.[Wei-Dong],
Huang, H.[Heng],
New Graph Structured Sparsity Model for Multi-label Image Annotations,
ICCV13(801-808)
IEEE DOI
1403
Graph Structured Sparsity
BibRef
Kong, D.G.[De-Guang],
Ding, C.[Chris],
Huang, H.[Heng],
Zhao, H.F.[Hai-Feng],
Multi-label ReliefF and F-statistic feature selections for image
annotation,
CVPR12(2352-2359).
IEEE DOI
1208
BibRef
Nowak, S.[Stefanie],
Llorente, A.[Ainhoa],
Motta, E.[Enrico],
Rüger, S.[Stefan],
The effect of semantic relatedness measures on multi-label
classification evaluation,
CIVR10(303-310).
DOI Link
1007
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Classifier, Performance Evaluation, Errors, Comparisons .