Level Set Models for Volumes

Chapter Contents (Back)
Deformable Models. Level Set.
See also Level Set Segmentation, Level Set Methods.

Malladi, R., Sethian, J.A., Vemuri, B.C.,
Shape Modeling with Front Propagation: A Level Set Approach,
PAMI(17), No. 2, February 1995, pp. 158-175.
IEEE DOI BibRef 9502
Evolutionary Fronts for Topology-Independent Shape Modeling and Recovery,
Springer DOI
See also Fast Level Set Based Algorithm For Topology-Independent Shape Modeling, A. BibRef

Sethian, J.A.,
Level Set Methods and Fast Marching Methods,
Cambridge University Press1999 BibRef 9900
Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Materials Science,
Cambridge University Press1996. ISBN 0-521-57202-9. Level Set Methods. Fast Marching Methods. Compute the boundary of evolving volumes for various applications.
HTML Version. BibRef

Malladi, R., Sethian, J.A.,
Level Set and Fast Marching Methods in Image Processing and Computer Vision,
ICIP96(I: 489-492).
IEEE DOI BibRef 9600

Chopp, D.,
Computing Minimal Surfaces via Level Set Curvature Flows,
J. Comparative Physics(106), No. 1, 1993, pp. 77-91. BibRef 9300

Kimmel, R., Amir, A., Bruckstein, A.M.,
Finding Shortest Paths on Surfaces Using Level Sets Propagation,
PAMI(17), No. 6, June 1995, pp. 635-640.
IEEE DOI BibRef 9506

Osher, S.J.[Stanley J.], Paragios, N.[Nikos],
Geometric Level Set Methods in Imaging, Vision, and Graphics,
Springer-VerlagJuly 2003. ISBN: 978-0-387-21810-6
Springer DOI Nine areas: Level Set Versus Langrangian Methods, Edge Detection & Boundary Extraction, Scale & Vector Image Reconstruction, Grouping, Knowledge-based Segmentation & Registration, Motion Analysis, Computational Stereo & Implicit Surfaces, Medical Image Analysis, Computer Graphics & Simulations. BibRef 0307

Osher, S.J.[Stanley J.], Fedkiw, R.,
Level Set Methods and Dynamic Implicit Surfaces,
New York: SpringerVerlag, 2002, ISBN: 978-0387954820. Buy this book: Level Set Methods and Dynamic Implicit Surfaces BibRef 0200

Peng, D., Merriman, B., Osher, S.J.[Stanley J.], Zhao, H.K., and Kang, M.,
A PDE-based fast local level set method,
CompPhys(155), No. 2, 1999, pp. 410-438.
DOI Link BibRef 9900

Abu-Gharbieh, R.[Rafeef], Hamarneh, G.[Ghassan], Gustavsson, T.[Tomas], Kaminski, C.[Clemens],
Level Set Curve Matching and Particle Image Velocimetry for Resolving Chemistry and Turbulence Interactions in Propagating Flames,
JMIV(19), No. 3, November 2003, pp. 199-218.
DOI Link 0310

Krissian, K.[Karl], Westin, C.F.[Carl-Fredrik],
Fast sub-voxel re-initialization of the distance map for level set methods,
PRL(26), No. 10, 15 July 2005, pp. 1532-1542.
Elsevier DOI 0506
Chamfer distance for level set surfaces extraction. BibRef

Fussenegger, M.[Michael], Roth, P.M.[Peter M.], Bischof, H.[Horst], Deriche, R.[Rachid], Pinz, A.J.[Axel J.],
A level set framework using a new incremental, robust Active Shape Model for object segmentation and tracking,
IVC(27), No. 8, 2 July 2009, pp. 1157-1168.
Elsevier DOI 0906
Level set; Segmentation; Tracking; Active Shape Model; Incremental robust PCA BibRef

Fussenegger, M.[Michael], Roth, P.M.[Peter M.], Bischof, H.[Horst], Pinz, A.J.[Axel J.],
On-Line, Incremental Learning of a Robust Active Shape Model,
Springer DOI 0610

Roth, P.M.[Peter M.], Bischof, H.[Horst],
Active sampling via tracking,

Yang, J., Staib, L.H., Duncan, J.S.,
Neighbor-Constrained Segmentation With Level Set Based 3-D Deformable Models,
MedImg(23), No. 8, August 2004, pp. 940-948.
IEEE Abstract. 0409

Duan, C., Liang, Z., Bao, S., Zhu, H., Wang, S., Zhang, G., Chen, J.J., Lu, H.,
A Coupled Level Set Framework for Bladder Wall Segmentation With Application to MR Cystography,
MedImg(29), No. 3, March 2010, pp. 903-915.

Krishnamurthy, K., Bajwa, W., Willett, R.M.,
Level Set Estimation from Projection Measurements: Performance Guarantees and Fast Computation,
SIIMS(6), No. 4, 2013, pp. 2047-2074.
DOI Link 1402

Slavcheva, M.[Miroslava], Baust, M.[Maximilian], Ilic, S.[Slobodan],
Towards Implicit Correspondence in Signed Distance Field Evolution,
Eigenvalues and eigenfunctions, Laplace equations, Level set, Mathematical model, Shape, Tracking BibRef

Kurugol, S.[Sila], Ozay, N.[Necmiye], Dy, J.G.[Jennifer G.], Sharp, G.C.[Gregory C.], Brooks, D.H.[Dana H.],
Locally Deformable Shape Model to Improve 3D Level Set Based Esophagus Segmentation,

de Roover, C.[Cedric], Czyz, J.[Jacek], Macq, B.[Benoit],
Smoothing with Active Surfaces: A Multiphase Level Set Approach,
ICPR06(II: 243-246).

Weber, M.[Martin], Blake, A.[Andrew], Cipolla, R.[Roberto],
Sparse Finite Element Level-Sets for Anisotropic Boundary Detection in 3D Images,
Springer DOI 0505
Sparse Finite Elements for Geodesic Contours with Level-Sets,
ECCV04(Vol II: 391-404).
Springer DOI 0405

Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Nonrigid, Deformable Motion Tracking .

Last update:May 2, 2021 at 12:04:43