19.4.3.17.3 Video Prediction

Chapter Contents (Back)
Video Prediction. Motion Coding. Motion Compensation. More for tracking:
See also Prediction for Tracking Techniques.

Wang, J.Z.[Jin-Zhuo], Wang, W.M.[Wen-Min], Gao, W.[Wen],
Predicting Diverse Future Frames With Local Transformation-Guided Masking,
CirSysVideo(29), No. 12, December 2019, pp. 3531-3543.
IEEE DOI 1912
Predictive models, Generators, Task analysis, Visualization, Computational modeling, Complexity theory, Training, video prediction on single frame BibRef

Chen, X.Y.[Xin-Yuan], Xu, C.[Chang], Yang, X.K.[Xiao-Kang], Tao, D.C.[Da-Cheng],
Long-Term Video Prediction via Criticization and Retrospection,
IP(29), 2020, pp. 7090-7103.
IEEE DOI 2007
Predictive models, Feature extraction, Training, Adaptive optics, Optical imaging, Image reconstruction, Video prediction, generative adversarial networks BibRef

Chen, X.T.[Xiong-Tao], Wang, W.M.[Wen-Min],
Uni-and-Bi-Directional Video Prediction via Learning Object-Centric Transformation,
MultMed(22), No. 6, June 2020, pp. 1591-1604.
IEEE DOI 2005
Kernel, Predictive models, Task analysis, Bidirectional control, Optical imaging, Image reconstruction, Visualization, visual attention BibRef

Lin, X., Zou, Q., Xu, X., Huang, Y., Tian, Y.,
Motion-Aware Feature Enhancement Network for Video Prediction,
CirSysVideo(31), No. 2, February 2021, pp. 688-700.
IEEE DOI 2102
Predictive models, Encoding, Multiprotocol label switching, Stochastic processes, Dynamics, Feature extraction, Task analysis, perceptual loss BibRef

Choi, H.[Hyomin], Bajic, I.V.[Ivan V.],
Affine Transformation-Based Deep Frame Prediction,
IP(30), 2021, pp. 3321-3334.
IEEE DOI 2103
Kernel, Predictive models, Image coding, Encoding, Convolutional codes, Interpolation, Extrapolation, affine transformation BibRef

Kim, N.[Nayoung], Kang, J.W.[Je-Won],
Dynamic Motion Estimation and Evolution Video Prediction Network,
MultMed(23), 2021, pp. 3986-3998.
IEEE DOI 2112
Kernel, Dynamics, Convolution, Streaming media, Motion estimation, Adaptation models, Spatiotemporal phenomena, Long Short-term Memory BibRef

Kancharla, P.[Parimala], Channappayya, S.S.[Sumohana S.],
Improving the Visual Quality of Video Frame Prediction Models Using the Perceptual Straightening Hypothesis,
SPLetters(28), 2021, pp. 2167-2171.
IEEE DOI 2112
Predictive models, Computational modeling, Training, Feature extraction, Visualization, Trajectory, Generators, video prediction BibRef

Oprea, S.[Sergiu], Martinez-Gonzalez, P.[Pablo], Garcia-Garcia, A.[Alberto], Castro-Vargas, J.A.[John Alejandro], Orts-Escolano, S.[Sergio], Garcia-Rodriguez, J.[Jose], Argyros, A.A.[Antonis A.],
A Review on Deep Learning Techniques for Video Prediction,
PAMI(44), No. 6, June 2022, pp. 2806-2826.
IEEE DOI 2205
Survey, Video Prediction. Predictive models, Task analysis, Uncertainty, Deep learning, Computational modeling, Video sequences, Training, self-supervised learning BibRef

Somraj, N.[Nagabhushan], Kashi, M.S.[Manoj Surya], Arun, S.P., Soundararajan, R.[Rajiv],
Understanding the perceived quality of video predictions,
SP:IC(102), 2022, pp. 116626.
Elsevier DOI 2202
Video quality assessment, Video prediction, Database, Perceptual quality, Neural networks, Deep learning BibRef

Liu, H.J.[Hao-Jie], Lu, M.[Ming], Chen, Z.[Zhiqi], Cao, X.[Xun], Ma, Z.[Zhan], Wang, Y.[Yao],
End-to-End Neural Video Coding Using a Compound Spatiotemporal Representation,
CirSysVideo(32), No. 8, August 2022, pp. 5650-5662.
IEEE DOI 2208
Image coding, Spatiotemporal phenomena, Decoding, Chemical reactors, Video coding, Feature extraction, Optical flow, video prediction BibRef

Kim, Y.G.[Young-Geun], Lee, K.[Kyungbok], Paik, M.C.[Myunghee Cho],
Conditional Wasserstein Generator,
PAMI(45), No. 6, June 2023, pp. 7208-7219.
IEEE DOI 2305
Generators, Data models, Linear programming, Task analysis, Probability, Upper bound, Stochastic processes, video prediction BibRef

Chang, Z.[Zheng], Zhang, X.F.[Xin-Feng], Wang, S.S.[Shan-She], Ma, S.W.[Si-Wei], Gao, W.[Wen],
STAM: A SpatioTemporal Attention Based Memory for Video Prediction,
MultMed(25), 2023, pp. 2354-2367.
IEEE DOI 2306
Spatiotemporal phenomena, Predictive models, Visualization, Logic gates, Feature extraction, video prediction BibRef

Li, P.[Ping], Zhang, C.[Chenhan], Xu, X.H.[Xiang-Hua],
Fast Fourier Inception Networks for Occluded Video Prediction,
MultMed(26), 2024, pp. 3418-3429.
IEEE DOI 2402
Dynamics, Convolutional codes, Task analysis, Spatiotemporal phenomena, Predictive models, Streaming media, Fourier transform BibRef

Lai, J.Y.[Jun-Yu], Gan, L.Q.[Lian-Qiang], Zhu, J.H.[Jun-Hong], Liu, H.S.[Hua-Shuo], Gao, L.L.[Lian-Li],
Exploring Spatial Frequency Information for Enhanced Video Prediction Quality,
MultMed(26), 2024, pp. 8955-8968.
IEEE DOI 2408
Measurement, Predictive models, Feature extraction, Correlation, Task analysis, Spatiotemporal phenomena, Video prediction, performance metric BibRef


Takenaka, P.[Patrick], Maucher, J.[Johannes], Huber, M.F.[Marco F.],
Guiding Video Prediction with Explicit Procedural Knowledge,
LIMIT23(1076-1084)
IEEE DOI 2401
BibRef

Davtyan, A.[Aram], Sameni, S.[Sepehr], Favaro, P.[Paolo],
Efficient Video Prediction via Sparsely Conditioned Flow Matching,
ICCV23(23206-23217)
IEEE DOI Code:
WWW Link. 2401
BibRef

Zhong, Y.Q.[Yi-Qi], Liang, L.[Luming], Zharkov, I.[Ilya], Neumann, U.[Ulrich],
MMVP: Motion-Matrix-based Video Prediction,
ICCV23(4250-4260)
IEEE DOI 2401
BibRef

Villar-Corrales, A.[Angel], Wahdan, I.[Ismail], Behnke, S.[Sven],
Object-Centric Video Prediction Via Decoupling of Object Dynamics and Interactions,
ICIP23(570-574)
IEEE DOI 2312
BibRef

Hu, X.T.[Xiao-Tao], Huang, Z.W.[Zhe-Wei], Huang, A.L.[Ai-Lin], Xu, J.[Jun], Zhou, S.C.[Shu-Chang],
A Dynamic Multi-Scale Voxel Flow Network for Video Prediction,
CVPR23(6121-6131)
IEEE DOI 2309
BibRef

Sun, M.Z.[Ming-Zhen], Wang, W.N.[Wei-Ning], Zhu, X.X.[Xin-Xin], Liu, J.[Jing],
MOSO: Decomposing MOtion, Scene and Object for Video Prediction,
CVPR23(18727-18737)
IEEE DOI 2309
BibRef

Ye, X.[Xi], Bilodeau, G.A.[Guillaume-Alexandre],
A unified model for continuous conditional video prediction,
Precognition23(3604-3613)
IEEE DOI 2309
BibRef

Ben Zikri, N.[Nir], Sharf, A.[Andrei],
Phylonet: Physically-constrained Long-term Video Prediction,
ACCV22(VII:570-587).
Springer DOI 2307
BibRef

Wu, Y.[Yue], Wen, Q.[Qiang], Chen, Q.F.[Qi-Feng],
Optimizing Video Prediction via Video Frame Interpolation,
CVPR22(17793-17802)
IEEE DOI 2210
Training, Interpolation, Extrapolation, Computational modeling, Semantics, Training data, Optimization methods, Image and video synthesis and generation BibRef

Jasti, R.[Rakesh], Jampani, V.[Varun], Sun, D.Q.[De-Qing], Yang, M.H.[Ming-Hsuan],
Multi-Frame Video Prediction with Learnable Motion Encodings,
ICIP22(4198-4202)
IEEE DOI 2211
Deep learning, Knowledge engineering, Image coding, Neural networks, Benchmark testing, Performance gain, Cameras BibRef

Chang, Z.[Zheng], Zhang, X.F.[Xin-Feng], Wang, S.S.[Shan-She], Ma, S.W.[Si-Wei], Gao, W.[Wen],
STRPM: A Spatiotemporal Residual Predictive Model for High-Resolution Video Prediction,
CVPR22(13926-13935)
IEEE DOI 2210
Predictive models, Feature extraction, Generative adversarial networks, Spatiotemporal phenomena, Representation learning BibRef

Geng, D.[Daniel], Hamilton, M.[Max], Owens, A.[Andrew],
Comparing Correspondences: Video Prediction with Correspondence-wise Losses,
CVPR22(3355-3366)
IEEE DOI 2210
Interpolation, Visualization, Uncertainty, Prediction methods, Position measurement, Video analysis and understanding BibRef

Gao, Z.Y.[Zhang-Yang], Tan, C.[Cheng], Wu, L.R.[Li-Rong], Li, S.Z.[Stan Z.],
SimVP: Simpler yet Better Video Prediction,
CVPR22(3160-3170)
IEEE DOI 2210
Training, Costs, Recurrent neural networks, Computational modeling, Predictive models, Image and video synthesis and generation BibRef

Tiwari, U.[Ujjwal], Sreekar, P.A.[P. Aditya], Namboodiri, A.[Anoop],
Cycle Consistency Based Method for Learning Disentangled Representation for Stochastic Video Prediction,
CIAP22(III:265-277).
Springer DOI 2205
BibRef

Besbinar, B.[Beril], Frossard, P.[Pascal],
Self-Supervision By Prediction for Object Discovery In Videos,
ICIP21(1509-1513)
IEEE DOI 2201
Deep learning, Annotations, Heuristic algorithms, Pipelines, Dynamics, Predictive models, Self-supervision, video prediction, unsupervised scene decomposition BibRef

Chatterjee, M.[Moitreya], Ahuja, N.[Narendra], Cherian, A.[Anoop],
A Hierarchical Variational Neural Uncertainty Model for Stochastic Video Prediction,
ICCV21(9731-9741)
IEEE DOI 2203
Training, Measurement, Deep learning, Uncertainty, Graphical models, Stochastic processes, Representation learning BibRef

Wu, B.[Bohan], Nair, S.[Suraj], Martín-Martín, R.[Roberto], Fei-Fei, L.[Li], Finn, C.[Chelsea],
Greedy Hierarchical Variational Autoencoders for Large-Scale Video Prediction,
CVPR21(2318-2328)
IEEE DOI 2111
Training, Visualization, Memory management, Stacking, Predictive models, Planning, Pattern recognition BibRef

Liu, B.[Bowen], Chen, Y.[Yu], Liu, S.Y.[Shi-Yu], Kim, H.S.[Hun-Seok],
Deep Learning in Latent Space for Video Prediction and Compression,
CVPR21(701-710)
IEEE DOI 2111
Deep learning, Redundancy, Video sequences, Rate-distortion, Transforms, Video compression, Generative adversarial networks BibRef

Bei, X.Z.[Xin-Zhu], Yang, Y.C.[Yan-Chao], Soatto, S.[Stefano],
Learning Semantic-Aware Dynamics for Video Prediction,
CVPR21(902-912)
IEEE DOI 2111
Training, Layout, Semantics, Dynamics, Predictive models BibRef

Razali, H.[Haziq], Fernando, B.[Basura],
A Log-likelihood Regularized KL Divergence for Video Prediction With a 3D Convolutional Variational Recurrent Network,
WACVW21(209-217) Generation of Human Behavior
IEEE DOI 2105
Solid modeling, Stochastic processes, Predictive models, Tools BibRef

Seo, Y.G.[Young-Gyo], Lee, K.[Kimin], Liu, F.C.[Fang-Chen], James, S.[Stephen], Abbeel, P.[Pieter],
HARP: Autoregressive Latent Video Prediction with High-Fidelity Image Generator,
ICIP22(3943-3947)
IEEE DOI 2211
Predictive models, Benchmark testing, Transformers, Generators, Data models, Task analysis, Video Prediction, Transformer BibRef

Wu, H.X.[Hai-Xu], Yao, Z.[Zhiyu], Wang, J.M.[Jian-Min], Long, M.S.[Ming-Sheng],
MotionRNN: A Flexible Model for Video Prediction with Spacetime-Varying Motions,
CVPR21(15430-15439)
IEEE DOI 2111
Road transportation, Adaptation models, Predictive models, Market research, Spatiotemporal phenomena BibRef

Lee, S.M.[Sang-Min], Kim, H.G.[Hak Gu], Choi, D.H.[Dae Hwi], Kim, H.I.[Hyung-Il], Ro, Y.M.[Yong Man],
Video Prediction Recalling Long-term Motion Context via Memory Alignment Learning,
CVPR21(3053-3062)
IEEE DOI 2111
Legged locomotion, Codes, Impedance matching, Dynamics, Training data, Pattern recognition BibRef

Wang, Y., Wu, J., Long, M., Tenenbaum, J.B.,
Probabilistic Video Prediction From Noisy Data With a Posterior Confidence,
CVPR20(10827-10836)
IEEE DOI 2008
Predictive models, Uncertainty, Bayes methods, Noise measurement, Mathematical model, Streaming media, Stochastic processes BibRef

Le Guen, V., Thome, N.,
Disentangling Physical Dynamics From Unknown Factors for Unsupervised Video Prediction,
CVPR20(11471-11481)
IEEE DOI 2008
Predictive models, Forecasting, Mathematical model, Computer architecture, Computational modeling, Training, Recurrent neural networks BibRef

Jin, B.B.[Bei-Bei], Hu, Y.[Yu], Tang, Q.K.[Qian-Kun], Niu, J.Y.[Jing-Yu], Shi, Z.P.[Zhi-Ping], Han, Y.H.[Yin-He], Li, X.W.[Xiao-Wei],
Exploring Spatial-Temporal Multi-Frequency Analysis for High-Fidelity and Temporal-Consistency Video Prediction,
CVPR20(4553-4562)
IEEE DOI 2008
Discrete wavelet transforms, Predictive models, Wavelet analysis, Streaming media, Time-frequency analysis BibRef

Ho, Y.H., Chan, C.C., Peng, W.H.,
Deep Video Prediction Through Sparse Motion Regularization,
ICIP20(1646-1650)
IEEE DOI 2011
Predictive models, Adaptive optics, Training, Optical sensors, Optical losses, Integrated optics, Optical imaging, weighted K-means BibRef

Ho, Y., Chan, C., Alexandre, D., Peng, W., Chang, C.,
P-frame Coding Proposal by NCTU: Parametric Video Prediction through Backprop-based Motion Estimation,
CLIC20(598-601)
IEEE DOI 2008
Encoding, Image coding, Motion estimation, Nonlinear optics, Optical imaging, Decoding, Optical buffering BibRef

Ho, Y.H.[Yung-Han], Cho, C.Y.[Chuan-Yuan], Peng, W.H.[Wen-Hsiao],
Deep Reinforcement Learning for Video Prediction,
ICIP19(604-608)
IEEE DOI 1910
Reinforcement learning, deep video prediction BibRef

Ho, Y., Cho, C., Jin, G., Peng, W.,
SME-Net: Sparse Motion Estimation for Parametric Video Prediction Through Reinforcement Learning,
ICCV19(10461-10469)
IEEE DOI 2004
data compression, image sequences, learning (artificial intelligence), motion compensation, BibRef

Hu, Z., Wang, J.,
A Novel Adversarial Inference Framework for Video Prediction with Action Control,
SDL-CV19(768-772)
IEEE DOI 2004
image motion analysis, image representation, image segmentation, image sequences, neural nets, Cycle Consistent BibRef

Zhu, D.[Deyao], Munderloh, M.[Marco], Rosenhahn, B.[Bodo], Stückler, J.[Jörg],
Learning to Disentangle Latent Physical Factors for Video Prediction,
GCPR19(595-608).
Springer DOI 1911
BibRef

Chapter on Motion Analysis -- Low-Level, Image Level Analysis, Mosaic Generation, Super Resolution, Shape from Motion continues in
Image Manipulation -- Sampling, Reduction, Decimation, General Size Changes, Resizing .


Last update:Aug 28, 2024 at 16:02:19