14.2.12 Linear Separable Classification

Chapter Contents (Back)
Clustering. 9805

Kaminuma, T.[Tsuguchika], Watanabe, S.[Satosi],
Fast-converging adaptive algorithms for well-balanced separating linear classifier,
PR(4), No. 3, October 1972, pp. 289-305.
Elsevier DOI 0309
BibRef

Warnekar, C.S., Krishna, G.,
A heuristic clustering algorithm using union of overlapping pattern-cells,
PR(11), No. 2, 1979, pp. 85-93.
Elsevier DOI 0309
BibRef

Warnekar, C.S., Krishna, G.,
An algorithm to detect linearly separable clusters of binary patterns,
PR(11), No. 2, 1979, pp. 109-114.
Elsevier DOI 0309
BibRef

Murty, M.N.[M. Narasimha], Krishna, G.,
A computationally efficient technique for data-clustering,
PR(12), No. 3, 1980, pp. 153-158.
Elsevier DOI 0309
BibRef

Dimitriadis, B.[Basile], Kazakos, D.[Dimitri],
On an optimal linear pattern classification procedure,
PR(12), No. 2, 1980, pp. 69-74.
Elsevier DOI 0309
BibRef

Niemann, H.[Heinrich],
Linear and nonlinear mapping of patterns,
PR(12), No. 2, 1980, pp. 83-87.
Elsevier DOI 0309
BibRef

James, M.,
Feature detection using the general linear model,
PR(12), No. 3, 1980, pp. 137-140.
Elsevier DOI 0309
BibRef

Jówik, A.[Adam],
A recursive method for the investigation of the linear separability of two sets,
PR(16), No. 4, 1983, pp. 429-431.
Elsevier DOI 0309
BibRef

Bruckstein, A.M., and Cover, T.M.,
Monotonicity of Linear Separability under Translation,
PAMI(7), No. 3, May 1985, pp. 355-358. BibRef 8505

Bobrowski, L.[Leon],
Linear discrimination with symmetrical models,
PR(19), No. 1, 1986, pp. 101-109.
Elsevier DOI 0309
BibRef

Bobrowski, L.[Leon],
Design of piecewise linear classifiers from formal neurons by a basis exchange technique,
PR(24), No. 9, 1991, pp. 863-870.
Elsevier DOI 0401
BibRef
And:
Piecewise-Linear Classifiers, Formal Neurons and Separability of the Learning Sets,
ICPR96(IV: 224-228).
IEEE DOI 9608
(Polish Academy of Sciences, PL) BibRef

Herman, G.T.[Gabor T.], Yeung, K.T.D.[K. T. Daniel],
On Piecewise-Linear Classification,
PAMI(14), No. 7, July 1992, pp. 782-786.
IEEE DOI BibRef 9207

Cucka, P.[Peter], Rosenfeld, A.[Azriel],
Linear Feature Compatibility for Pattern-Matching Relaxation,
PR(25), No. 2, February 1992, pp. 189-196.
Elsevier DOI BibRef 9202

Tsai, D.M., Chen, M.F.,
Object Recognition By a Linear Weight Classifier,
PRL(16), No. 6, June 1995, pp. 591-600. BibRef 9506

Barlach, F.[Flemming],
A linear classifier design approach,
PR(24), No. 9, 1991, pp. 871-877.
Elsevier DOI 0401
BibRef

Tenmoto, H.[Hiroshi], Kudo, M.[Mineichi], Shimbo, M.[Masaru],
Piecewise linear classifiers with an appropriate number of hyperplanes,
PR(31), No. 11, November 1998, pp. 1627-1634.
Elsevier DOI BibRef 9811

Abrishami-Moghaddam, H., Amiri Zadeh, K.,
Fast adaptive algorithms and networks for class-separability features,
PR(36), No. 8, August 2003, pp. 1695-1702.
Elsevier DOI 0304
BibRef
Earlier:
Fast linear discriminant analysis for on-line pattern recognition applications,
ICPR02(II: 64-67).
IEEE DOI 0211
BibRef

Abrishami-Moghaddam, H., Matinfar, M., Sajad Sadough, S.M., Amiri Zadeh, K.,
Algorithms and networks for accelerated convergence of adaptive LDA,
PR(38), No. 4, April 2005, pp. 473-483.
Elsevier DOI 0501
BibRef

Abrishami-Moghaddam, H., Matinfar, M.,
Fast adaptive LDA using quasi-Newton algorithm,
PRL(28), No. 5, 1 April 2007, pp. 613-621.
Elsevier DOI 0703
Adaptive linear discriminant analysis; Gradient descent optimization; Newton-Raphson optimization; Secant method; Self-organizing neural network BibRef

Ghassabeh, Y.A.[Youness Aliyari], Abrishami-Moghaddam, H.[Hamid],
Adaptive algorithms and networks for optimal feature extraction from Gaussian data,
PRL(31), No. 11, 1 August 2010, pp. 1331-1341.
Elsevier DOI 1008
Adaptive learning algorithm; Feature extraction; Multidimensional gaussian data BibRef

Ghassabeh, Y.A.[Youness Aliyari], Rudzicz, F.[Frank], Abrishami-Moghaddam, H.[Hamid],
Fast adaptive algorithms for optimal feature extraction from Gaussian data,
PRL(70), No. 1, 2016, pp. 73-79.
Elsevier DOI 1602
Gaussian sequence BibRef

Jing, X.Y.[Xiao-Yuan], Tang, Y.Y.[Yuan-Yan], Zhang, D.[David],
A Fourier-LDA approach for image recognition,
PR(38), No. 3, March 2005, pp. 453-457.
Elsevier DOI 0412
Select appropriate Fourier frequency bands with favorable linear separability by using a two-dimensional separability judgment BibRef

Wan, S.J., Wong, S.K.M.,
A partially supervised learning algorithm for linearly separable systems,
PAMI(14), No. 10, October 1992, pp. 1052-1056.
IEEE DOI 0401
BibRef

Kostin, A.[Alexander],
A simple and fast multi-class piecewise linear pattern classifier,
PR(39), No. 11, November 2006, pp. 1949-1962.
Elsevier DOI 0608
Multi-class piecewise linear classifiers; Decision trees BibRef

Chen, S.C.[Song-Can], Wang, Z.[Zhe], Tian, Y.J.[Yong-Jun],
Matrix-pattern-oriented Ho-Kashyap classifier with regularization learning,
PR(40), No. 5, May 2007, pp. 1533-1543.
Elsevier DOI 0702
Linear classifier; Matrix pattern; Vector pattern; Modified Ho-Kashyap with squared approximation of the misclassification errors (MHKS); Regularization; Pattern recognition See also Algorithm for Linear Inequalities and its Applications, An. BibRef

Wang, Z.[Zhe], Chen, S.C.[Song-Can],
Matrix-pattern-oriented least squares support vector classifier with AdaBoost,
PRL(29), No. 6, 15 April 2008, pp. 745-753.
Elsevier DOI 0803
Matrix pattern; Least squares support vector classifier (LSSVC); AdaBoost; Classifier design; Ensemble system; Pattern recognition BibRef

Li, Y.J.[Yu-Jian], Leng, Q.[Qiangkui],
Alternating multiconlitron: A novel framework for piecewise linear classification,
PR(48), No. 3, 2015, pp. 968-975.
Elsevier DOI 1412
Multiconlitron BibRef


Lee, H.S.[Hung-Shin], Wang, H.M.[Hsin-Min], Chen, B.[Berlin],
A Discriminative and Heteroscedastic Linear Feature Transformation for Multiclass Classification,
ICPR10(690-693).
IEEE DOI 1008
BibRef

Zhu, Y.H.[Yu-Hua], Wu, Y.M.[Yi-Ming], Liu, X.W.[Xiu-Wen], Mio, W.[Washington],
Transductive optimal component analysis,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Vidal-Naquet, M., Ullman, S.,
Object recognition with informative features and linear classification,
ICCV03(281-288).
IEEE DOI 0311
BibRef

Chernov, V.M.[Vladimir M.],
The 'Modular Perceptron': A Linear Classes Separability in the Non-Archimedean Features Spaces,
SCIA97(xx-yy)
HTML Version. 9705
BibRef

Hoekstra, A., Duin, R.P.W.,
On the Nonlinearity of Pattern Classifiers,
ICPR96(IV: 271-275).
IEEE DOI 9608
(TU Delft, NL) BibRef

Palm, H.C.,
A new method for generating statistical classifiers assuming linear mixtures of Gaussian densities,
ICPR94(B:483-486).
IEEE DOI 9410
BibRef

Palm, H.C.,
A new piecewise linear classifier,
ICPR90(I: 742-744).
IEEE DOI 9006
BibRef

Bobrowski, L.[Leon], Sklansky, J.,
Linear classifiers by window training and basis exchange,
ICPR94(B:513-514).
IEEE DOI 9410
BibRef

Guyon, I., Vapnik, V., Boser, B., Bottou, L., Solla, S.A.,
Capacity control in linear classifiers for pattern recognition,
ICPR92(II:385-388).
IEEE DOI 9208
BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Fuzzy Clustering, Fuzzy Classification Techniques, Fuzzy C-Means .


Last update:Oct 21, 2018 at 15:38:03