21.8.4.1 Backprojection in Tomographic Image Reconstruction

Chapter Contents (Back)
Reconstruction. Tomography. Backprojection.

Prince, J.L.,
Tomographic reconstruction of 3-D vector fields using inner product probes,
IP(3), No. 2, March 1994, pp. 216-219.
IEEE DOI 0402
BibRef

Prince, J.L.,
Convolution Backprojection Formulas for 3-D Vector Tomography with Application to MRI,
IP(5), No. 10, October 1996, pp. 1462-1472.
IEEE DOI 9610
BibRef
Earlier:
A convolution backprojection formula for three-dimensional vector tomography,
ICIP94(II: 820-824).
IEEE DOI 9411
BibRef

Prince, J.L., Willsky, A.S.,
Hierarchical reconstruction using geometry and sinogram restoration,
IP(2), No. 3, July 1993, pp. 401-416.
IEEE DOI 0402
BibRef

Zeng, G.L., Bai, C.Y.[Chuan-Yong], Gullberg, G.T.,
A projector/backprojector with slice-to-slice blurring for efficient three-dimensional scatter modeling,
MedImg(18), No. 8, August 1999, pp. 722-732.
IEEE Top Reference. 0110
BibRef

Basu, S., Bresler, Y.,
O(N^2/log2 N) Filtered Backprojection Reconstruction Algorithm for Tomography,
IP(9), No. 10, October 2000, pp. 1760-1773.
IEEE DOI 0010
BibRef

Basu, S., Bresler, Y.,
O(N^3/log N) backprojection algorithm for the 3-D radon transform,
MedImg(21), No. 2, February 2002, pp. 76-88.
IEEE Top Reference. 0204
BibRef

Basu, S., Bresler, Y.,
Error analysis and performance optimization of fast hierarchical backprojection algorithms,
IP(10), No. 7, July 2001, pp. 1103-1117.
IEEE DOI 0108
BibRef

Willis, P.N., Bresler, Y.,
Optimal scan for time-varying tomography: I. Theoretical analysis and fundamental limitations,
IP(4), No. 5, May 1995, pp. 642-653.
IEEE DOI 0402
BibRef
And:
Optimal scan for time-varying tomography: II. Efficient design and experimental validation,
IP(4), No. 5, May 1995, pp. 654-666.
IEEE DOI 0402
BibRef

Feng, J., Bao, S.L.,
Reconstruction of smooth distributions within unsmooth circumferences from limited views using filtered-backprojection algorithm,
IJIST(12), No. 3, 2002, pp. 93-96. 0210
BibRef

Noo, F., Defrise, M., Kudo, H.,
General Reconstruction Theory for Multislice X-ray Computed Tomography With a Gantry Tilt,
MedImg(23), No. 9, September 2004, pp. 1109-1116.
IEEE Abstract. 0409
BibRef

Wunderlich, A., Noo, F.,
Band-Restricted Estimation of Noise Variance in Filtered Backprojection Reconstructions Using Repeated Scans,
MedImg(29), No. 5, May 2010, pp. 1097-1113.
IEEE DOI 1006
BibRef

Wei, Y., Wang, G., Hsieh, J.,
Relation Between the Filtered Backprojection Algorithm and the Backprojection Algorithm in CT,
SPLetters(12), No. 9, September 2005, pp. 633-636.
IEEE DOI 0508
BibRef

Thomas, G.[Gylson], Govindan, V.K.,
Computationally efficient filtered-backprojection algorithm for tomographic image reconstruction using Walsh transform,
JVCIR(17), No. 3, June 2006, pp. 581-588.
Elsevier DOI 0711
Tomography; Walsh transform; Fast algorithm; Filtered-backprojection algorithm BibRef

Pfitzenreiter, T.[Tim], Schuster, T.[Thomas],
Tomographic Reconstruction of the Curl and Divergence of 2D Vector Fields Taking Refractions into Account,
SIIMS(4), No. 1, 2011, pp. 40-56.
DOI Link index of refraction; longitudinal and transversal ray transform; vector field; Riemannian metric; filtered backprojection BibRef 1100

Myagotin, A., Voropaev, A., Helfen, L., Hanschke, D., Baumbach, T.,
Efficient Volume Reconstruction for Parallel-Beam Computed Laminography by Filtered Backprojection on Multi-Core Clusters,
IP(22), No. 12, 2013, pp. 5348-5361.
IEEE DOI 1312
computerised tomography BibRef

Pelt, D.M., Batenburg, K.J.,
Improving Filtered Backprojection Reconstruction by Data-Dependent Filtering,
IP(23), No. 11, November 2014, pp. 4750-4762.
IEEE DOI 1410
Approximation methods BibRef

Ganguly, P.S.[Poulami Somanya], Lucka, F.[Felix], Hupkes, H.J.[Hermen Jan], Batenburg, K.J.[Kees Joost],
Atomic Super-resolution Tomography,
IWCIA20(45-61).
Springer DOI 2009
BibRef

Blumensath, T.[Thomas],
Backprojection inverse filtration for laminographic reconstruction,
IET-IPR(12), No. 9, September 2018, pp. 1541-1549.
DOI Link 1809
BibRef

Migueles, E.X.[Eduardo X.], Koshev, N., Helou, E.S.[Elias S.],
A Backprojection Slice Theorem for Tomographic Reconstruction,
IP(27), No. 2, February 2018, pp. 894-906.
IEEE DOI 1712
Image reconstruction, Radon, Reconstruction algorithms, Synchrotrons, Transforms, X-rays, Imaging, reconstruction algorithms, tomography BibRef

Mu, C.[Chen], Park, C.[Chiwoo],
Sparse filtered SIRT for electron tomography,
PR(102), 2020, pp. 107253.
Elsevier DOI 2003
SIRT: simultaneous iterative reconstruction technique. Tomographic reconstruction, Filtered backprojection, Filter optimization, Filtered backprojection within SIRT BibRef


Sun, Z.Y.[Zhen-Yu], Liu, L.Q.[Li-Qiang], Wang, L.H.[Li-Hui],
Three-dimensional Reconstruction of Single Pipeline Radiographic Image,
CVIDL20(57-63)
IEEE DOI 2102
backpropagation, image reconstruction, image segmentation, iterative methods, medical image processing, welds BibRef

Dong, C.D.[Cheng-Dong], Jin, Y.W.[Yuan-Wei], Lu, E.[Enyue],
Time domain electromagnetic tomography using propagation and backpropagation method,
ICIP12(2081-2084).
IEEE DOI 1302
BibRef

Kazantsev, I.G.[Ivan G.],
Tomographic artefacts suppression via backprojection operator optimization,
ICIP96(I: 749-751).
IEEE DOI 9610
BibRef

Kazantsev, I.G.[Ivan G.],
The weighted backprojection techniques of image reconstruction,
CAIP95(521-525).
Springer DOI 9509
BibRef

Shapiro, V.A.,
A fast indirect backprojection algorithm,
ICIP94(II: 158-162).
IEEE DOI 9411
BibRef

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Tomographic Image Reconstruction, Random Projections, Unknown Projections .


Last update:Sep 28, 2024 at 17:47:54