5.3.6 Maximum Entropy in Restoration

Chapter Contents (Back)
Restoration. Entropy.

Wernecke, S.J., and d'Addario, L.R.,
Maximum Entropy Image Reconstruction,
TC(26), No. 4, April 1977, pp. 351-364. BibRef 7704

Smith, C.B.,
A Dual Method for Maximum Entropy Restoration,
PAMI(1), No. 4, October 1979, 411-414. BibRef 7910

Jaynes, E.T.,
On the Rationale of Maximum Entropy Methods,
PIEEE(70), No. 9, September 1982, pp. 939-952. BibRef 8209

Burch, S.F., Gull, S.F., Skilling, J.,
Image Restoration by a Powerful Maximum Entropy Method,
CVGIP(23), No. 2, August 1983, pp. 113-128.
WWW Link. BibRef 8308

Sharma, G., Chellappa, R.,
A Model-Based Approach for Estimation of Two Dimensional Maximum Entropy Power Spectra,
IT(31), No. 1, January 1985, pp. 90-99. BibRef 8501

Haralick, R.M., Zhuang, X., and Ostevold, E.,
A Differential Equation Approach to Maximum Entropy Image Reconstruction,
ASSP(35), No. 2, February, 1987, pp. 208-218. BibRef 8702

Haralick, R.M., Zhuang, X., and Zhao, Y.,
Maximum Entropy Image Reconstruction,
TSP(39), No. 6, June, 1991, pp. 1478-1480. BibRef 9106

Haralick, R.M., Rystrom, L.R.[Larry R.], and Katz, P.L.[Philip L.],
Optimal Single-Stage Restoration of Subtractive Noise Corrupted Images by a Morphological Closing,
JEI(4), No. 3, July 1995, pp. 283-297. BibRef 9507

Myrheim, J.[Jan], Rue, H.[Haavard],
New Algorithms for Maximum Entropy Image Restoration,
GMIP(54), No. 3, May 1992, pp. 223-238. BibRef 9205

Byrne, C.L.,
Iterative image reconstruction algorithms based on cross-entropy minimization,
IP(2), No. 1, January 1993, pp. 96-103.
IEEE DOI 0402
BibRef

Zervakis, M.E., Katsaggelos, A.K., Kwon, T.M.,
A class of robust entropic functionals for image restoration,
IP(4), No. 6, June 1995, pp. 752-773.
IEEE DOI 0402
BibRef

Battle, D.J., Harrison, R.P., Hedley, M.,
Maximum-Entropy Image-Reconstruction from Sparsely Sampled Coherent Field Data,
IP(6), No. 8, August 1997, pp. 1139-1147.
IEEE DOI 9708
BibRef

Cao, Y., Eggermont, P.P.B., Terebey, S.,
Cross Burg Entropy Maximization and Its Application to Ringing Suppression in Image Reconstruction,
IP(8), No. 2, February 1999, pp. 286-292.
IEEE DOI BibRef 9902

Bouzouba, K., Radouane, L.,
Image identification and estimation using the maximum entropy principle,
PRL(21), No. 6-7, June 2000, pp. 691-700. 0006
BibRef

Hong, H., Schonfeld, D.,
Maximum-Entropy Expectation-Maximization Algorithm for Image Reconstruction and Sensor Field Estimation,
IP(17), No. 6, June 2008, pp. 897-907.
IEEE DOI 0711
BibRef

Hong, H., Schonfeld, D.,
Attraction-Repulsion Expectation-Maximization Algorithm for Image Reconstruction and Sensor Field Estimation,
IP(18), No. 9, September 2009, pp. 2004-2011.
IEEE DOI 0909
BibRef

Shioya, H.[Hiroyuki], Gohara, K.[Kazutoshi],
Maximum entropy method for diffractive imaging,
JOSA-A(25), No. 11, November 2008, pp. 2846-2850.
WWW Link. 0811
BibRef

Shioya, H.[Hiroyuki], Maehara, Y.[Yosuke], Gohara, K.[Kazutoshi],
Spherical shell structure of distribution of images reconstructed by diffractive imaging,
JOSA-A(27), No. 5, May 2010, pp. 1214-1218.
WWW Link. 1006
BibRef

Zhao, J., Zhang, H.,
Kernel Recursive Generalized Maximum Correntropy,
SPLetters(24), No. 12, December 2017, pp. 1832-1836.
IEEE DOI 1712
maximum entropy methods, recursive estimation, dynamic recursive weight coefficients, recursive BibRef


Fattahi, L.E., Lakhdar, Y., Sbai, E.H.,
Clustering based on density estimation using variable kernel and maximum entropy principle,
ISCV17(1-7)
IEEE DOI 1710
Bandwidth, Classification algorithms, Clustering algorithms, Entropy, Estimation, Kernel, Principal component analysis, Maximum Entropy Principle (MEP), clustering, density peak, principal components analysis (PCA), variable, kernel, density BibRef

Willis, M., Jeffs, B., Long, D.,
Maximum Entropy Image Restoration Revisited,
ICIP00(Vol I: 89-92).
IEEE DOI 0008
BibRef

Buhmann, J.M., Hofmann, T.,
A maximum entropy approach to pairwise data clustering,
ICPR94(B:207-212).
IEEE DOI 9410
BibRef

Taxt, T.,
Maximum entropy restoration of multispectral images using a deterministic quantum field model,
ICPR92(II:376-380).
IEEE DOI 9208
BibRef

Zhuang, X., Haralick, R.M.,
A neural net algorithm for maximum entropy image reconstruction,
ICPR90(II: 47-50).
IEEE DOI 9208
BibRef

Chapter on Image Processing, Restoration, Enhancement, Filters, Image and Video Coding continues in
Minimum Entropy in Restoration .


Last update:Dec 7, 2017 at 17:23:10