Ji, Z.[Zhong],
Hou, Z.S.[Zhi-Shen],
Liu, X.Y.[Xi-Yao],
Pang, Y.W.[Yan-Wei],
Li, X.L.[Xue-Long],
Memorizing Complementation Network for Few-Shot Class-Incremental
Learning,
IP(32), 2023, pp. 937-948.
IEEE DOI
2301
Task analysis, Power capacitors, Ensemble learning, Knowledge engineering,
Feature extraction, Adaptation models, memorizing complementation
BibRef
Liu, J.R.[Jing-Ren],
Ji, Z.[Zhong],
Pang, Y.W.[Yan-Wei],
Yu, Y.L.[Yun-Long],
NTK-Guided Few-Shot Class Incremental Learning,
IP(33), 2024, pp. 6029-6044.
IEEE DOI
2411
Power capacitors, Convergence, Training, Kernel, Optimization,
Neural networks, Metalearning, Incremental learning,
self-supervised learning
BibRef
Wang, X.[Xuan],
Ji, Z.[Zhong],
Yu, Y.L.[Yun-Long],
Pang, Y.W.[Yan-Wei],
Han, J.G.[Jun-Gong],
Model Attention Expansion for Few-Shot Class-Incremental Learning,
IP(33), 2024, pp. 4419-4431.
IEEE DOI
2408
Adaptation models, Task analysis, Training, Power capacitors,
Feature extraction, Predictive models, Scattering, attention field
BibRef
Wang, X.[Xuan],
Ji, Z.[Zhong],
Liu, X.Y.[Xi-Yao],
Pang, Y.W.[Yan-Wei],
Han, J.G.[Jun-Gong],
On the Approximation Risk of Few-Shot Class-Incremental Learning,
ECCV24(LI: 162-178).
Springer DOI
2412
BibRef
Yang, B.[Boyu],
Lin, M.B.[Ming-Bao],
Zhang, Y.X.[Yun-Xiao],
Liu, B.H.[Bing-Hao],
Liang, X.D.[Xiao-Dan],
Ji, R.R.[Rong-Rong],
Ye, Q.X.[Qi-Xiang],
Dynamic Support Network for Few-Shot Class Incremental Learning,
PAMI(45), No. 3, March 2023, pp. 2945-2951.
IEEE DOI
2302
Power capacitors, Training, Feature extraction, Adaptation models,
Task analysis, Generators, Data models, support network
BibRef
Liu, B.H.[Bing-Hao],
Yang, B.[Boyu],
Xie, L.X.[Ling-Xi],
Wang, R.[Ren],
Tian, Q.[Qi],
Ye, Q.X.[Qi-Xiang],
Learnable Distribution Calibration for Few-Shot Class-Incremental
Learning,
PAMI(45), No. 10, October 2023, pp. 12699-12706.
IEEE DOI
2310
BibRef
Guo, C.X.[Chen-Xu],
Zhao, Q.[Qi],
Lyu, S.C.[Shu-Chang],
Liu, B.H.[Bing-Hao],
Wang, C.L.[Chun-Lei],
Chen, L.[Lijiang],
Cheng, G.L.[Guang-Liang],
Decision Boundary Optimization for Few-shot Class-Incremental
Learning,
VCL23(3493-3503)
IEEE DOI
2401
BibRef
Zhao, H.B.[Han-Bin],
Fu, Y.J.[Yong-Jian],
Kang, M.T.[Min-Tong],
Tian, Q.[Qi],
Wu, F.[Fei],
Li, X.[Xi],
MgSvF: Multi-Grained Slow versus Fast Framework for Few-Shot
Class-Incremental Learning,
PAMI(46), No. 3, March 2024, pp. 1576-1588.
IEEE DOI
2402
Task analysis, Power capacitors, Knowledge engineering, Training,
Frequency-domain analysis, Extraterrestrial measurements,
class-incremental learning
BibRef
Pan, Z.C.[Zi-Cheng],
Zhang, W.C.[Wei-Chuan],
Yu, X.H.[Xiao-Han],
Zhang, M.[Miaohua],
Gao, Y.S.[Yong-Sheng],
Pseudo-set Frequency Refinement architecture for fine-grained
few-shot class-incremental learning,
PR(155), 2024, pp. 110686.
Elsevier DOI
2408
Few-shot class-incremental learning,
Fine-grained classification, Frequency analysis, Feature space optimization
BibRef
Shao, M.W.[Ming-Wen],
Zhuang, X.K.[Xin-Kai],
Zhang, L.X.[Li-Xu],
Zuo, W.M.[Wang-Meng],
Pseudo initialization based Few-Shot Class Incremental Learning,
CVIU(247), 2024, pp. 104067.
Elsevier DOI
2408
Few-Shot Class Incremental Learning, Embedding space, Pseudo initialization
BibRef
Xu, W.[Wan],
Huang, T.Y.[Tian-Yu],
Qu, T.Y.[Tian-Yuan],
Yang, G.L.[Guang-Lei],
Guo, Y.W.[Yi-Wen],
Zuo, W.M.[Wang-Meng],
FILP-3D: Enhancing 3D few-shot class-incremental learning with
pre-trained vision-language models,
PR(165), 2025, pp. 111558.
Elsevier DOI Code:
WWW Link.
2505
3D classification, FSCIL, 3D from multi-view, V-L pre-trained model
BibRef
Li, J.S.[Jia-Shuo],
Dong, S.L.[Song-Lin],
Gong, Y.H.[Yi-Hong],
He, Y.H.[Yu-Hang],
Wei, X.[Xing],
Analogical Learning-Based Few-Shot Class-Incremental Learning,
CirSysVideo(34), No. 7, July 2024, pp. 5493-5504.
IEEE DOI
2407
Training, Power capacitors, Adaptation models, Optimization,
Convolutional neural networks, Brain modeling, Task analysis,
class classifier constructor
BibRef
Tao, X.Y.[Xiao-Yu],
Hong, X.P.[Xiao-Peng],
Chang, X.Y.[Xin-Yuan],
Dong, S.L.[Song-Lin],
Wei, X.[Xing],
Gong, Y.H.[Yi-Hong],
Few-Shot Class-Incremental Learning,
CVPR20(12180-12189)
IEEE DOI
2008
Power capacitors, Training, Task analysis, Topology,
Adaptation models, Neural networks, Network topology
BibRef
Zhao, Y.F.[Yi-Fan],
Li, J.[Jia],
Song, Z.[Zeyin],
Tian, Y.H.[Yong-Hong],
Language-Inspired Relation Transfer for Few-Shot Class-Incremental
Learning,
PAMI(47), No. 2, February 2025, pp. 1089-1102.
IEEE DOI
2501
Visualization, Training, Power capacitors, Light rail systems,
Few shot learning, Contrastive learning, Prototypes, Metalearning,
language-inspired relation transfer
BibRef
Zhang, J.H.[Jing-Hua],
Liu, L.[Li],
Silvén, O.[Olli],
Pietikäinen, M.[Matti],
Hu, D.[Dewen],
Few-Shot Class-Incremental Learning for Classification and Object
Detection: A Survey,
PAMI(47), No. 4, April 2025, pp. 2924-2945.
IEEE DOI
2503
Power capacitors, Surveys, Training, Systematics, Measurement,
Object detection, Data privacy, Data models,
image classification
BibRef
Hu, K.[Kai],
Wang, Y.J.[Yun-Jiang],
Zhang, Y.[Yuan],
Gao, X.[Xieping],
Progressive Learning Strategy for Few-Shot Class-Incremental Learning,
Cyber(55), No. 3, March 2025, pp. 1210-1223.
IEEE DOI
2503
Data models, Noise, Training, Power capacitors, Robustness,
Perturbation methods, Adaptation models, Interference, virtual classes
BibRef
Li, S.[Shuo],
Liu, F.[Fang],
Jiao, L.C.[Li-Cheng],
Li, L.L.[Ling-Ling],
Chen, P.H.[Pu-Hua],
Liu, X.[Xu],
Ma, W.P.[Wen-Ping],
Prompt-Based Concept Learning for Few-Shot Class-Incremental Learning,
CirSysVideo(35), No. 5, May 2025, pp. 4991-5005.
IEEE DOI
2505
Power capacitors, Adaptation models, Birds,
Training data, Stability plasticity, Incremental learning,
few-shot class-incremental learning
BibRef
Zhang, T.[Tong],
Zhao, Y.F.[Yi-Fan],
Wang, L.Y.[Liang-Yu],
Li, J.[Jia],
Free Lunch to Meet the Gap: Intermediate Domain Reconstruction for
Cross-Domain Few-Shot Learning,
IJCV(133), No. 8, August 2025, pp. 5118-5137.
Springer DOI
2508
Construct intermediat versions. Multiple dataset used.
BibRef
Zhao, L.J.[Li-Jun],
Chen, Z.D.[Zhen-Duo],
Wang, Y.X.[Yong-Xin],
Luo, X.[Xin],
Xu, X.S.[Xin-Shun],
Attraction Diminishing and Distributing for Few-Shot
Class-Incremental Learning,
CVPR25(25657-25666)
IEEE DOI
2508
Adaptation models, Accuracy, Feature extraction,
Extraterrestrial measurements, Power capacitors, Optimization, Overfitting
BibRef
Lee, J.[Juntae],
Hayat, M.[Munawar],
Yun, S.[Sungrack],
Tripartite Weight-Space Ensemble for Few-Shot Class-Incremental
Learning,
CVPR25(15329-15338)
IEEE DOI
2508
Training, Continuing education, Adaptation models,
Incremental learning, Feature extraction, Market research,
few-shot
BibRef
Chen, Y.Y.[Yi-Yang],
Ding, T.Y.[Tian-Yu],
Wang, L.[Lei],
Huo, J.[Jing],
Gao, Y.[Yang],
Li, W.B.[Wen-Bin],
Enhancing Few-Shot Class-Incremental Learning via Training-Free
Bi-Level Modality Calibration,
CVPR25(9881-9890)
IEEE DOI Code:
WWW Link.
2508
Measurement, Training, Visualization, Adaptation models, Accuracy,
Prototypes, Robustness, Calibration, Power capacitors,
few-shot class-incremental learning
BibRef
Nema, P.[Parinita],
Kurmi, V.K.[Vinod K],
Strategic Base Representation Learning via Feature Augmentations for
Few-Shot Class Incremental Learning,
WACV25(6394-6403)
IEEE DOI Code:
WWW Link.
2505
Training, Representation learning, Incremental learning, Codes,
Contrastive learning, Benchmark testing, Vectors, Power capacitors,
feature augmentation
BibRef
Hu, Y.J.[Yi-Jie],
Yang, G.[Guanyu],
Tan, Z.R.[Zhao-Rui],
Huang, X.W.[Xiao-Wei],
Huang, K.[Kaizhu],
Wang, Q.F.[Qiu-Feng],
Covariance-Based Space Regularization for Few-Shot Class Incremental
Learning,
WACV25(9566-9576)
IEEE DOI
2505
Training, Incremental learning, Perturbation methods, Semantics,
Force, Benchmark testing, Data models, Power capacitors, Overfitting
BibRef
Deng, Y.[Yao],
Xiang, X.[Xiang],
Expanding Hyperspherical Space for Few-Shot Class-Incremental
Learning,
WACV24(1956-1965)
IEEE DOI
2404
Prototypes, Benchmark testing, Data models, Power capacitors,
Task analysis, Algorithms, Machine learning architectures,
Image recognition and understanding
BibRef
Tan, Y.[Yuwen],
Xiang, X.[Xiang],
Cross-Domain Few-Shot Incremental Learning for Point-Cloud
Recognition,
WACV24(2296-2305)
IEEE DOI
2404
Adaptation models, Robot sensing systems, Power capacitors,
Sensors, Object recognition, Algorithms,
Image recognition and understanding
BibRef
Kim, S.[Solang],
Jeong, Y.[Yuho],
Park, J.S.[Joon Sung],
Yoon, S.W.[Sung Whan],
MICS: Midpoint Interpolation to Learn Compact and Separated
Representations for Few-Shot Class-Incremental Learning,
WACV24(2225-2234)
IEEE DOI Code:
WWW Link.
2404
Training, Microwave integrated circuits, Interpolation, Codes,
Computational modeling, Benchmark testing, Algorithms
BibRef
Liu, C.X.[Chen-Xi],
Wang, Z.[Zhenyi],
Xiong, T.Y.[Tian-Yi],
Chen, R.[Ruibo],
Wu, Y.H.[Yi-Han],
Guo, J.F.[Jun-Feng],
Huang, H.[Heng],
Few-shot Class Incremental Learning with Attention-aware Self-adaptive
Prompt,
ECCV24(LXXXI: 1-18).
Springer DOI
2412
BibRef
Ahmadi, S.[Sahar],
Cheraghian, A.[Ali],
Saberi, M.[Morteza],
Abir, M.T.[Md. Towsif],
Dastmalchi, H.[Hamidreza],
Hussain, F.[Farookh],
Rahman, S.[Shafin],
Foundation Model-powered 3d Few-shot Class Incremental Learning via
Training-free Adaptor,
ACCV24(X: 178-195).
Springer DOI
2412
BibRef
Park, K.H.[Keon-Hee],
Song, K.[Kyungwoo],
Park, G.M.[Gyeong-Moon],
Pre-trained Vision and Language Transformers are Few-Shot Incremental
Learners,
CVPR24(23881-23890)
IEEE DOI Code:
WWW Link.
2410
Incremental learning, Codes, Computational modeling, Semantics,
Transformers, Power capacitors, Incremental learning,
Parameter Efficient Tuning
BibRef
d'Alessandro, M.[Marco],
Alonso, A.[Alberto],
Calabrés, E.[Enrique],
Galar, M.[Mikel],
Multimodal Parameter-Efficient Few-Shot Class Incremental Learning,
VCL23(3385-3395)
IEEE DOI
2401
BibRef
Song, Z.[Zeyin],
Zhao, Y.F.[Yi-Fan],
Shi, Y.J.[Yu-Jun],
Peng, P.X.[Pei-Xi],
Yuan, L.[Li],
Tian, Y.H.[Yong-Hong],
Learning with Fantasy: Semantic-Aware Virtual Contrastive Constraint
for Few-Shot Class-Incremental Learning,
CVPR23(24183-24192)
IEEE DOI
2309
BibRef
Zhuang, H.P.[Hui-Ping],
Weng, Z.Y.[Zhen-Yu],
He, R.[Run],
Lin, Z.P.[Zhi-Ping],
Zeng, Z.Q.[Zi-Qian],
GKEAL: Gaussian Kernel Embedded Analytic Learning for Few-Shot Class
Incremental Task,
CVPR23(7746-7755)
IEEE DOI
2309
BibRef
Zhao, L.L.[Ling-Lan],
Lu, J.[Jing],
Xu, Y.L.[Yun-Lu],
Cheng, Z.Z.[Zhan-Zhan],
Guo, D.S.[Da-Shan],
Niu, Y.[Yi],
Fang, X.Z.[Xiang-Zhong],
Few-Shot Class-Incremental Learning via Class-Aware Bilateral
Distillation,
CVPR23(11838-11847)
IEEE DOI
2309
BibRef
Pan, Z.C.[Zi-Cheng],
Yu, X.H.[Xiao-Han],
Zhang, M.[Miaohua],
Gao, Y.S.[Yong-Sheng],
SSFE-Net: Self-Supervised Feature Enhancement for Ultra-Fine-Grained
Few-Shot Class Incremental Learning,
WACV23(6264-6273)
IEEE DOI
2302
Knowledge engineering, Visualization, Layout,
Self-supervised learning, Benchmark testing, Agriculture
BibRef
Kalla, J.[Jayateja],
Biswas, S.[Soma],
S3C: Self-Supervised Stochastic Classifiers for Few-Shot
Class-Incremental Learning,
ECCV22(XXV:432-448).
Springer DOI
2211
BibRef
Peng, C.[Can],
Zhao, K.[Kun],
Wang, T.R.[Tian-Ren],
Li, M.[Meng],
Lovell, B.C.[Brian C.],
Few-Shot Class-Incremental Learning from an Open-Set Perspective,
ECCV22(XXV:382-397).
Springer DOI
2211
BibRef
Xiang, X.[Xiang],
Tan, Y.[Yuwen],
Wan, Q.[Qian],
Ma, J.[Jing],
Yuille, A.L.[Alan L.],
Hager, G.D.[Gregory D.],
Coarse-To-Fine Incremental Few-Shot Learning,
ECCV22(XXXI:205-222).
Springer DOI
2211
BibRef
Lin, G.L.[Guo-Liang],
Chu, H.[Hanlu],
Lai, H.J.[Han-Jiang],
Towards Better Plasticity-Stability Trade-off in Incremental
Learning: A Simple Linear Connector,
CVPR22(89-98)
IEEE DOI
2210
Connectors, Knowledge engineering, Upper bound, Codes,
Neural networks, Training data, Machine learning,
Transfer/low-shot/long-tail learning
BibRef
Joseph, K.J.,
Khan, S.[Salman],
Khan, F.S.[Fahad Shahbaz],
Anwer, R.M.[Rao Muhammad],
Balasubramanian, V.N.[Vineeth N],
Energy-based Latent Aligner for Incremental Learning,
CVPR22(7442-7451)
IEEE DOI
2210
Manifolds, Deep learning, Codes, Pipelines, Object detection,
Detectors, Recognition: detection, categorization, retrieval,
Transfer/low-shot/long-tail learning
BibRef
Ahn, H.[Hongjoon],
Kwak, J.[Jihwan],
Lim, S.B.[Su-Bin],
Bang, H.[Hyeonsu],
Kim, H.[Hyojun],
Moon, T.[Taesup],
SS-IL: Separated Softmax for Incremental Learning,
ICCV21(824-833)
IEEE DOI
2203
Systematics, Training data, Benchmark testing, Task analysis,
Recognition and classification,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Kukleva, A.[Anna],
Kuehne, H.[Hilde],
Schiele, B.[Bernt],
Generalized and Incremental Few-Shot Learning by Explicit Learning
and Calibration without Forgetting,
ICCV21(9000-9009)
IEEE DOI
2203
Training, Deep learning, Benchmark testing, Entropy, Calibration,
Task analysis, Transfer/Low-shot/Semi/Unsupervised Learning, Recognition and classification
BibRef
Cheraghian, A.[Ali],
Rahman, S.[Shafin],
Ramasinghe, S.[Sameera],
Fang, P.F.[Peng-Fei],
Simon, C.[Christian],
Petersson, L.[Lars],
Harandi, M.[Mehrtash],
Synthesized Feature based Few-Shot Class-Incremental Learning on a
Mixture of Subspaces,
ICCV21(8641-8650)
IEEE DOI
2203
Training, Visualization, Adaptation models, Computational modeling,
Semantics, Prototypes,
BibRef
Zhu, K.[Kai],
Cao, Y.[Yang],
Zhai, W.[Wei],
Cheng, J.[Jie],
Zha, Z.J.[Zheng-Jun],
Self-Promoted Prototype Refinement for Few-Shot Class-Incremental
Learning,
CVPR21(6797-6806)
IEEE DOI
2111
Adaptation models, Computational modeling,
Prototypes, Benchmark testing, Power capacitors
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Continual Learning .