Yokoyama, R.[Ryujiro],
Zhang, X.J.[Xue-Jun],
Uchiyama, Y.[Yoshikazu],
Fujita, H.[Hiroshi],
Hara, T.[Takeshi],
Zhou, X.R.[Xiang-Rong],
Kanematsu, M.[Masayuki],
Asano, T.[Takahiko],
Kondo, H.[Hiroshi],
Goshima, S.[Satoshi],
Hoshi, H.[Hiroaki],
Iwama, T.[Toru],
Development of an Automated Method for the Detection of Chronic Lacunar
Infarct Regions in Brain MR Images,
IEICE(E90-D), No. 6, June 2007, pp. 943-954.
DOI Link
0706
BibRef
Detsky, J.S.,
Paul, G.,
Dick, A.J.,
Wright, G.A.,
Reproducible Classification of Infarct Heterogeneity Using Fuzzy
Clustering on Multicontrast Delayed Enhancement Magnetic Resonance
Images,
MedImg(28), No. 10, October 2009, pp. 1606-1614.
IEEE DOI
0910
BibRef
Tripathy, R.K.,
Dandapat, S.,
Detection of myocardial infarction from vectorcardiogram using
relevance vector machine,
SIViP(11), No. 6, September 2017, pp. 1139-1146.
WWW Link.
1708
BibRef
Duchateau, N.,
de Craene, M.,
Allain, P.,
Saloux, E.,
Sermesant, M.,
Infarct Localization From Myocardial Deformation: Prediction and
Uncertainty Quantification by Regression From a Low-Dimensional Space,
MedImg(35), No. 10, October 2016, pp. 2340-2352.
IEEE DOI
1610
Computational modeling
BibRef
Sharma, L.D.[Lakhan Dev],
Sunkaria, R.K.[Ramesh Kumar],
Inferior myocardial infarction detection using stationary wavelet
transform and machine learning approach,
SIViP(12), No. 2, February 2018, pp. 199-206.
WWW Link.
1802
BibRef
Baloglu, U.B.[Ulas Baran],
Talo, M.[Muhammed],
Yildirim, O.[Ozal],
Tan, R.S.[Ru San],
Acharya, U.R.[U Rajendra],
Classification of myocardial infarction with multi-lead ECG signals
and deep CNN,
PRL(122), 2019, pp. 23-30.
Elsevier DOI
1904
Myocardial infarction, Deep learning, Multi-lead ECG, Biomedical signal
BibRef
Lin, Z.C.[Zhuo-Chen],
Gao, Y.X.[Yong-Xiang],
Chen, Y.M.[Yi-Min],
Ge, Q.[Qi],
Mahara, G.[Gehendra],
Zhang, J.X.[Jin-Xin],
Automated detection of myocardial infarction using robust features
extracted from 12-lead ECG,
SIViP(14), No. 5, July 2020, pp. 857-865.
Springer DOI
2006
BibRef
Prabhakararao, E.,
Dandapat, S.,
Attentive RNN-Based Network to Fuse 12-Lead ECG and Clinical Features
for Improved Myocardial Infarction Diagnosis,
SPLetters(27), 2020, pp. 2029-2033.
IEEE DOI
2012
Electrocardiography, Myocardium, Feature extraction, Lead, Heart,
Convolutional neural networks, Biological system modeling,
recurrent neural network
BibRef
Gullberg, G.T.[Grant T.],
Shrestha, U.M.[Uttam M.],
Veress, A.I.[Alexander I.],
Segars, W.P.[W. Paul],
Liu, J.[Jing],
Ordovas, K.[Karen],
Seo, Y.[Youngho],
Novel Methodology for Measuring Regional Myocardial Efficiency,
MedImg(40), No. 6, June 2021, pp. 1711-1725.
IEEE DOI
2106
Heart, Strain, Myocardium, Magnetic resonance imaging, Stress, Calcium,
Mechanical variables measurement, Cardiac efficiency,
PET
BibRef
Zhan, Z.R.[Zhen-Run],
Han, P.Y.[Peng-Yong],
Tang, X.[Xu],
Yang, J.P.[Jin-Peng],
Bi, X.D.[Xiao-Dan],
Zhao, T.T.[Ting-Ting],
Applying machine learning to screen for acute myocardial
infarction-related biomarkers and immune infiltration features and
validate it clinically and experimentally,
IJIST(33), No. 6, 2023, pp. 2023-2043.
DOI Link
2311
acute myocardial infarction (AMI), biomarkers,
clinical studies, immune infiltration,
weighted gene co-expression network analysis (WGCNA)
BibRef
Ding, W.[Wangbin],
Li, L.[Lei],
Qiu, J.[Junyi],
Wang, S.[Sihan],
Huang, L.Q.[Li-Qin],
Chen, Y.[Yinyin],
Yang, S.[Shan],
Zhuang, X.[Xiahai],
Aligning Multi-Sequence CMR Towards Fully Automated Myocardial
Pathology Segmentation,
MedImg(42), No. 12, December 2023, pp. 3474-3486.
IEEE DOI
2312
BibRef
Ding, W.B.[Wang-Bin],
Sun, H.R.[Hao-Ran],
Pei, C.H.[Chen-Hao],
Jia, D.Q.[Deng-Qiang],
Huang, L.Q.[Li-Qin],
Multi-Organ Registration With Continual Learning,
SPLetters(31), 2024, pp. 1204-1208.
IEEE DOI
2405
Training, Streams, Heuristic algorithms, Liver, Task analysis,
Medical diagnostic imaging, Data models, Registration network,
dynamic memory
BibRef
Li, L.[Lei],
Camps, J.[Julia],
Wang, Z.J.[Zhinuo Jenny],
Beetz, M.[Marcel],
Banerjee, A.[Abhirup],
Rodriguez, B.[Blanca],
Grau, V.[Vicente],
Toward Enabling Cardiac Digital Twins of Myocardial Infarction Using
Deep Computational Models for Inverse Inference,
MedImg(43), No. 7, July 2024, pp. 2466-2478.
IEEE DOI Code:
WWW Link.
2407
Magnetic resonance imaging, Electrocardiography, Myocardium,
Image reconstruction, Computational modeling, Inverse problems,
multi-modal integration
BibRef
Konik, A.[Anastasia],
Clarysse, P.[Patrick],
Duchateau, N.[Nicolas],
Detailed evaluation of a population-wise personalization approach to
generate synthetic myocardial infarct images,
PRL(188), 2025, pp. 8-14.
Elsevier DOI
2502
Model personalization, Image synthesis, Myocardial infarction,
Cardiac magnetic resonance, Gradient-free optimization
BibRef
Yuan, X.H.[Xiao-Han],
Liu, C.[Cong],
Wang, Y.G.[Yan-Gang],
4D Myocardium Reconstruction with Decoupled Motion and Shape Model,
ICCV23(21195-21205)
IEEE DOI
2401
BibRef
Rahman, T.[Tanjib],
Moulin, K.[Kévin],
Ennis, D.B.[Daniel B.],
Perotti, L.E.[Luigi E.],
Diffusion Biomarkers in Chronic Myocardial Infarction,
FIMH21(137-147).
Springer DOI
2108
BibRef
Mom, K.[Kannara],
Clarysse, P.[Patrick],
Duchateau, N.[Nicolas],
Population-Based Personalization of Geometric Models of Myocardial
Infarction,
FIMH21(3-11).
Springer DOI
2108
BibRef
Liu, H.[Hao],
Narang, H.[Harshita],
Gorman, R.[Robert],
Gorman, J.[Joseph],
Sacks, M.S.[Michael S.],
On the Interrelationship Between Left Ventricle Infarction Geometry and
Ischemic Mitral Regurgitation Grade,
FIMH21(425-434).
Springer DOI
2108
BibRef
Serra, D.[Dolors],
Romero, P.[Pau],
Lozano, M.[Miguel],
García-Fernández, I.[Ignacio],
Liberos, A.[Alejandro],
Rodrigo, M.[Miguel],
Berruezo, A.[Antonio],
Bueno-Orovio, A.[Alfonso],
Sebastian, R.[Rafael],
Simplified Electrophysiology Modeling Framework to Assess Ventricular
Arrhythmia Risk in Infarcted Patients,
FIMH21(531-539).
Springer DOI
2108
BibRef
Brahim, K.[Khawla],
Qayyum, A.[Abdul],
Lalande, A.[Alain],
Boucher, A.[Arnaud],
Sakly, A.[Anis],
Meriaudeau, F.[Fabrice],
A deep learning approach for the segmentation of myocardial diseases,
ICPR21(4544-4551)
IEEE DOI
2105
BibRef
Earlier:
A 3D deep learning approach based on Shape Prior for automatic
segmentation of myocardial diseases,
IPTA20(1-6)
IEEE DOI
2206
Deep learning, Image segmentation, Solid modeling,
Magnetic resonance imaging, Myocardium, Tools, Reliability.
Training, Pathology, Solid modeling, Motion segmentation, Myocardium,
Task analysis
BibRef
Boujnouni, I.E.,
Tali, A.,
Bentaleb, K.,
Capsule Network Based on Scalograms of Electrocardiogram for
Myocardial Infarction Classification,
ISCV20(1-5)
IEEE DOI
2011
convolutional neural nets, diseases, electrocardiography,
feature extraction, image classification,
Capsule network
BibRef
Rumindo, G.K.[Gerardo Kenny],
Duchateau, N.[Nicolas],
Croisille, P.[Pierre],
Ohayon, J.[Jacques],
Clarysse, P.[Patrick],
Strain-Based Parameters for Infarct Localization: Evaluation via a
Learning Algorithm on a Synthetic Database of Pathological Hearts,
FIMH17(106-114).
Springer DOI
1706
BibRef
Tang, Y.C.[Yee Chia],
Bishop, M.J.[Martin J.],
Application of Diffuse Optical Reflectance to Measure Myocardial Wall
Thickness and Presence of Infarct Scar: A Monte Carlo Simulation Study,
FIMH15(248-255).
Springer DOI
1507
BibRef
Denisko, D.[Danielle],
Oduneye, S.[Samuel],
Krahn, P.[Philippa],
Ghate, S.[Sudip],
Lashevsky, I.[Ilan],
Wright, G.[Graham],
Pop, M.[Mihaela],
Analysis of Activation-Recovery Intervals from Intra-cardiac
Electrograms in a Pre-clinical Chronic Model of Myocardial Infarction,
FIMH17(280-288).
Springer DOI
1706
BibRef
Viallon, M.,
Spaltenstein, J.[Joel],
de Bourguignon, C.,
Vandroux, C.,
Ammor, A.,
Romero, W.,
Bernard, O.,
Croisille, P.,
Clarysse, P.,
Automated Quantification of Myocardial Infarction Using a Hidden Markov
Random Field Model and the EM Algorithm,
FIMH15(256-264).
Springer DOI
1507
BibRef
Eftestol, T.,
Maloy, F.,
Engan, K.,
Kotu, L.P.,
Woie, L.,
Orn, S.,
A texture-based probability mapping for localisation of clinically
important cardiac segments in the myocardium in cardiac magnetic
resonance images from myocardial infarction patients,
ICIP14(2227-2231)
IEEE DOI
1502
Entropy
BibRef
Fritz, T.,
Jarrousse, O.,
Keller, D.U.J.,
Seemann, G.,
Dössel, O.,
In Silico Analysis of the Impact of Transmural Myocardial Infarction on
Cardiac Mechanical Dynamics for the 17 AHA Segments,
FIMH11(241-249).
Springer DOI
1105
BibRef
Suinesiaputra, A.[Avan],
Frangi, A.F.[Alejandro F.],
Kaandorp, T.A.M.[Theodorus A. M.],
Lamb, H.J.[Hildo J.],
Bax, J.J.[Jeroen J.],
Reiber, J.H.C.[Johan H. C.],
Lelieveldt, B.P.F.[Boudewijn P. F.],
Slice-Based Combination of Rest and Dobutamine: Stress Cardiac MRI Using
a Statistical Motion Model to Identify Myocardial Infarction:
Validation against Contrast-Enhanced MRI,
FIMH11(267-274).
Springer DOI
1105
BibRef
Esteves, T.[Tiago],
Valente, M.[Mariana],
Nascimento, D.S.[Diana S.],
Pinto-do-Ó, P.[Perpétua],
Quelhas, P.[Pedro],
Automatic and Semi-automatic Analysis of the Extension of Myocardial
Infarction in an Experimental Murine Model,
IbPRIA11(151-158).
Springer DOI
1106
BibRef
Metwally, M.K.[Mohamed K.],
El-Gayar, N.[Neamat],
Osman, N.F.[Nael F.],
Improved Technique to Detect the Infarction in Delayed Enhancement
Image Using K-Mean Method,
ICIAR10(II: 108-119).
Springer DOI
1006
BibRef
Kerckhoffs, R.C.P.[Roy C. P.],
McCulloch, A.D.[Andrew D.],
Omens, J.H.[Jeffrey H.],
Mulligan, L.J.[Lawrence J.],
Effect of Pacing Site and Infarct Location on Regional Mechanics and
Global Hemodynamics in a Model Based Study of Heart Failure,
FIMH07(350-360).
Springer DOI
0706
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Medical Applications -- Coronary Arteries, Carotid Arteries .