14.1.4.7 Locally Linear Embedding, Nonlinear Embedding

Chapter Contents (Back)
Locally Linear Embedding. Linear Embedding. A manifold learning technique.

Roweis, S.T., Saul, L.K.,
Nonlinear Dimensionality Reduction by Locally Linear Embedding,
Science(290), No. 5500, December 2000, pp. 2323-2326.
WWW Link. BibRef 0012

Kouropteva, O.[Olga], Okun, O.[Oleg], Pietikäinen, M.[Matti],
Incremental locally linear embedding,
PR(38), No. 10, October 2005, pp. 1764-1767.
Elsevier DOI 0508
BibRef
Earlier:
Incremental Locally Linear Embedding Algorithm,
SCIA05(521-530).
Springer DOI 0506
BibRef

Hadid, A., Kouropteva, O., Pietikanen, M.,
Unsupervised Learning Using Locally Linear Embedding: Experiments with Face Pose Analysis,
ICPR02(I: 111-114).
IEEE DOI 0211
BibRef

Chang, H.[Hong], Yeung, D.Y.[Dit-Yan],
Robust locally linear embedding,
PR(39), No. 6, June 2006, pp. 1053-1065.
Elsevier DOI Nonlinear dimensionality reduction; Manifold learning; Locally linear embedding; Principal component analysis; Outlier; Robust statistics; M-estimation; Handwritten digit; Wood texture 0604
BibRef

Pan, Y.Z.[Yao-Zhang], Ge, S.Z.S.[Shu-Zhi Sam], Al Mamun, A.[Abdullah],
Weighted locally linear embedding for dimension reduction,
PR(42), No. 5, May 2009, pp. 798-811.
Elsevier DOI 0902
Nonlinear dimensionality reduction, Manifold learning, Feature extraction, Locally linear embedding BibRef

Zhang, T., Huang, K., Li, X., Yang, J., Tao, D.,
Discriminative Orthogonal Neighborhood-Preserving Projections for Classification,
SMC-B(40), No. 1, February 2010, pp. 253-263.
IEEE DOI 0911
To overcome outlier problems in linear embedded classification. BibRef

Ge, S.Z.S.[Shu-Zhi Sam], Guan, F.[Feng], Pan, Y.Z.[Yao-Zhang], Loh, A.P.[Ai Poh],
Neighborhood linear embedding for intrinsic structure discovery,
MVA(21), No. 3, April 2010, pp. xx-yy.
Springer DOI 1003
Learning to discover neighborhood relationships. BibRef

Hou, C.P.[Chen-Ping], Zhang, C.S.[Chang-Shui], Wu, Y.[Yi], Jiao, Y.Y.[Yuan-Yuan],
Stable local dimensionality reduction approaches,
PR(42), No. 9, September 2009, pp. 2054-2066.
Elsevier DOI 0905
Dimensionality reduction, Manifold learning, Locally linear embedding; Laplacian eigenmaps, Local tangent space alignment BibRef

Lewandowski, M.[Michal], Makris, D.[Dimitrios], Nebel, J.C.[Jean-Christophe],
Automatic configuration of spectral dimensionality reduction methods,
PRL(31), No. 12, 1 September 2010, pp. 1720-1727.
Elsevier DOI 1008
Dimensionality reduction, Locally Linear Embedding, Isomap, Laplacian Eigenmaps, Mutual information, Radial Basis Function network BibRef

Wang, J.[Jing], Zhang, Z.Y.[Zhen-Yue],
Nonlinear embedding preserving multiple local-linearities,
PR(43), No. 4, April 2010, pp. 1257-1268.
Elsevier DOI 1002
Manifold learning, Dimensionality reduction, Weight vector, Stability of algorithm BibRef

Jain, N.[Neeraj], Verma, S.[Shekhar], Kumar, M.[Manish],
Low cost localization using Nyström extended locally linear embedding,
PRL(110), 2018, pp. 30-35.
Elsevier DOI 1806
Locally linear embedding, Localization, Nyström method, Received signal strength indicator, Manifold learning BibRef

Alipanahi, B.[Babak], Ghodsi, A.[Ali],
Guided Locally Linear Embedding,
PRL(32), No. 7, 1 May 2011, pp. 1029-1035.
Elsevier DOI 1101
Supervised dimensionality reduction; Locally Linear Embedding; Classification; Pattern recognition BibRef

Wang, R.P.[Rui-Ping], Shan, S.G.[Shi-Guang], Chen, X.L.[Xi-Lin], Chen, J.[Jie], Gao, W.[Wen],
Maximal Linear Embedding for Dimensionality Reduction,
PAMI(33), No. 9, September 2011, pp. 1776-1792.
IEEE DOI 1109
BibRef

Venkateswara, H.[Hemanth], Chakraborty, S.[Shayok], Panchanathan, S.[Sethuraman],
Deep-Learning Systems for Domain Adaptation in Computer Vision: Learning Transferable Feature Representations,
SPMag(34), No. 6, November 2017, pp. 117-129.
IEEE DOI 1712
BibRef
Earlier:
Nonlinear Embedding Transform for Unsupervised Domain Adaptation,
TASKCV16(III: 451-457).
Springer DOI 1611
Adaptation models, Data models, Knowledge transfer, Machine learning, Training data BibRef

Sun, W.W.[Wei-Wei], Yang, G.[Gang], Du, B.[Bo], Zhang, L.F.[Le-Fei], Zhang, L.P.[Liang-Pei],
A Sparse and Low-Rank Near-Isometric Linear Embedding Method for Feature Extraction in Hyperspectral Imagery Classification,
GeoRS(55), No. 7, July 2017, pp. 4032-4046.
IEEE DOI 1706
Feature extraction, Hyperspectral imaging, Learning systems, Manifolds, Principal component analysis, Sparse matrices, Classification, dimensionality reduction, feature extraction, linear, embedding, (SLRNILE) BibRef

Jorge, J.[Javier], Paredes, R.[Roberto],
Passive-Aggressive online learning with nonlinear embeddings,
PR(79), 2018, pp. 162-171.
Elsevier DOI 1804
Online learning, Nonlinear functions, Passive-Aggressive, Binary classification, Nonlinear embedding BibRef

Zhang, Y.[Yan], Zhang, Z.[Zhao], Qin, J.[Jie], Zhang, L.[Li], Li, B.[Bing], Li, F.Z.[Fan-Zhang],
Semi-supervised local multi-manifold Isomap by linear embedding for feature extraction,
PR(76), No. 1, 2018, pp. 662-678.
Elsevier DOI 1801
Semi-supervised manifold feature extraction BibRef

Zhu, R.F.[Rui-Feng], Dornaika, F.[Fadi], Ruichek, Y.[Yassine],
Joint graph based embedding and feature weighting for image classification,
PR(93), 2019, pp. 458-469.
Elsevier DOI 1906
BibRef
Earlier:
Flexible and Discriminative Non-linear Embedding with Feature Selection for Image Classification,
ICPR18(3192-3197)
IEEE DOI 1812
Graph-based embedding, Discriminative embedding, Feature weighting, Supervised learning. Symmetric matrices, Feature extraction, Sparse matrices, Manifolds, Transforms, Laplace equations, Estimation, feature selection BibRef

Örnek, C.[Cem], Vural, E.[Elif],
Nonlinear supervised dimensionality reduction via smooth regular embeddings,
PR(87), 2019, pp. 55-66.
Elsevier DOI 1812
Manifold learning, Dimensionality reduction, Supervised learning, Out-of-sample, Nonlinear embeddings BibRef

Wang, J.[Justin], Wong, R.K.W.[Raymond K.W.], Lee, T.C.M.[Thomas C.M.],
Locally linear embedding with additive noise,
PRL(123), 2019, pp. 47-52.
Elsevier DOI 1906
Cross validation, Dimension reduction, Regularization BibRef

Niu, G.[Guo], Ma, Z.M.[Zheng-Ming],
Tensor local linear embedding with global subspace projection optimisation,
IET-CV(16), No. 3, 2022, pp. 241-254.
DOI Link 2204
Tensor dimensionality reduction. local linear embedding, subspace projection, tensor dimensionality reduction, tensors BibRef

Miao, J.Y.[Jian-Yu], Yang, T.J.[Tie-Jun], Sun, L.J.[Li-Jun], Fei, X.[Xuan], Niu, L.F.[Ling-Feng], Shi, Y.[Yong],
Graph regularized locally linear embedding for unsupervised feature selection,
PR(122), 2022, pp. 108299.
Elsevier DOI 2112
Unsupervised feature selection, Local linear embedding, Graph Laplacian, Manifold regularization BibRef

Xue, J.Q.[Jia-Qi], Zhang, B.[Bin], Qiang, Q.Y.[Qian-Yao],
Local Linear Embedding with Adaptive Neighbors,
PR(136), 2023, pp. 109205.
Elsevier DOI 2301
dimensionality reduction, Locally Linear Embedding, manifold learning, adaptive neighbor strategy BibRef

Zou, X.X.[Xin-Xin], Xu, H.[Hao], Liu, X.[Xinling],
Manifold learning based on locally linear embedding for symmetric positive definite matrix,
PR(172), 2026, pp. 112691.
Elsevier DOI 2601
Manifold learning, Symmetric positive definite, Locally linear embedding, Log-Euclidean metric, Image set classification BibRef


Huang, Y.[Yan], Wang, W.[Wei], Wang, L.[Liang], Tan, T.N.[Tie-Niu],
A General Nonlinear Embedding Framework Based on Deep Neural Network,
ICPR14(732-737)
IEEE DOI 1412
Face BibRef

Hwang, Y.[Yoonho], Han, B.H.[Bo-Hyung], Ahn, H.K.[Hee-Kap],
A fast nearest neighbor search algorithm by nonlinear embedding,
CVPR12(3053-3060).
IEEE DOI 1208
BibRef

Liu, R.J.[Ru-Jie], Wang, Y.H.[Yue-Hong], Baba, T.[Takayuki], Masumoto, D.[Daiki],
Semi-supervised learning by locally linear embedding in kernel space,
ICPR08(1-4).
IEEE DOI 0812
BibRef

Marinai, S.[Simone], Marino, E.[Emanuele], Soda, G.[Giovanni],
Nonlinear Embedded Map Projection for Dimensionality Reduction,
CIAP09(219-228).
Springer DOI 0909
BibRef
Earlier:
Embedded Map Projection for Dimensionality Reduction-Based Similarity Search,
SSPR08(582-591).
Springer DOI 0812
BibRef

Hui, K.H.[Kang-Hua], Wang, C.H.[Chun-Heng],
Clustering-based locally linear embedding,
ICPR08(1-4).
IEEE DOI 0812
LLE for dimensionality reduction BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Discriminant Analysis .


Last update:Jan 8, 2026 at 12:52:16