Landslide Analysis, LiDAR, Laser Scanner

Chapter Contents (Back)
Landslide LiDAR. Landslide Laser.
See also Subsidance, Deformation.

Ghuffar, S.[Sajid], Székely, B.[Balázs], Roncat, A.[Andreas], Pfeifer, N.[Norbert],
Landslide Displacement Monitoring Using 3D Range Flow on Airborne and Terrestrial LiDAR Data,
RS(5), No. 6, 2013, pp. 2720-2745.
DOI Link 1307

Li, X.J.[Xian-Ju], Cheng, X.W.[Xin-Wen], Chen, W.T.[Wei-Tao], Chen, G.[Gang], Liu, S.W.[Sheng-Wei],
Identification of Forested Landslides Using LiDar Data, Object-based Image Analysis, and Machine Learning Algorithms,
RS(7), No. 8, 2015, pp. 9705.
DOI Link 1509

Pradhan, B., Jebur, M.N., Shafri, H.Z.M., Tehrany, M.S.,
Data Fusion Technique Using Wavelet Transform and Taguchi Methods for Automatic Landslide Detection From Airborne Laser Scanning Data and QuickBird Satellite Imagery,
GeoRS(54), No. 3, March 2016, pp. 1610-1622.
Image segmentation BibRef

Mezaal, M.R.[Mustafa Ridha], Pradhan, B.[Biswajeet], Rizeei, H.M.[Hossein Mojaddadi],
Improving Landslide Detection from Airborne Laser Scanning Data Using Optimized Dempster-Shafer,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link 1808

Hsieh, Y.C.[Yu-Chung], Chan, Y.C.[Yu-Chang], Hu, J.C.[Jyr-Ching], Chen, Y.Z.[Yi-Zhong], Chen, R.F.[Rou-Fei], Chen, M.M.[Mien-Ming],
Direct Measurements of Bedrock Incision Rates on the Surface of a Large Dip-slope Landslide by Multi-Period Airborne Laser Scanning DEMs,
RS(8), No. 11, 2016, pp. 900.
DOI Link 1612

Barbarella, M.[Maurizio], Fiani, M.[Margherita], Lugli, A.[Andrea],
Uncertainty in Terrestrial Laser Scanner Surveys of Landslides,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link 1703

Kamps, M.[Martijn], Bouten, W.[Willem], Seijmonsbergen, A.C.[Arie C.],
LiDAR and Orthophoto Synergy to optimize Object-Based Landscape Change: Analysis of an Active Landslide,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link 1708

Chen, X., Yu, K., Wu, H.,
Determination of Minimum Detectable Deformation of Terrestrial Laser Scanning Based on Error Entropy Model,
GeoRS(56), No. 1, January 2018, pp. 105-116.
Entropy, Laser beams, Monitoring, Strain, Surface emitting lasers, Uncertainty, Deformation monitoring, terrestrial laser scanning (TLS) BibRef

Ossowski, R.[Rafal], Przyborski, M.[Marek], Tysiac, P.[Pawel],
Stability Assessment of Coastal Cliffs Incorporating Laser Scanning Technology and a Numerical Analysis,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link 1909

Bunn, M.D.[Michael D.], Leshchinsky, B.A.[Ben A.], Olsen, M.J.[Michael J.], Booth, A.[Adam],
A Simplified, Object-Based Framework for Efficient Landslide Inventorying Using LIDAR Digital Elevation Model Derivatives,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link 1902

Terefenko, P.[Pawel], Paprotny, D.[Dominik], Giza, A.[Andrzej], Morales-Nápoles, O.[Oswaldo], Kubicki, A.[Adam], Walczakiewicz, S.[Szymon],
Monitoring Cliff Erosion with LiDAR Surveys and Bayesian Network-based Data Analysis,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link 1904

Pawluszek, K.[Kamila], Marczak, S.[Sylwia], Borkowski, A.[Andrzej], Tarolli, P.[Paolo],
Multi-Aspect Analysis of Object-Oriented Landslide Detection Based on an Extended Set of LiDAR-Derived Terrain Features,
IJGI(8), No. 8, 2019, pp. xx-yy.
DOI Link 1909
Earlier: A1, A3, A4, Only:
Towards the Optimal Pixel Size of DEM for Automatic Mapping of Landslide Areas,
DOI Link 1805

Fanos, A.M.[Ali Mutar], Pradhan, B.[Biswajeet], Alamri, A.[Abdullah], Lee, C.W.[Chang-Wook],
Machine Learning-Based and 3D Kinematic Models for Rockfall Hazard Assessment Using LiDAR Data and GIS,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link 2006

DiFrancesco, P.M.[Paul-Mark], Bonneau, D.[David], Hutchinson, D.J.[D. Jean],
The Implications of M3C2 Projection Diameter on 3D Semi-Automated Rockfall Extraction from Sequential Terrestrial Laser Scanning Point Clouds,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link 2006

de Sanjosé-Blasco, J.J.[José Juan], López-González, M.[Mariló], Alonso-Pérez, E.[Estrella], Serrano, E.[Enrique],
Modelling and Terrestrial Laser Scanning Methodology (2009-2018) on Debris Cones in Temperate High Mountains,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link 2003

Kravcov, A.[Alexander], Cherepetskaya, E.[Elena], Svoboda, P.[Pavel], Blokhin, D.[Dmitry], Ivanov, P.[Pavel], Shibaev, I.[Ivan],
Thermal Infrared Radiation and Laser Ultrasound for Deformation and Water Saturation Effects Testing in Limestone,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012

Conforti, M.[Massimo], Mercuri, M.[Michele], Borrelli, L.[Luigi],
Morphological Changes Detection of a Large Earthflow Using Archived Images, LiDAR-Derived DTM, and UAV-Based Remote Sensing,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link 2101

DiFrancesco, P.M.[Paul-Mark], Bonneau, D.A.[David A.], Hutchinson, D.J.[D. Jean],
Computational Geometry-Based Surface Reconstruction for Volume Estimation: A Case Study on Magnitude-Frequency Relations for a LiDAR-Derived Rockfall Inventory,
IJGI(10), No. 3, 2021, pp. xx-yy.
DOI Link 2104

Fernández, T.[Tomás], Pérez-García, J.L.[José L.], Gómez-López, J.M.[José M.], Cardenal, J.[Javier], Moya, F.[Francisco], Delgado, J.[Jorge],
Multitemporal Landslide Inventory and Activity Analysis by Means of Aerial Photogrammetry and LiDAR Techniques in an Area of Southern Spain,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link 2106

Zhao, L.[Lidu], Ma, X.P.[Xia-Ping], Xiang, Z.F.[Zhong-Fu], Zhang, S.C.[Shuang-Cheng], Hu, C.[Chuan], Zhou, Y.[Yin], Chen, G.C.[Gui-Cheng],
Landslide Deformation Extraction from Terrestrial Laser Scanning Data with Weighted Least Squares Regularization Iteration Solution,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206

Fang, C.[Chengyong], Fan, X.M.[Xuan-Mei], Zhong, H.[Hao], Lombardo, L.[Luigi], Tanyas, H.[Hakan], Wang, X.[Xin],
A Novel Historical Landslide Detection Approach Based on LiDAR and Lightweight Attention U-Net,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link 2209

Sang, M.T.[Meng-Ting], Wang, W.[Wei], Pan, Y.[Yani],
RGB-ICP Method to Calculate Ground Three-Dimensional Deformation Based on Point Cloud from Airborne LiDAR,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link 2210

Kermarrec, G.[Gaël], Yang, Z.[Zhonglong], Czerwonka-Schröder, D.[Daniel],
Classification of Terrestrial Laser Scanner Point Clouds: A Comparison of Methods for Landslide Monitoring from Mathematical Surface Approximation,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link 2211

Duchnowski, R.[Robert], Wyszkowska, P.[Patrycja],
Msplit Estimation Approach to Modeling Vertical Terrain Displacement from TLS Data Disturbed by Outliers,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link 2212

Hosseini, K.[Kourosh], Reindl, L.[Leonhard], Raffl, L.[Lukas], Wiedemann, W.[Wolfgang], Holst, C.[Christoph],
3D Landslide Monitoring in High Spatial Resolution by Feature Tracking and Histogram Analyses Using Laser Scanners,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link 2401

Hung, C.L.J., Tseng, C.W., Huang, M.J., Tseng, C.M., Chang, K.J.,
Multi-temporal High-resolution Landslide Monitoring Based On Uas Photogrammetry and Uas Lidar Geoinformation,
DOI Link 1912

Parente, C., Pepe, M.,
Uncertainty In Landslides Volume Estimation Using DEMS Generated By Airborne Laser Scanner and Photogrammetry Data,
DOI Link 1805

Russhakim, N.A.S., Ariff, M.F.M., Darwin, N., Majid, Z., Idris, K.M., Abbas, M.A., Zainuddin, N.K., Yusoff, A.R.,
The Suitability of Terrestrial Laser Scanning for Strata Building,
DOI Link 1901

See also Study About Terrestrial Laser Scanning for Reconstruction of Precast Concrete to Support Qlassic Assessment, A. BibRef

Ahmad Fuad, N., Yusoff, A.R., Mat Zam, P.M., Aspuri, A., Salleh, M.F., Ismail, Z., Abbas, M.A., Ariff, M.F.M., Idris, K.M., Majid, Z.,
Evaluating Mobile Laser Scanning For Landslide Monitoring,
DOI Link 1805

Ahmad Fuad, N., Yusoff, A.R., Ismail, Z., Majid, Z.,
Comparing the Performance of Point Cloud Registration Methods For Landslide Monitoring Using Mobile Laser Scanning Data,
DOI Link 1901

Mat Zam, P.M., Ahmad Fuad, N., Yusoff, A.R., Majid, Z.,
Evaluating the Performance of Terrestrial Laser Scanning for Landslide Monitoring,
DOI Link 1901

Bibi, T., Azahari Razak, K., Abdul Rahman, A., Latif, A.,
Spatio Temporal Detection and Virtual Mapping of Landslide Using High-Resolution Airborne Laser Altimetry (LIDAR) in Densely Vegetated Areas of Tropics,
DOI Link 1805

Kim, G., Yune, C.Y., Paik, J., Lee, S.W.,
Analysis Of Debris Flow Behavior Using Airborne Lidar And Image Data,
ISPRS16(B8: 85-88).
DOI Link 1610

Hu, W.[Wenmin], Wu, L.X.[Li-Xin],
Ground Deformation Extraction Using Visible Images And Lidar Data In Mining Area,
ISPRS16(B7: 505-512).
DOI Link 1610

Herrero-Huertaa, M.[Mónica], Lindenbergh, R.[Roderik], Ponsioen, L.[Luc], van Damme, M.[Myron],
Morphological Changes Along A Dike Landside Slope Sampled By 4d High Resolution Terrestrial Laser Scanning,
ISPRS16(B3: 227-232).
DOI Link 1610

Pilarska, M., Ostrowski, W., Bakula, K., Górski, K., Kurczynski, Z.,
The Potential of Light Laser Scanners Developed for Unmanned Aerial Vehicles: The Review and Accuracyn,
DOI Link 1612

Pawluszek, K.[Kamila], Borkowski, A.[Andrzej],
Landslides Identification Using Airborne Laser Scanning Data Derived Topographic Terrain Attributes And Support Vector Machine Classification,
ISPRS16(B8: 145-149).
DOI Link 1610

Barbarella, M., Fiani, M.,
Landslide Monitoring Using Terrestrial Laser Scanner: Georeferencing And Canopy Filtering Issues In A Case Study,
DOI Link 1209

Hernández, M.A., Pérez-garcía, J.L., Fernández, T., Cardenal, F.J., Mata, E., López, A., Delgado, J., Mozas, A.,
Methodology For Landslide Monitoring In A Road Cut By Means Of Terrestrial Laser-scanning Techniques,
DOI Link 1209

Travelletti, J., Delacourt, C., Malet, J.P., Oppikofer, T., Jaboyedoff, M.,
Monitoring Landslide Displacements during a Controlled Rain Experiment Using a Long-Range Terrestrial Laser Scanning (TLS),
ISPRS08(B5: 485 ff).
PDF File. 0807

Sui, L.C.[Li-Chun], Wang, X.[Xue], Zhao, D.[Dan], Qu, J.[Jia],
Application of 3D Laser Scanner for Monitoring of Landslide Hazards,
ISPRS08(B1: 277 ff).
PDF File. 0807

Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Landslide Analysis, SAR, InSAR, IFSAR, Radar .

Last update:Apr 10, 2024 at 09:54:40