Li, W.,
Lu, G.T.,
Wang, Y.Q.,
Recognizing White Line Markings for Vision-Guided
Vehicle Navigation by Fuzzy-Reasoning,
PRL(18), No. 8, August 1997, pp. 771-780.
9801
BibRef
Olivieri, M.[Massimiliano],
Fabbrizio, V.[Vito],
Guerrieri, R.[Roberto],
Kramer, A.[Alan],
Method for identifying marking stripes of road lanes,
US_Patent6,212,287, Apr 3, 2001
WWW Link.
BibRef
0104
Mathibela, B.,
Newman, P.,
Posner, I.,
Reading the Road: Road Marking Classification and Interpretation,
ITS(16), No. 4, August 2015, pp. 2072-2081.
IEEE DOI
1508
Feature extraction
BibRef
Kurz, F.[Franz],
Azimi, S.M.[Seyed Majid],
Sheu, C.Y.[Chun-Yu],
d'Angelo, P.[Pablo],
Deep Learning Segmentation and 3D Reconstruction of Road Markings
Using Multiview Aerial Imagery,
IJGI(8), No. 1, 2019, pp. xx-yy.
DOI Link
1901
BibRef
Ma, L.F.[Ling-Fei],
Li, Y.[Ying],
Li, J.[Jonathan],
Junior, J.M.[José Marcato],
Gonçalves, W.N.[Wesley Nunes],
Chapman, M.A.[Michael A.],
BoundaryNet: Extraction and Completion of Road Boundaries With Deep
Learning Using Mobile Laser Scanning Point Clouds and Satellite
Imagery,
ITS(23), No. 6, June 2022, pp. 5638-5654.
IEEE DOI
2206
Roads, Satellites, Data mining, Feature extraction, Sensors, Geometry,
Mobile laser scanning, point clouds, road boundary, extraction,
satellite image
BibRef
Wen, C.L.[Cheng-Lu],
Sun, X.T.[Xiao-Tian],
Li, J.[Jonathan],
Wang, C.[Cheng],
Guo, Y.[Yan],
Habib, A.[Ayman],
A Deep Learning Framework for Road Marking Extraction, Classification
and Completion from Mobile Laser Scanning Point Clouds,
PandRS(147), 2019, pp. 178-192.
Elsevier DOI
1901
Point cloud, Road marking, Extraction, Classification,
Completion, Deep learning
BibRef
Feng, Z.,
Li, M.,
Stolz, M.,
Kunert, M.,
Wiesbeck, W.,
Lane Detection With a High-Resolution Automotive Radar by Introducing
a New Type of Road Marking,
ITS(20), No. 7, July 2019, pp. 2430-2447.
IEEE DOI
1907
Sensors, Radar cross-sections, Roads, Radar detection, Laser radar,
Automotive engineering, autonomous driving, automotive radar,
radar reflector
BibRef
Ye, X.Y.[Xing-Yu],
Hong, D.S.[Dza-Shiang],
Chen, H.H.[Hung-Hao],
Hsiao, P.Y.[Pei-Yung],
Fu, L.C.[Li-Chen],
A two-stage real-time YOLOv2-based road marking detector with
lightweight spatial transformation-invariant classification,
IVC(102), 2020, pp. 103978.
Elsevier DOI
2010
Deep learning, Road marking, Spatial transform,
Real-time object detection, Object classification
BibRef
Yang, R.H.[Rong-Hao],
Li, Q.[Qitao],
Tan, J.X.[Jun-Xiang],
Li, S.[Shaoda],
Chen, X.Y.[Xin-Yu],
Accurate Road Marking Detection from Noisy Point Clouds Acquired by
Low-Cost Mobile LiDAR Systems,
IJGI(9), No. 10, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Yao, L.[Lianbi],
Qin, C.C.[Chang-Cai],
Chen, Q.C.[Qi-Chao],
Wu, H.B.[Hang-Bin],
Automatic Road Marking Extraction and Vectorization from
Vehicle-Borne Laser Scanning Data,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Iparraguirre, O.[Olatz],
Iturbe-Olleta, N.[Nagore],
Brazalez, A.[Alfonso],
Borro, D.[Diego],
Road Marking Damage Detection Based on Deep Learning for
Infrastructure Evaluation in Emerging Autonomous Driving,
ITS(23), No. 11, November 2022, pp. 22378-22385.
IEEE DOI
2212
Roads, Automation, Vehicles, Maintenance engineering, Inspection,
Detectors, Deep learning, Autonomous driving,
deep learning object detector
BibRef
Katzorke, N.[Nils],
Kastner, S.[Stefan],
Kolar, P.[Petr],
Lasi, H.[Heiner],
Agile Altering of Road Marking Patterns for Lane Detection Testing,
ITS(23), No. 11, November 2022, pp. 21996-22001.
IEEE DOI
2212
Roads, Automobiles, Laser radar, Automotive engineering, Wheels,
Velocity measurement, Urban areas, lane detection
BibRef
Lagahit, M.L.R.[Miguel Luis R.],
Matsuoka, M.[Masashi],
Focal Combo Loss for Improved Road Marking Extraction of Sparse
Mobile LiDAR Scanning Point Cloud-Derived Images Using Convolutional
Neural Networks,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Lee, S.[Sangyum],
Cho, B.H.[Byoung Hooi],
Evaluating Pavement Lane Markings in Metropolitan Road Networks with
a Vehicle-Mounted Retroreflectometer and AI-Based Image Processing
Techniques,
RS(15), No. 7, 2023, pp. 1812.
DOI Link
2304
BibRef
Wang, J.W.[Jun-Wei],
Liao, X.H.[Xiao-Han],
Wang, Y.[Yong],
Zeng, X.Q.[Xiang-Qiang],
Ren, X.[Xiang],
Yue, H.[Huanyin],
Qu, W.Q.[Wen-Qiu],
M-SKSNet: Multi-Scale Spatial Kernel Selection for Image Segmentation
of Damaged Road Markings,
RS(16), No. 9, 2024, pp. 1476.
DOI Link
2405
BibRef
Wang, J.W.[Jun-Wei],
Zeng, X.Q.[Xiang-Qiang],
Wang, Y.[Yong],
Ren, X.[Xiang],
Wang, D.L.[Dong-Liang],
Qu, W.Q.[Wen-Qiu],
Liao, X.H.[Xiao-Han],
Pan, P.[Peifen],
A Multi-Level Adaptive Lightweight Net for Damaged Road Marking
Detection Based on Knowledge Distillation,
RS(16), No. 14, 2024, pp. 2593.
DOI Link
2408
BibRef
Du, J.[Jing],
Ma, L.F.[Ling-Fei],
Li, J.[Jing],
Qin, N.N.[Nan-Nan],
Zelek, J.[John],
Guan, H.Y.[Hai-Yan],
Li, J.[Jonathan],
RdmkNet and Toronto-RDMK: Large-Scale Datasets for Road Marking
Classification and Segmentation,
ITS(25), No. 10, October 2024, pp. 13467-13482.
IEEE DOI
2410
Roads, Point cloud compression, Semantic segmentation, Laser radar,
Deep learning, Task analysis, Urban point cloud dataset,
transformer
BibRef
Lagahit, M.L.R.[Miguel Luis Rivera],
Liu, X.[Xin],
Xiu, H.[Haoyi],
Kim, T.[Taehoon],
Kim, K.S.[Kyoung-Sook],
Matsuoka, M.[Masashi],
Learnable Resized and Laplacian-Filtered U-Net: Better Road Marking
Extraction and Classification on Sparse-Point-Cloud-Derived Imagery,
RS(16), No. 23, 2024, pp. 4592.
DOI Link
2501
BibRef
Jayasinghe, O.[Oshada],
Hemachandra, S.[Sahan],
Anhettigama, D.[Damith],
Kariyawasam, S.[Shenali],
Rodrigo, R.[Ranga],
Jayasekara, P.[Peshala],
CeyMo: See More on Roads - A Novel Benchmark Dataset for Road Marking
Detection,
WACV22(3381-3390)
IEEE DOI
2202
Measurement, Image segmentation, Image resolution, Roads, Lighting,
Detectors, Benchmark testing, Datasets,
Vision for Aerial/Drone/Underwater/Ground Vehicles
BibRef
Zhang, Z.H.[Zhi-Hua],
Zhang, X.X.[Xin-Xiu],
Yang, S.W.[Shu-Wen],
Yang, J.[Jun],
Research on Pavement Marking Recognition and Extraction Method,
ICIVC21(100-105)
IEEE DOI
2112
Maximum likelihood detection, Image segmentation,
Image edge detection, Roads, Nonlinear filters, Transforms,
marking extraction
BibRef
Tian, J.,
Yuan, J.,
Liu, H.,
Road Marking Detection Based on Mask R-CNN Instance Segmentation
Model,
CVIDL20(246-249)
IEEE DOI
2102
feature extraction, image segmentation,
learning (artificial intelligence), object detection,
traffic scene
BibRef
Hou, Y.,
Ma, Z.,
Liu, C.,
Hui, T.,
Loy, C.C.,
Inter-Region Affinity Distillation for Road Marking Segmentation,
CVPR20(12483-12492)
IEEE DOI
2008
Roads, Task analysis, Computational modeling, Image segmentation,
Training, Feature extraction, Image edge detection
BibRef
Lee, S.,
Kim, J.,
Yoon, J.S.,
Shin, S.,
Bailo, O.,
Kim, N.,
Lee, T.H.,
Hong, H.S.,
Han, S.H.,
Kweon, I.S.,
VPGNet: Vanishing Point Guided Network for Lane and Road Marking
Detection and Recognition,
ICCV17(1965-1973)
IEEE DOI
1802
feature extraction, image colour analysis,
image recognition, object detection, rain, road vehicles, roads, Roads
BibRef
Bailo, O.,
Lee, S.,
Rameau, F.,
Yoon, J.S.,
Kweon, I.S.,
Robust Road Marking Detection and Recognition Using Density-Based
Grouping and Machine Learning Techniques,
WACV17(760-768)
IEEE DOI
1609
Cameras, Feature extraction, Image edge detection, Lighting,
Neural networks, Roads, Robustness
BibRef
Li, C.[Cheng],
Creusen, I.[Ivo],
Hazelhoff, L.[Lykele],
de With, P.H.N.[Peter H. N.],
Detection and Recognition of Road Markings in Panoramic Images,
IVVT14(448-458).
Springer DOI
1504
BibRef
Ammar, M.[Moez],
Le Hégarat-Mascle, S.[Sylvie],
Mounier, H.[Hugues],
Road Surface Marking Classification Based on a Hierarchical Markov
Model,
ICIAR11(II: 348-359).
Springer DOI
1106
See also A-contrario Approach for Obstacle Detection in Assistance Driving Systems, An.
BibRef
Hara, T.[Takayuki],
Aoki, Y.[Yoshimitsu],
A robust road marking detection method with pseudo-top-view images for
creating database,
FCV11(1-5).
IEEE DOI
1102
BibRef
Noda, M.[Masafumi],
Takahashi, T.[Tomokazu],
Deguchi, D.[Daisuke],
Ide, I.[Ichiro],
Murase, H.[Hiroshi],
Kojima, Y.[Yoshiko],
Naito, T.[Takashi],
Vehicle Ego-Localization by Matching In-Vehicle Camera Images to an
Aerial Image,
CVVT10(163-173).
Springer DOI
1109
BibRef
Earlier:
Recognition of Road Markings from In-Vehicle Camera Images by a
Generative Learning Method,
MVA09(514-).
PDF File.
0905
BibRef
Diebolt, F.[Frank],
Road Markings Recognition,
ICIP96(II: 669-672).
IEEE DOI
BibRef
9600
Chapter on Active Vision, Camera Calibration, Mobile Robots, Navigation, Road Following continues in
Curb Detection, Street Boundaries .