8.6.4.3.1 Semantic Segmentaion for Road Scenes, Driving

Chapter Contents (Back)
Object Detection. Road Scene. Semantic Segmentation. road-scene.
See also Road Scene, General Analysis.

Chen, B., Gong, C., Yang, J.,
Importance-Aware Semantic Segmentation for Autonomous Vehicles,
ITS(20), No. 1, January 2019, pp. 137-148.
IEEE DOI 1901
Image segmentation, Autonomous vehicles, Roads, Neural networks, Feature extraction, Semantics, Reliability, Semantic segmentation, autonomous driving BibRef

Zhang, Y.[Yang], David, P.[Philip], Foroosh, H.[Hassan], Gong, B.Q.[Bo-Qing],
A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban Scenes,
PAMI(42), No. 8, August 2020, pp. 1823-1841.
IEEE DOI 2007
BibRef
Earlier: A1, A2, A4, Only:
Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes,
ICCV17(2039-2049)
IEEE DOI 1802
Semantics, Image segmentation, Task analysis, Adaptation models, Neural networks, Training, Buildings, Domain adaptation, self-driving. computer graphics, convolution, image classification, learning (artificial intelligence). BibRef

Wang, Y.D.[Yi-Dong], Mo, L.[Lisha], Ma, H.M.[Hui-Min], Yuan, J.[Jian],
OccGAN: Semantic image augmentation for driving scenes,
PRL(136), 2020, pp. 257-263.
Elsevier DOI 2008
Occlusion, GAN, Semantic, Augmentation, Cityscapes BibRef

Yang, K., Hu, X., Stiefelhagen, R.,
Is Context-Aware CNN Ready for the Surroundings? Panoramic Semantic Segmentation in the Wild,
IP(30), 2021, pp. 1866-1881.
IEEE DOI 2101
Image segmentation, Semantics, Training, Cameras, Task analysis, Benchmark testing, Context modeling, Scene understanding, autonomous driving BibRef

Liu, X.F.[Xiao-Feng], Lu, Y.H.[Yun-Hong], Liu, X.C.[Xiong-Chang], Bai, S.[Song], Li, S.[Site], You, J.[Jane],
Wasserstein Loss With Alternative Reinforcement Learning for Severity-Aware Semantic Segmentation,
ITS(23), No. 1, January 2022, pp. 587-596.
IEEE DOI 2201
Automobiles, Measurement, Roads, Semantics, Optimization, Training, Histograms, Semantic segmentation, autonomous driving, actor-critic BibRef

Liu, X.F.[Xiao-Feng], Ji, W.X.[Wen-Xuan], You, J.[Jane], El Fakhri, G.[Georges], Woo, J.H.[Jong-Hye],
Severity-Aware Semantic Segmentation With Reinforced Wasserstein Training,
CVPR20(12563-12572)
IEEE DOI 2008
Semantics, Autonomous vehicles, Measurement, Automobiles, Histograms, Training, Roads BibRef

Xie, B.Q.[Bang-Quan], Yang, Z.M.[Zong-Ming], Yang, L.[Liang], Luo, R.[Ruifa], Wei, A.[Ailin], Weng, X.X.[Xiao-Xiong], Li, B.[Bing],
Multi-Scale Fusion With Matching Attention Model: A Novel Decoding Network Cooperated With NAS for Real-Time Semantic Segmentation,
ITS(23), No. 8, August 2022, pp. 12622-12632.
IEEE DOI 2208
Feature extraction, Semantics, Real-time systems, Image segmentation, Encoding, Decoding, autonomous driving BibRef

Jin, Z.[Zhenyi], Dou, F.[Furong], Feng, Z.L.[Zi-Liang], Zhang, C.F.[Cheng-Fang],
BSNet: A bilateral real-time semantic segmentation network based on multi-scale receptive fields,
JVCIR(102), 2024, pp. 104188.
Elsevier DOI 2407
Road scenes, Real-time semantic segmentation, Multi-scale receptive fields Bilateral network, Short-term dense concatenate BibRef

Wang, X.W.[Xiao-Wei], Jiang, P.W.[Pei-Wen], Li, Y.[Yang], Hu, M.J.[Man-Jiang], Gao, M.[Ming], Cao, D.[Dongpu], Ding, R.J.[Rong-Jun],
Progressive Critical Region Transfer for Cross-Domain Visual Object Detection,
ITS(25), No. 8, August 2024, pp. 9427-9441.
IEEE DOI 2408
Detectors, Semantics, Visualization, Training, Object detection, Feature extraction, Prototypes, Autonomous driving, progressive critical region transfer BibRef

Cai, M.J.[Min-Jie], Kezierbieke, J.[Jianaresi], Zhong, X.H.[Xiong-Hu], Chen, H.[Hao],
Uncertainty-Aware and Class-Balanced Domain Adaptation for Object Detection in Driving Scenes,
ITS(25), No. 11, November 2024, pp. 15977-15990.
IEEE DOI 2411
Uncertainty, Object detection, Adaptation models, Estimation, Bayes methods, Detectors, Feature extraction, Object detection, uncertainty estimation BibRef

Guan, L.[Licong], Yuan, X.[Xue],
Dynamic Weighting and Boundary-Aware Active Domain Adaptation for Semantic Segmentation in Autonomous Driving Environment,
ITS(25), No. 11, November 2024, pp. 18461-18471.
IEEE DOI Code:
WWW Link. 2411
Semantic segmentation, Adaptation models, Uncertainty, Autonomous vehicles, Labeling, Data models, Annotations, semantic segmentation BibRef


Alexandropoulos, S.[Stamatis], Sakaridis, C.[Christos], Maragos, P.[Petros],
OVeNet: Offset Vector Network for Semantic Segmentation,
WACV24(7392-7403)
IEEE DOI Code:
WWW Link. 2404
Visualization, Shape, Semantic segmentation, Semantics, Benchmark testing, Predictive models, Performance gain, Autonomous Driving BibRef

Maag, K.[Kira], Fischer, A.[Asja],
Uncertainty-weighted Loss Functions for Improved Adversarial Attacks on Semantic Segmentation,
WACV24(3894-3902)
IEEE DOI 2404
Analytical models, Semantic segmentation, Perturbation methods, Computational modeling, Artificial neural networks, Autonomous Driving BibRef

Sodano, M.[Matteo], Magistri, F.[Federico], Nunes, L.[Lucas], Behley, J.[Jens], Stachniss, C.[Cyrill],
Open-World Semantic Segmentation Including Class Similarity,
CVPR24(3184-3194)
IEEE DOI Code:
WWW Link. 2410
Training, Semantic segmentation, Machine vision, Training data, Data models, Autonomous Driving BibRef

Zhou, B.[Brady], Krähenbühl, P.[Philipp],
Cross-view Transformers for real-time Map-view Semantic Segmentation,
CVPR22(13750-13759)
IEEE DOI 2210
Convolutional codes, Image segmentation, Navigation, Semantics, Transformers, Navigation and autonomous driving BibRef

Jiang, T.J.[Tian-Jiao], Jin, Y.[Yi], Liang, T.F.[Teng-Fei], Wang, X.[Xu], Li, Y.D.[Yi-Dong],
Boundary Corrected Multi-Scale Fusion Network for Real-Time Semantic Segmentation,
ICIP22(1886-1890)
IEEE DOI 2211
Image resolution, Computational modeling, Roads, Semantics, Feature extraction, Real-time systems, Semantic segmentation, Boundary loss BibRef

Iqbal, J., Ali, M.,
MLSL: Multi-Level Self-Supervised Learning for Domain Adaptation with Spatially Independent and Semantically Consistent Labeling,
WACV20(1853-1862)
IEEE DOI 2006
Semantics, Image segmentation, Adaptation models, Training, Computational modeling, Task analysis, Roads BibRef

Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K.,
DenseASPP for Semantic Segmentation in Street Scenes,
CVPR18(3684-3692)
IEEE DOI 1812
Convolution, Semantics, Image resolution, Kernel, Image segmentation, Neurons, Autonomous vehicles BibRef

Siam, M., Gamal, M., Abdel-Razek, M., Yogamani, S., Jagersand, M.,
RTSeg: Real-Time Semantic Segmentation Comparative Study,
ICIP18(1603-1607)
IEEE DOI 1809
Convolution, Semantics, Decoding, Feature extraction, Benchmark testing, Real-time systems, realtime, benchmarking framework BibRef

Siam, M., Gamal, M., Abdel-Razek, M., Yogamani, S., Jagersand, M., Zhang, H.,
A Comparative Study of Real-Time Semantic Segmentation for Autonomous Driving,
ECVW18(700-70010)
IEEE DOI 1812
Convolution, Semantics, Decoding, Context modeling, Real-time systems, Image segmentation BibRef

He, Y.[Yang], Keuper, M.[Margret], Schiele, B.[Bernt], Fritz, M.[Mario],
Learning Dilation Factors for Semantic Segmentation of Street Scenes,
GCPR17(41-51).
Springer DOI 1711
BibRef

Zhu, S.Q.[Sheng-Qi], Yang, Y.Q.[Yi-Qing], Zhang, L.[Li],
From Label Maps to Label Strokes: Semantic Segmentation for Street Scenes from Incomplete Training Data,
CVCP13(468-475)
IEEE DOI 1403
data handling BibRef

Zhang, H.H.[Hong-Hui], Xiao, J.X.[Jian-Xiong], Quan, L.[Long],
Supervised Label Transfer for Semantic Segmentation of Street Scenes,
ECCV10(V: 561-574).
Springer DOI 1009
Set of labelled images of street scenes. Recognition is by matching at image level, then using the given lables. BibRef

Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Domain Adaption for Semantic Segmentation .


Last update:Oct 6, 2025 at 14:07:43