14.1.4.7 Multi-Label Classification, Multilabel Classification

Chapter Contents (Back)
Multi-Label Classification. See also Multiple Kernel Learning.

Zhang, M.L.[Min-Ling], Zhou, Z.H.[Zhi-Hua],
ML-KNN: A lazy learning approach to multi-label learning,
PR(40), No. 7, July 2007, pp. 2038-2048.
WWW Link. 0704
Machine learning; Multi-label learning; Lazy learning; K-nearest neighbor; Functional genomics; Natural scene classification; Text categorization BibRef

Park, C.H.[Cheong Hee], Lee, M.H.[Moon-Hwi],
On applying linear discriminant analysis for multi-labeled problems,
PRL(29), No. 7, 1 May 2008, pp. 878-887.
WWW Link. 0804
Dimension reduction; Linear discriminant analysis; Multi-labeled problems; Text categorization BibRef

Han, Y., Wu, F., Zhuang, Y.T., He, X.,
Multi-Label Transfer Learning With Sparse Representation,
CirSysVideo(20), No. 8, August 2010, pp. 1110-1121.
IEEE DOI 1008
BibRef

Diez, J., del Coz, J.J., Bahamonde, A.,
A semi-dependent decomposition approach to learn hierarchical classifiers,
PR(43), No. 11, November 2010, pp. 3795-3804.
Elsevier DOI 1008
Hierarchical classification; Multi-label learning; Structured output classification; Cost-sensitive learning; Support vector machines BibRef

Barranquero, J.[Jose], Díez, J.[Jorge], del Coz, J.J.[Juan José],
Quantification-oriented learning based on reliable classifiers,
PR(48), No. 2, 2015, pp. 591-604.
Elsevier DOI 1411
Quantification BibRef

Xu, J.H.[Jian-Hua],
Fast multi-label core vector machine,
PR(46), No. 3, March 2013, pp. 885-898.
Elsevier DOI 1212
Support vector machine; Core vector machine; Multi-label classification; Frank-Wolfe method; Linear programming; Quadratic programming BibRef

Xu, J.H.[Jian-Hua],
Multi-label core vector machine with a zero label,
PR(47), No. 7, 2014, pp. 2542-2557.
Elsevier DOI 1404
Multi-label classification BibRef

Park, S.[Sunho], Choi, S.J.[Seung-Jin],
Max-margin embedding for multi-label learning,
PRL(34), No. 3, 1 February 2013, pp. 292-298.
Elsevier DOI 1301
Multi-label learning; Label embedding; Max-margin learning; Cost-sensitive multi-label hinge loss; One versus all (OVA) BibRef

Yuan, Y.[Ying], Wu, F.[Fei], Shao, J.[Jian], Zhuang, Y.T.[Yue-Ting],
Image annotation by semi-supervised cross-domain learning with group sparsity,
JVCIR(24), No. 2, February 2013, pp. 95-102.
Elsevier DOI 1302
Cross-domain; Manifold regularization; Group sparsity; Multiple kernel learning; Multi-label; Image annotation; Semi-supervise; Discriminant analysis BibRef

Lee, J.S.[Jae-Sung], Kim, D.W.[Dae-Won],
Feature selection for multi-label classification using multivariate mutual information,
PRL(34), No. 3, 1 February 2013, pp. 349-357.
Elsevier DOI 1301
Multi-label feature selection; Multivariate feature selection; Multivariate mutual information; Label dependency BibRef

Lee, J.S.[Jae-Sung], Kim, D.W.[Dae-Won],
Fast multi-label feature selection based on information-theoretic feature ranking,
PR(48), No. 9, 2015, pp. 2761-2771.
Elsevier DOI 1506
Multi-label feature selection BibRef

Lee, J.S.[Jae-Sung], Kim, D.W.[Dae-Won],
SCLS: Multi-label feature selection based on scalable criterion for large label set,
PR(66), No. 1, 2017, pp. 342-352.
Elsevier DOI 1704
Machine learning BibRef

Lim, H., Kim, D.W.,
Convex optimization approach for multi-label feature selection based on mutual information,
ICPR16(1512-1517)
IEEE DOI 1705
Convex functions, Entropy, Linear programming, Mutual information, Optimization, Redundancy, Time, complexity BibRef

Lim, H.K.[Hyun-Ki], Lee, J.S.[Jae-Sung], Kim, D.W.[Dae-Won],
Accelerating Multi-Label Feature Selection Based on Low-Rank Approximation,
IEICE(E99-D), No. 5, May 2016, pp. 1396-1399.
WWW Link. 1605
BibRef

Lim, H.K.[Hyun-Ki], Lee, J.S.[Jae-Sung], Kim, D.W.[Dae-Won],
Optimization approach for feature selection in multi-label classification,
PRL(89), No. 1, 2017, pp. 25-30.
Elsevier DOI 1704
Multi-label feature selection BibRef

Kocev, D.[Dragi], Vens, C.[Celine], Struyf, J.[Jan], Džeroski, S.[Sašo],
Tree ensembles for predicting structured outputs,
PR(46), No. 3, March 2013, pp. 817-833.
Elsevier DOI 1212
Ensemble methods; Predictive clustering trees; Structured outputs; Multi-target regression; Multi-target classification; Hierarchical multi-label classification BibRef

Naula, P.[Pekka], Airola, A.[Antti], Salakoski, T.[Tapio], Pahikkala, T.[Tapio],
Multi-label learning under feature extraction budgets,
PRL(40), No. 1, 2014, pp. 56-65.
Elsevier DOI 1403
Feature selection BibRef

Wang, S.F.[Shang-Fei], Wang, J.[Jun], Wang, Z.Y.[Zhao-Yu], Ji, Q.A.[Qi-Ang],
Enhancing multi-label classification by modeling dependencies among labels,
PR(47), No. 10, 2014, pp. 3405-3413.
Elsevier DOI 1406
Multi-label classification BibRef

Montańes, E.[Elena], Senge, R.[Robin], Barranquero, J.[Jose], Quevedo, J.R.[José Ramón], del Coz, J.J.[Juan José], Hüllermeier, E.[Eyke],
Dependent binary relevance models for multi-label classification,
PR(47), No. 3, 2014, pp. 1494-1508.
Elsevier DOI 1312
Multi-label classification BibRef

Madjarov, G.[Gjorgji], Gjorgjevikj, D.[Dejan], Džeroski, S.[Sašo],
Two stage architecture for multi-label learning,
PR(45), No. 3, March 2012, pp. 1019-1034.
Elsevier DOI 1111
BibRef
And:
Dual Layer Voting Method for Efficient Multi-label Classification,
IbPRIA11(232-239).
Springer DOI 1106
Multi-label learning; Multi-label ranking; Multi-label classification; Two stage architecture; Classifier chain BibRef

Madjarov, G.[Gjorgji], Kocev, D.[Dragi], Gjorgjevikj, D.[Dejan], Džeroski, S.[Sašo],
An extensive experimental comparison of methods for multi-label learning,
PR(45), No. 9, September 2012, pp. 3084-3104.
Elsevier DOI 1206
Multi-label ranking; Multi-label classification; Comparison of multi-label learning methods BibRef

Luo, Y., Tao, D.C., Geng, B., Xu, C., Maybank, S.J.,
Manifold Regularized Multitask Learning for Semi-Supervised Multilabel Image Classification,
IP(22), No. 2, February 2013, pp. 523-536.
IEEE DOI 1302
BibRef

Gong, C., Tao, D., Maybank, S.J., Liu, W., Kang, G., Yang, J.,
Multi-Modal Curriculum Learning for Semi-Supervised Image Classification,
IP(25), No. 7, July 2016, pp. 3249-3260.
IEEE DOI 1606
image classification BibRef

Liu, T., Tao, D., Song, M., Maybank, S.J.,
Algorithm-Dependent Generalization Bounds for Multi-Task Learning,
PAMI(39), No. 2, February 2017, pp. 227-241.
IEEE DOI 1702
Algorithm design and analysis BibRef

Liu, Q., Sun, Y., Wang, C., Liu, T., Tao, D.,
Elastic Net Hypergraph Learning for Image Clustering and Semi-Supervised Classification,
IP(26), No. 1, January 2017, pp. 452-463.
IEEE DOI 1612
graph theory BibRef

Quevedo, J.R.[José Ramón], Luaces, O.[Oscar], Bahamonde, A.[Antonio],
Multilabel classifiers with a probabilistic thresholding strategy,
PR(45), No. 2, February 2012, pp. 876-883.
Elsevier DOI 1110
Multilabel classification; Thresholding strategies; Posterior probability; Expected loss BibRef

Lastra, G.[Gerardo], Luaces, O.[Oscar], Bahamonde, A.[Antonio],
Interval prediction for graded multi-label classification,
PRL(49), No. 1, 2014, pp. 171-176.
Elsevier DOI 1410
Graded multi-label classification BibRef

Dimitrovski, I.[Ivica], Kocev, D.[Dragi], Loskovska, S.[Suzana], Džeroski, S.[Sašo],
Fast and efficient visual codebook construction for multi-label annotation using predictive clustering trees,
PRL(38), No. 1, 2014, pp. 38-45.
Elsevier DOI 1402
Automatic image annotation BibRef

Sun, F.M.[Fu-Ming], Tang, J.H.[Jin-Hui], Li, H.J.[Hao-Jie], Qi, G.J.[Guo-Jun], Huang, T.S.,
Multi-Label Image Categorization With Sparse Factor Representation,
IP(23), No. 3, March 2014, pp. 1028-1037.
IEEE DOI 1403
multi-label classification reveals underlying correlations. correlation methods BibRef

Pei, Y.L.[Yuan-Li], Fern, X.Z.[Xiaoli Z.],
Constrained instance clustering in multi-instance multi-label learning,
PRL(37), No. 1, 2014, pp. 107-114.
Elsevier DOI 1402
MIML BibRef

Sucar, L.E.[L. Enrique], Bielza, C.[Concha], Morales, E.F.[Eduardo F.], Hernandez-Leal, P.[Pablo], Zaragoza, J.H.[Julio H.], Larrańaga, P.[Pedro],
Multi-label classification with Bayesian network-based chain classifiers,
PRL(41), No. 1, 2014, pp. 14-22.
Elsevier DOI 1403
Multi-label classification BibRef

Zhang, Q., Chen, L., Li, B.,
Max-Margin Multiattribute Learning With Low-Rank Constraint,
IP(23), No. 7, July 2014, pp. 2866-2876.
IEEE DOI 1407
Accuracy BibRef

Gönen, M.[Mehmet],
Coupled dimensionality reduction and classification for supervised and semi-supervised multilabel learning,
PRL(38), No. 1, 2014, pp. 132-141.
Elsevier DOI 1402
Multilabel learning BibRef

Zhang, M., Wu, L.,
Lift: Multi-Label Learning with Label-Specific Features,
PAMI(37), No. 1, January 2015, pp. 107-120.
IEEE DOI 1412
Algorithm design and analysis BibRef

Kim, M.Y.[Min-Young],
Multiple-concept feature generative models for multi-label image classification,
CVIU(136), No. 1, 2015, pp. 69-78.
Elsevier DOI 1506
Probabilistic graphical models BibRef

Kim, M.Y.[Min-Young],
Sparse conditional copula models for structured output regression,
PR(60), No. 1, 2016, pp. 761-769.
Elsevier DOI 1609
Multiple output regression BibRef

Lim, H.K.[Hyun-Ki], Lee, J.S.[Jae-Sung], Kim, D.W.[Dae-Won],
Multi-Label Learning Using Mathematical Programming,
IEICE(E98-D), No. 1, January 2015, pp. 197-200.
WWW Link. 1503
BibRef

Li, X.M.[Xi-Ming], Ouyang, J.H.[Ji-Hong], Zhou, X.T.[Xiao-Tang],
Centroid prior topic model for multi-label classification,
PRL(62), No. 1, 2015, pp. 8-13.
Elsevier DOI 1507
Multi-label classification BibRef

Destercke, S.[Sébastien],
Multilabel predictions with sets of probabilities: The Hamming and ranking loss cases,
PR(48), No. 11, 2015, pp. 3757-3765.
Elsevier DOI 1506
Multilabel BibRef

Ivasic-Kos, M.[Marina], Pobar, M.[Miran], Ribaric, S.[Slobodan],
Two-tier image annotation model based on a multi-label classifier and fuzzy-knowledge representation scheme,
PR(52), No. 1, 2016, pp. 287-305.
Elsevier DOI 1601
Image annotation BibRef

Li, X., Zhao, X., Zhang, Z., Wu, F., Zhuang, Y., Wang, J., Li, X.,
Joint Multilabel Classification With Community-Aware Label Graph Learning,
IP(25), No. 1, January 2016, pp. 484-493.
IEEE DOI 1601
Computer vision BibRef

Triguero, I.[Isaac], Vens, C.[Celine],
Labelling strategies for hierarchical multi-label classification techniques,
PR(56), No. 1, 2016, pp. 170-183.
Elsevier DOI 1604
Hierarchical multi-label classification BibRef

Jing, X.Y., Wu, F., Li, Z., Hu, R., Zhang, D.,
Multi-Label Dictionary Learning for Image Annotation,
IP(25), No. 6, June 2016, pp. 2712-2725.
IEEE DOI 1605
Computational modeling BibRef

Li, Q.[Qiang], Xie, B.[Bo], You, J.[Jane], Bian, W.[Wei], Tao, D.C.[Da-Cheng],
Correlated Logistic Model With Elastic Net Regularization for Multilabel Image Classification,
IP(25), No. 8, August 2016, pp. 3801-3813.
IEEE DOI 1608
correlation methods BibRef

Pu, J.M.[Jia-Meng], Zhang, Q., Zhang, L., Du, B., You, J.[Jane],
Multiview clustering based on Robust and Regularized Matrix Approximation,
ICPR16(2550-2555)
IEEE DOI 1705
Approximation algorithms, Clustering algorithms, Linear programming, Manifolds, Matrix decomposition, Optimization, Robustness BibRef

Li, Q.[Qiang], Qiao, M.Y.[Mao-Ying], Bian, W.[Wei], Tao, D.C.[Da-Cheng],
Conditional Graphical Lasso for Multi-label Image Classification,
CVPR16(2977-2986)
IEEE DOI 1612
BibRef

Liu, B.[Bin], Xu, Z.L.[Zeng-Lin], Wu, S.[Shuang], Wang, F.[Fei],
Manifold regularized matrix completion for multilabel classification,
PRL(80), No. 1, 2016, pp. 58-63.
Elsevier DOI 1609
Multi-label learning BibRef

Pillai, I.[Ignazio], Fumera, G.[Giorgio], Roli, F.[Fabio],
Designing multi-label classifiers that maximize F measures: State of the art,
PR(61), No. 1, 2017, pp. 394-404.
Elsevier DOI 1705
Multi-label classification BibRef

Read, J.[Jesse], Martino, L.[Luca], Hollmén, J.[Jaakko],
Multi-label methods for prediction with sequential data,
PR(63), No. 1, 2017, pp. 45-55.
Elsevier DOI 1612
Multi-label classification BibRef

Wang, M., Luo, C., Hong, R., Tang, J., Feng, J.,
Beyond Object Proposals: Random Crop Pooling for Multi-Label Image Recognition,
IP(25), No. 12, December 2016, pp. 5678-5688.
IEEE DOI 1612
image recognition BibRef

Xia, Y., Nie, L., Zhang, L., Yang, Y., Hong, R., Li, X.,
Weakly Supervised Multilabel Clustering and its Applications in Computer Vision,
Cyber(46), No. 12, December 2016, pp. 3220-3232.
IEEE DOI 1612
Clustering algorithms BibRef

Du, B.[Bo], Wang, Z., Zhang, L.F.[Le-Fei], Zhang, L.P.[Liang-Pei], Tao, D.C.[Da-Cheng],
Robust and Discriminative Labeling for Multi-Label Active Learning Based on Maximum Correntropy Criterion,
IP(26), No. 4, April 2017, pp. 1694-1707.
IEEE DOI 1704
data mining BibRef

Wang, Z.M.[Zeng-Mao], Du, B.[Bo], Zhang, L.F.[Le-Fei], Zhang, L.P.[Liang-Pei], Fang, M.[Meng], Tao, D.C.[Da-Cheng],
Multi-label Active Learning Based on Maximum Correntropy Criterion: Towards Robust and Discriminative Labeling,
ECCV16(III: 453-468).
Springer DOI 1611
BibRef

Akbarnejad, A.[Amirhossein], Baghshah, M.S.[Mahdieh Soleymani],
A probabilistic multi-label classifier with missing and noisy labels handling capability,
PRL(89), No. 1, 2017, pp. 18-24.
Elsevier DOI 1704
Multi-label classification BibRef

Wu, J.[Jian], Ye, C.[Chen], Sheng, V.S.[Victor S.], Zhang, J.[Jing], Zhao, P.P.[Peng-Peng], Cui, Z.M.[Zhi-Ming],
Active learning with label correlation exploration for multi-label image classification,
IET-CV(11), No. 7, October 2017, pp. 577-584.
DOI Link 1709
BibRef
Earlier: A1, A3, A4, A5, A6, Only:
Multi-label active learning for image classification,
ICIP14(5227-5231)
IEEE DOI 1502
BibRef
And: A2, A1, A3, A5, A6, Only:
Multi-label active learning with label correlation for image classification,
ICIP15(3437-3441)
IEEE DOI 1512
Accuracy. Multi-label BibRef

Barezi, E.J.[Elham J.], Kwok, J.T.[James T.], Rabiee, H.R.[Hamid R.],
Multi-Label learning in the independent label sub-spaces,
PRL(97), No. 1, 2017, pp. 8-12.
Elsevier DOI 1709
Large scale learning BibRef


Yao, Y., Xin, X., Guo, P.,
A rank minimization-based late fusion method for multi-label image annotation,
ICPR16(847-852)
IEEE DOI 1705
Matrix decomposition, Minimization, Optimization, Predictive models, Sparse matrices, Training BibRef

Kimura, K., Kudo, M., Sun, L.[Lu], Koujaku, S.,
Fast random k-labELsets for large-scale multi-label classification,
ICPR16(438-443)
IEEE DOI 1705
Algorithm design and analysis, Complexity theory, Computational modeling, Support vector machines, Testing, Training BibRef

Guo, Y.[Yumeng], Chung, F.[Fulai], Li, G.[Guozheng],
Multi-label learning with globAl densiTy fusiOn Mapping features,
ICPR16(462-467)
IEEE DOI 1705
Algorithm design and analysis, Clustering algorithms, Image reconstruction, Prediction algorithms, Space exploration, Training, Uniform, resource, locators BibRef

Sun, L., Kudo, M., Kimura, K.,
Multi-label classification with meta-label-specific features,
ICPR16(1612-1617)
IEEE DOI 1705
Complexity theory, Correlation, Feature extraction, Prediction algorithms, Semantics, Sparse matrices, Text, categorization BibRef

Norov-Erdene, B., Kudo, M., Sun, L., Kimura, K.,
Locality in multi-label classification problems,
ICPR16(2319-2324)
IEEE DOI 1705
Biology, Clustering algorithms, Entropy, Pattern recognition, Regression tree analysis, Testing, Training BibRef

Kanehira, A., Shin, A., Harada, T.,
True-negative label selection for large-scale multi-label learning,
ICPR16(3673-3678)
IEEE DOI 1705
Computational modeling, Computer vision, Convergence, Dogs, Fasteners, Optimization, Training BibRef

Li, C.H.[Cheng-Hua], Kang, Q.[Qi], Ge, G.J.[Guo-Jing], Song, Q.[Qiang], Lu, H.Q.[Han-Qing], Cheng, J.[Jian],
DeepBE: Learning Deep Binary Encoding for Multi-label Classification,
ChaLearn16(744-751)
IEEE DOI 1612
BibRef

Wang, J., Yang, Y., Mao, J., Huang, Z., Huang, C., Xu, W.,
CNN-RNN: A Unified Framework for Multi-label Image Classification,
CVPR16(2285-2294)
IEEE DOI 1612
BibRef

Kanehira, A., Harada, T.,
Multi-label Ranking from Positive and Unlabeled Data,
CVPR16(5138-5146)
IEEE DOI 1612
BibRef

Yang, H.[Hao], Zhou, J.T.[Joey Tianyi], Cai, J.F.[Jian-Fei],
Improving Multi-label Learning with Missing Labels by Structured Semantic Correlations,
ECCV16(I: 835-851).
Springer DOI 1611
BibRef

Kimura, K.[Keigo], Kudo, M.[Mineichi], Sun, L.[Lu],
Simultaneous Nonlinear Label-Instance Embedding for Multi-label Classification,
SSSPR16(15-25).
Springer DOI 1611
BibRef

Kwok, J.T.,
Learning from High-Dimensional Data in Multitask/Multilabel Classification,
ACPR13(16-17)
IEEE DOI 1408
learning (artificial intelligence) BibRef

Sun, F.M.[Fu-Ming], Xu, M.X.[Mei-Xiang], Jiang, X.J.[Xiao-Jun],
Robust Multi-Label Image Classification with Semi-Supervised Learning and Active Learning,
MMMod15(II: 512-523).
Springer DOI 1501
BibRef

Sechidis, K.[Konstantinos], Nikolaou, N.[Nikolaos], Brown, G.[Gavin],
Information Theoretic Feature Selection in Multi-label Data through Composite Likelihood,
SSSPR14(143-152).
Springer DOI 1408
BibRef

Pillai, I.[Ignazio], Fumera, G.[Giorgio], Roli, F.[Fabio],
Learning of Multilabel Classifiers,
ICPR14(3452-3456)
IEEE DOI 1412
Algorithm design and analysis BibRef

Zhang, L.F.[Ling-Feng], Shah, S.K.[Shishir K.], Kakadiaris, I.A.[Ioannis A.],
Hierarchical Multi-label Classification using Fully Associative Ensemble Learning,
PR(70), No. 1, 2017, pp. 89-103.
Elsevier DOI 1706
BibRef
Earlier:
Fully Associative Ensemble Learning for Hierarchical Multi-Label Classification,
BMVC14(xx-yy).
HTML Version. 1410
Hierarchical Multi-label BibRef

Geng, X.[Xin], Luo, L.[Longrun],
Multilabel Ranking with Inconsistent Rankers,
CVPR14(3742-3747)
IEEE DOI 1409
BibRef

Reyes-Pupo, O.G.[Oscar Gabriel], Morell, C.[Carlos], Ventura-Soto, S.[Sebastián],
ReliefF-ML: An Extension of ReliefF Algorithm to Multi-label Learning,
CIARP13(II:528-535).
Springer DOI 1311
BibRef

Cai, X.[Xiao], Nie, F.P.[Fei-Ping], Cai, W.D.[Wei-Dong], Huang, H.[Heng],
New Graph Structured Sparsity Model for Multi-label Image Annotations,
ICCV13(801-808)
IEEE DOI 1403
Graph Structured Sparsity BibRef

Kong, D.G.[De-Guang], Ding, C.[Chris], Huang, H.[Heng], Zhao, H.F.[Hai-Feng],
Multi-label ReliefF and F-statistic feature selections for image annotation,
CVPR12(2352-2359).
IEEE DOI 1208
BibRef

Pang, Y.W.[Yan-Wei], Ma, Z.[Zhao], Yuan, Y.[Yuan], Li, X.L.[Xue-Long], Wang, K.Q.[Kong-Qiao],
Multimodal learning for multi-label image classification,
ICIP11(1797-1800).
IEEE DOI 1201
BibRef

Nowak, S.[Stefanie], Llorente, A.[Ainhoa], Motta, E.[Enrico], Rüger, S.[Stefan],
The effect of semantic relatedness measures on multi-label classification evaluation,
CIVR10(303-310).
DOI Link 1007
BibRef

Bucak, S.S.[Serhat S.], Mallapragada, P.K.[Pavan Kumar], Jin, R.[Rong], Jain, A.K.[Anil K.],
Efficient multi-label ranking for multi-class learning: Application to object recognition,
ICCV09(2098-2105).
IEEE DOI 0909
Not just binary classification. Order the many possible classes. BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Classifier, Performance Evaluation, Errors, Comparisons .


Last update:Sep 25, 2017 at 16:36:46