11.5.4 Generalized Cylinder Generation from Intensity Data

Chapter Contents (Back)
Symmetry. Generalized Cylinder Generation.

Cernuschi-Frias, B., Cooper, D.B.,
3-D Space Location and Orientation Parameter Estimation of Lambertian Spheres and Cylinders from a Single 2-D Image by Fitting Lines and Ellipses to Thresholded Data,
PAMI(6), No. 4, July 1984, pp. 430-441. BibRef 8407

Gross, A.D., Boult, T.E.,
Analyzing Skewed Symmetries,
IJCV(13), No. 1, September 1994, pp. 91-111.
Springer DOI BibRef 9409
And: ColumbiaCUCS-064-90. BibRef
And:
SYMAN: A SYMmetry ANalyzer,
CVPR91(744-746).
IEEE DOI BibRef

Gross, A.D.,
Toward Object-Based Heuristics,
PAMI(16), No. 8, August 1994, pp. 794-802.
IEEE DOI BibRef 9408
Earlier: CVPR92(818-821).
IEEE DOI BibRef
Earlier:
Straight Homogeneous Generalized Cylinders: Constraints from Contour,
DARPA90(573-582). See also Surfaces from Contours -- Ulupinar. BibRef

Gross, A.D., and Boult, T.E.,
Recovery of SHGCs from a Single Intensity View,
PAMI(18), No. 2, February 1996, pp. 161-180.
IEEE DOI BibRef 9602
And: Corrections: PAMI(18), No. 4, April 1996, pp. 471.
IEEE DOI BibRef
Earlier:
Recovery of Generalized Cylinders from a Single Intensity View,
DARPA90(557-564). BibRef
Earlier:
Straight Homogeneous Generalized Cylinders: Analysis of Reflectance Properties and a Necessary Condition for Class Membership,
DARPA89(967-973). BibRef
Earlier:
Recovery of Superquadrics from Depth Information,
SRMSF87(128-137). BibRef
And:
Recovery of Superquadrics from 3D Information,
SPIE(848), November 1987, pp. xx. Shape from Shading. Shape from Contours. Use contour contstraints, then use image intensity constraints. BibRef

Gross, A.D., Boult, T.E.,
Error of Fit Measures for Recovering Parametric Solids,
ICCV88(690-694).
IEEE DOI BibRef 8800

Boult, T.E.[Terrance E.], and Gross, A.D.[Ari D.],
On the Recovery of Superellipsoids,
DARPA88(1052-1063). BibRef 8800


Yang, F.[Fang], Cohen, L.D.[Laurent D.],
Tubular Structure Segmentation Based on Heat Diffusion,
SSVM17(54-65).
Springer DOI 1706
BibRef

Aubry, N.[Nicolas], Kerautret, B.[Bertrand], Debled-Rennesson, I.[Isabelle], Even, P.[Philippe],
Parallel Strip Segment Recognition and Application to Metallic Tubular Object Measure,
IWCIA15(311-322).
Springer DOI 1601
BibRef

Grélard, F.[Florent], Baldacci, F.[Fabien], Vialard, A.[Anne], Domenger, J.P.[Jean-Philippe],
Improving curve skeletons of tubular volumes,
IPTA16(1-6)
IEEE DOI 1703
BibRef
And:
Centerlines of Tubular Volumes Based on Orthogonal Plane Estimation,
DGCI16(427-438).
WWW Link. 1606
BibRef

Grélard, F.[Florent], Baldacci, F.[Fabien], Vialard, A.[Anne], Lachaud, J.O.[Jacques-Olivier],
Precise Cross-Section Estimation on Tubular Organs,
CAIP15(II:277-288).
Springer DOI 1511
BibRef

Kerautret, B.[Bertrand], Krähenbühl, A.[Adrien], Debled-Rennesson, I.[Isabelle], Lachaud, J.O.[Jacques-Olivier],
3D Geometric Analysis of Tubular Objects Based on Surface Normal Accumulation,
CIAP15(I:319-331).
Springer DOI 1511
BibRef

Jezierska, A.[Anna], Miraucourt, O.[Olivia], Talbot, H.[Hugues], Salmon, S.[Stephanie], Passat, N.[Nicolas],
A non-local Chan-Vese model for sparse, tubular object segmentation,
ICIP14(907-911)
IEEE DOI 1502
Biomedical imaging BibRef

Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Rotational Symmetry, Axial Symmetry .


Last update:Aug 16, 2018 at 18:22:30