14.2.17 Clustering Applications

Chapter Contents (Back)
Clustering. Dehne, F., Noltemeier, H.,
Clustering Methods for Geometric Objects and Applications to Design Problems,
VC(2), 1986, pp. 31-38. BibRef 8600

Shvaytser, H., Peleg, S.,
Representation of Patterns of Symbols by Equations with Applications to Puzzle Solving,
PRL(5), 1987, pp. 119-128. BibRef 8700

Friedland, N.S.[Noah S.], Rosenfeld, A.[Azriel],
Compact Object Recognition Using Energy-Function-Based Optimization,
PAMI(14), No. 7, July 1992, pp. 770-777.
IEEE DOI BibRef 9207

Friedland, N.S.[Noah S.], Rosenfeld, A.[Azriel],
An Integrated Approach To 2d Object Recognition,
PR(30), No. 3, March 1997, pp. 525-535.
Elsevier DOI 9705
BibRef
Earlier: A1, Only:
An Integrated Approach to Object Recognition,
DARPA93(777-787). Recognition of 2-D objects. BibRef

Mathieu-Marni, S., Moisan, S., Vincent, R.,
A Knowledge-Based System for the Computation of Land-Cover Mixing and the Classification of Multispectral Satellite Imagery,
JRS(17), No. 8, May 20 1996, pp. 1483-1492. 9605
BibRef

Maio, D., Maltoni, D., Rizzi, S.,
Dynamic Clustering of Maps in Autonomous Agents,
PAMI(18), No. 11, November 1996, pp. 1080-1091.
IEEE DOI 9612
BibRef

Branco, P.J.C., Martins, J.F., Pires, A.J., Dente, J.A.,
Recognizing Patterns in Electromechanical Systems,
PRL(18), No. 11-13, November 1997, pp. 1335-1346. 9806
BibRef

Lerner, B., Clocksin, W.F., Dhanjal, S., Hulten, M.A., Bishop, C.M.,
Feature Representation and Signal Classification in Fluorescence in-Situ Hybridization Image Analysis,
SMC-A(31), No. 6, November 2001, pp. 655-665.
IEEE Top Reference. 0202
BibRef

Clocksin, W.F., Lerner, B.,
Automatic Analysis of Fluorescence In-Situ Hybridisation Images,
BMVC00(xx-yy).
PDF File. 0009
BibRef

Wismüller, A.[Axel], Lange, O.[Oliver], Dersch, D.R.[Dominik R.], Leinsinger, G.L.[Gerda L.], Hahn, K.[Klaus], Pütz, B.[Benno], Auer, D.[Dorothee],
Cluster Analysis of Biomedical Image Time-Series,
IJCV(46), No. 2, February 2002, pp. 103-128.
DOI Link 0201
BibRef

Ye, D.H., Desjardins, B., Hamm, J., Litt, H., Pohl, K.M.,
Regional Manifold Learning for Disease Classification,
MedImg(33), No. 6, June 2014, pp. 1236-1247.
IEEE DOI 1407
Accuracy. Manifold learning (whole image) applied to peices of the image. BibRef


Muralikrishnan, B., Najarian, K., Raja, J.,
Process mapping and functional correlation in surface metrology: A novel clustering application,
ICPR02(I: 29-32).
IEEE DOI 0211
BibRef

Haralick, R.M.[Robert M.],
Basic Concepts For Testing The Torah Code Hypothesis,
ICPR06(III: 104-109).
IEEE DOI 0609
BibRef
And:
Testing The Torah Code Hypothesis: The Experimental Protocol,
ICPR06(III: 110-115).
IEEE DOI 0609
BibRef

Haralick, R.M.[Robert M.],
The Torah Code Controversy,
ICPR98(Vol II: 1779-1783).
IEEE DOI 9808
BibRef

Rips, E.[Eliyahu], Levitt, A.[Art],
The Twin Towers Cluster in Torah Codes,
ICPR06(III: 408-411).
IEEE DOI 0609
BibRef

Levitt, A.[Art],
Component Analysis of Torah Code Phrases,
ICPR06(III: 412-416).
IEEE DOI 0609
BibRef

Matas, J., Kittler, J.V.,
Spatial and feature space clustering: Applications in image analysis,
CAIP95(162-173).
Springer DOI 9509
BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Support Vector Machines, SVM .


Last update:Oct 15, 2018 at 09:19:25