Wavelets for Curves and Surfaces

Chapter Contents (Back)
Wavelets. Representation, Wavlets.

Chuang, G.C.H., Kuo, C.C.J.,
Wavelet Descriptor of Planar Curves: Theory and Applications,
IP(5), No. 1, January 1996, pp. 56-70.
IEEE DOI BibRef 9601

Reissell, L.M.,
Wavelet Multiresolution Representation of Curves and Surfaces,
GMIP(58), No. 3, May 1996, pp. 198-217. 9606

Tsai, D.M.[Du-Ming], Hsiao, B.[Bo],
Automatic surface inspection using wavelet reconstruction,
PR(34), No. 6, June 2001, pp. 1285-1305.
Elsevier DOI 0103

Yang, L.H.[Li-Hua], Yang, Z.H.[Zhi-Hua], Sun, X.M.[Xing-Ming],
Construction of wavelets for width-invariant characterization of curves,
PRL(24), No. 15, November 2003, pp. 2751-2760.
Elsevier DOI 0308
Curve characterization by wavelets. BibRef

Takemura, C.M., Cesar, Jr., R.M.[Roberto Marcondes], Arantes, R.A.T., da Fontoura Costa, L., Hingst-Zaher, E., Bonato, V., dos Reis, S.F.,
Morphometrical data analysis using wavelets,
RealTimeImg(10), No. 4, August 2004, pp. 239-250.
Elsevier DOI 0410

Castano, D., Kunoth, A.,
Robust Regression of Scattered Data With Adaptive Spline-Wavelets,
IP(15), No. 6, June 2006, pp. 1621-1632.

Zhong, M.[Ming], Qin, H.[Hong],
Sparse approximation of 3D shapes via spectral graph wavelets,
VC(30), No. 6-8, June 2014, pp. 751-761.
WWW Link. 1407

Lee, M., Ueng, S., Lin, J.,
Wavelets-based smoothness comparisons for volume data,
IET-IPR(9), No. 12, 2015, pp. 1057-1063.
DOI Link 1512
image processing BibRef

Wang, S.[Shuai], Wang, C.M.[Chun-Mei], Zhang, Q.[Qian], Liu, Y.P.[Yi-Peng], Zhu, C.[Ce], Duan, C.[Chang],
Extended smoothlets: An efficient multi-resolution adaptive transform,
JVCIR(50), 2018, pp. 178-185.
Elsevier DOI 1802
To better approximate edges. Smoothlets, Wedgelets, Multiresolution, Adaptive transform, Approximation, Denoising BibRef

Tang, Y.Y., Feng, X.C., You, X.G.[Xin-Ge], Liao, Z.W., Sun, L.,
A novel method for harmonic geometric transformation model based on wavelet collocation,
ICPR02(I: 49-52).

Chen, W.Y.[Wen-Yao], Hwang, W.L.[Wen-Liang],
Complex-valued wavelet transform applications in planar shape prototype generation and recognition,
ICIP02(III: 877-880).

Pérez Nava, F.[Fernando], Martel, A.F.[Antonio Falcón],
Dynamic Models for Wavelet Representations of Shape,
VF01(431 ff.).
Springer DOI 0209

Albanesi, M.G.[Maria Grazia], Lombardi, L.[Luca],
Wavelets for multiresolution shape recognition,
CIAP97(II: 276-283).
Springer DOI 9709

Antoine, J.P.[Jean-Pierre], Vandergheynst, P.,
2-D Cauchy wavelets and symmetries in images,
ICIP96(I: 597-600).
IEEE DOI BibRef 9600

Antoine, J.P.[Jean-Pierre], Barache, D., Cesar, Jr., R.M.[Roberto Marcondes], da Fontoura Costa, L.[Luciano],
Multiscale shape analysis using the continuous wavelet transform,
ICIP96(I: 291-294).
IEEE DOI BibRef 9600

Antoine, J.P.[Jean-Pierre],
Symmetry-adapted wavelet analysis,
ICIP96(III: 177-180).
IEEE DOI BibRef 9600

Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Using Wavelets for Detection, Recognition, Fusion .

Last update:Feb 29, 2024 at 09:13:14