16.7.2.6.6 Traffic Anomaly Detection, Traffic Analysis

Chapter Contents (Back)
Vehicle Traffic. Traffic Analysis. Anomaly. Traffic Anomaly.
See also Traffic Collisions, Accidents, Analysis, Congestion, Not Image Analysis.

Jeong, H.[Hawook], Yoo, Y.J.[Young-Joon], Yi, K.M.[Kwang Moo], Choi, J.Y.[Jin Young],
Two-stage online inference model for traffic pattern analysis and anomaly detection,
MVA(25), No. 6, 2014, pp. 1501-1517.
Springer DOI 1408
BibRef

Mo, X.[Xuan], Monga, V., Bala, R., Fan, Z.G.[Zhi-Gang],
Adaptive Sparse Representations for Video Anomaly Detection,
CirSysVideo(24), No. 4, April 2014, pp. 631-645.
IEEE DOI 1405
greedy algorithms Transportation domain to identify unusual patterns such as traffic violations, accidents, unsafe driver behavior, street crime, and other suspicious activities. BibRef

Yuan, Y., Wang, D., Wang, Q.,
Anomaly Detection in Traffic Scenes via Spatial-Aware Motion Reconstruction,
ITS(18), No. 5, May 2017, pp. 1198-1209.
IEEE DOI 1705
Bayes methods, Dictionaries, Image reconstruction, Optical imaging, Robustness, Vehicles, Videos, anomaly detection, crowded scenes, motion analysis, sparse reconstruction, video, analysis BibRef

Riveiro, M., Lebram, M., Elmer, M.,
Anomaly Detection for Road Traffic: A Visual Analytics Framework,
ITS(18), No. 8, August 2017, pp. 2260-2270.
IEEE DOI 1708
Accidents, Data mining, Data models, Data visualization, Roads, Vehicles, Visual analytics, Anomaly detection, intelligent transport systems, normal traffic model, visual, analytics BibRef

Alfeo, A.L., Cimino, M.G.C.A.[M. G. C. A.], Egidi, S., Lepri, B., Vaglini, G.,
A Stigmergy-Based Analysis of City Hotspots to Discover Trends and Anomalies in Urban Transportation Usage,
ITS(19), No. 7, July 2018, pp. 2258-2267.
IEEE DOI 1807
Computational modeling, Global Positioning System, Pollution, Pollution measurement, Public transportation, Urban areas, taxi-GPS traces BibRef

Kalamaras, I., Zamichos, A., Salamanis, A., Drosou, A., Kehagias, D.D., Margaritis, G., Papadopoulos, S., Tzovaras, D.,
An Interactive Visual Analytics Platform for Smart Intelligent Transportation Systems Management,
ITS(19), No. 2, February 2018, pp. 487-496.
IEEE DOI 1802
Anomaly detection, Data visualization, Roads, Tools, Visual analytics, Traffic prediction, hypothesis testing, visual analytics BibRef

Xu, M., Wu, J., Wang, H., Cao, M.,
Anomaly Detection in Road Networks Using Sliding-Window Tensor Factorization,
ITS(20), No. 12, December 2019, pp. 4704-4713.
IEEE DOI 2001
Roads, Anomaly detection, Trajectory, Anomaly detection, tensor factorization, sliding window, trajectory data BibRef

Santhosh, K.K., Dogra, D.P., Roy, P.P.,
Anomaly Detection in Road Traffic Using Visual Surveillance: A Survey,
Surveys(53), No. 6, December 2020, pp. xx-yy.
DOI Link 2103
Learning methods, classification, road traffic analysis BibRef

Cao, W.[Wen], Lan, J.[Jian], Wu, Q.[Qisheng],
Joint Tracking and Identification Based on Constrained Joint Decision and Estimation,
ITS(22), No. 10, October 2021, pp. 6489-6502.
IEEE DOI 2110
Violation detection and treatment. Target tracking, Roads, Estimation, Automobiles, Couplings, Mathematical model, Joint tracking and identification, joint performance metric BibRef

Forti, N.[Nicola], d'Afflisio, E.[Enrica], Braca, P.[Paolo], Millefiori, L.M.[Leonardo M.], Willett, P.[Peter], Carniel, S.[Sandro],
Maritime Anomaly Detection in a Real-World Scenario: Ever Given Grounding in the Suez Canal,
ITS(23), No. 8, August 2022, pp. 13904-13910.
IEEE DOI 2208
Marine vehicles, Artificial intelligence, Irrigation, Anomaly detection, Grounding, Containers, Testing, statistical hypothesis testing BibRef

Yao, Y.[Yu], Wang, X.[Xizi], Xu, M.Z.[Ming-Ze], Pu, Z.L.[Ze-Lin], Wang, Y.C.[Yu-Chen], Atkins, E.[Ella], Crandall, D.J.[David J.],
DoTA: Unsupervised Detection of Traffic Anomaly in Driving Videos,
PAMI(45), No. 1, January 2023, pp. 444-459.
IEEE DOI 2212
Videos, Measurement, Cameras, Annotations, Benchmark testing, Anomaly detection, Accidents, Video anomaly detection, Video action recognition BibRef

Kumar, P.P.[Pavana Pradeep], Kant, K.[Krishna], Pal, A.[Amitangshu],
C-FAR: A Compositional Framework for Anomaly Resolution in Intelligent Transportation Systems,
ITS(24), No. 1, January 2023, pp. 1015-1024.
IEEE DOI 2301
Roads, Deep learning, Anomaly detection, Monitoring, Calculus, Safety, Intelligent transportation systems, combinatorial optimization BibRef

Han, X.S.[Xing-Shuo], Zhou, Y.[Yuan], Chen, K.J.[Kang-Jie], Qiu, H.[Han], Qiu, M.[Meikang], Liu, Y.[Yang], Zhang, T.W.[Tian-Wei],
ADS-Lead: Lifelong Anomaly Detection in Autonomous Driving Systems,
ITS(24), No. 1, January 2023, pp. 1039-1051.
IEEE DOI 2301
Anomaly detection, Global Positioning System, Location awareness, Autonomous vehicles, Transformers, Data models, Collaboration, cognitive networking BibRef

Farahnakian, F.[Farshad], Nicolas, F.[Florent], Farahnakian, F.[Fahimeh], Nevalainen, P.[Paavo], Sheikh, J.[Javad], Heikkonen, J.[Jukka], Raduly-Baka, C.[Csaba],
A Comprehensive Study of Clustering-Based Techniques for Detecting Abnormal Vessel Behavior,
RS(15), No. 6, 2023, pp. 1477.
DOI Link 2304
BibRef

Zhao, S.[Shuai], Zhao, D.X.[Da-Xing], Liu, R.Q.[Rui-Qiang], Xia, Z.[Zhen], Chen, B.[Bo], Chen, J.L.[Jun-Liang],
GMAT-DU: Traffic Anomaly Prediction With Fine Spatiotemporal Granularity in Sparse Data,
ITS(24), No. 11, November 2023, pp. 13503-13517.
IEEE DOI 2311
BibRef

Mansourian, P.[Pegah], Zhang, N.[Ning], Jaekel, A.[Arunita], Kneppers, M.[Marc],
Deep Learning-Based Anomaly Detection for Connected Autonomous Vehicles Using Spatiotemporal Information,
ITS(24), No. 12, December 2023, pp. 16006-16017.
IEEE DOI 2312
BibRef

Chen, J.Z.[Jun-Zhou], Pu, J.J.[Jia-Jun], Yin, B.[Baiqiao], Zhang, R.H.[Rong-Hui], Wu, J.J.[Jun Jie],
TA-NET: Empowering Highly Efficient Traffic Anomaly Detection Through Multi-Head Local Self-Attention and Adaptive Hierarchical Feature Reconstruction,
ITS(25), No. 9, September 2024, pp. 12372-12384.
IEEE DOI 2409
Feature extraction, Anomaly detection, Task analysis, Hidden Markov models, Supervised learning, Benchmark testing, transformer BibRef

Gu, K.[Ke], OuYang, X.[Xin], Wang, Y.[Yi],
Malicious Vehicle Detection Scheme Based on Spatio-Temporal Features of Traffic Flow Under Cloud-Fog Computing-Based IoVs,
ITS(25), No. 9, September 2024, pp. 11534-11551.
IEEE DOI 2409
Feature extraction, Cloud computing, Servers, Roads, Vehicle detection, Predictive models, Correlation, reputation BibRef


Trinh, L.[Linh], Anwar, A.[Ali], Mercelis, S.[Siegfried],
SeaDSC: A Video-Based Unsupervised Method for Dynamic Scene Change Detection in Unmanned Surface Vehicles,
Maritime24(840-847)
IEEE DOI 2404
Image segmentation, Surveillance, Semantics, Feature extraction, Cameras, Vectors BibRef

Zhao, Y.X.[Yu-Xiang], Wu, W.H.[Wen-Hao], He, Y.[Yue], Li, Y.Y.[Ying-Ying], Tan, X.[Xiao], Chen, S.F.[Shi-Feng],
Practices and A Strong Baseline for Traffic Anomaly Detection,
AICity21(3988-3996)
IEEE DOI 2109
Tracking, Vehicle detection, Urban areas, Dynamics, Transportation, Spatiotemporal phenomena, Automobiles BibRef

Chen, J.Y.[Jing-Yuan], Ding, G.C.[Guan-Chen], Yang, Y.C.[Yu-Chen], Han, W.W.[Wen-Wei], Xu, K.M.[Kang-Min], Gao, T.Y.[Tian-Yi], Zhang, Z.[Zhe], Ouyang, W.P.[Wan-Ping], Cai, H.[Hao], Chen, Z.Z.[Zhen-Zhong],
Dual-Modality Vehicle Anomaly Detection via Bilateral Trajectory Tracing,
AICity21(4011-4020)
IEEE DOI 2109
Backtracking, Tracking, Urban areas, Static analysis, Trajectory, Artificial intelligence, Vehicle dynamics BibRef

Wu, J.[Jie], Wang, X.H.[Xiong-Hui], Xiao, X.F.[Xue-Feng], Wang, Y.T.[Yi-Tong],
Box-Level Tube Tracking and Refinement for Vehicles Anomaly Detection,
AICity21(4107-4113)
IEEE DOI 2109
Urban areas, Transportation, Artificial intelligence, Vehicle dynamics, Task analysis BibRef

Doshi, K.[Keval], Yilmaz, Y.[Yasin],
An Efficient Approach for Anomaly Detection in Traffic Videos,
AICity21(4231-4239)
IEEE DOI 2109
Performance evaluation, Temperature, Computational modeling, Image edge detection, Urban areas, Training data, Artificial intelligence BibRef

Aboah, A.[Armstrong], Shoman, M.[Maged], Mandal, V.[Vishal], Davami, S.[Sayedomidreza], Adu-Gyamfi, Y.[Yaw], Sharma, A.[Anuj],
A Vision-based System for Traffic Anomaly Detection using Deep Learning and Decision Trees,
AICity21(4202-4207)
IEEE DOI 2109
Deep learning, Adaptation models, Roads, Estimation, Real-time systems, Pattern recognition BibRef

Singh, H., Hand, E.M., Alexis, K.[Kostas],
Anomalous Motion Detection On Highway Using Deep Learning,
ICIP20(1901-1905)
IEEE DOI 2011
Videos, Anomaly detection, Training, Predictive models, Optical imaging, Road transportation, Adaptive optics, oneclass classification BibRef

Shine, L.[Linu], Vaishnav, M.A., Jiji, C.V.,
Fractional Data Distillation Model for Anomaly Detection in Traffic Videos,
City20(2581-2589)
IEEE DOI 2008
Videos, Detectors, Data models, Anomaly detection, Hidden Markov models, Roads, Urban areas BibRef

Li, Y., Wu, J., Bai, X., Yang, X., Tan, X., Li, G., Wen, S., Zhang, H., Ding, E.,
Multi-Granularity Tracking with Modularlized Components for Unsupervised Vehicles Anomaly Detection,
City20(2501-2510)
IEEE DOI 2008
Anomaly detection, Roads, Task analysis, Tracking, Training, Artificial intelligence, Urban areas BibRef

Tran, M.T.[Minh-Triet], Nguyen, T.V.[Tam V.], Hoang, T.H.[Trung-Hieu], Le, T.N.[Trung-Nghia], Nguyen, K.T.[Khac-Tuan], Dinh, D.T.[Dat-Thanh], Nguyen, T.A.[Thanh-An], Nguyen, H.D.[Hai-Dang], Hoang, X.N.[Xuan-Nhat], Nguyen, T.T.[Trong-Tung], Vo-Ho, V.K.[Viet-Khoa], Do, T.L.[Trong-Le], Nguyen, L.[Lam], Le, M.Q.[Minh-Quan], Nguyen-Dinh, H.P.[Hoang-Phuc], Pham, T.T.[Trong-Thang], Nguyen, X.V.[Xuan-Vy], Nguyen, E.R.[E-Ro], Tran, Q.C.[Quoc-Cuong], Tran, H.[Hung], Dao, H.[Hieu], Tran, M.K.[Mai-Khiem], Nguyen, Q.T.[Quang-Thuc], Nguyen, T.P.[Tien-Phat], Vu-Le, T.A.[The-Anh], Diep, G.H.[Gia-Han], Do, M.N.[Minh N.],
iTASK - Intelligent Traffic Analysis Software Kit,
City20(2607-2616)
IEEE DOI 2008
Tracking, Urban areas, Anomaly detection, Artificial intelligence, Detectors, Task analysis, Event detection BibRef

Doshi, K., Yilmaz, Y.,
Fast Unsupervised Anomaly Detection in Traffic Videos,
City20(2658-2664)
IEEE DOI 2008
Videos, Anomaly detection, Object detection, Computational modeling, Training, Real-time systems, Benchmark testing BibRef

Wei, J., Zhao, J., Zhao, Y., Zhao, Z.,
Unsupervised Anomaly Detection for Traffic Surveillance Based on Background Modeling,
City18(129-1297)
IEEE DOI 1812
Videos, Anomaly detection, Surveillance, Accidents, Training data, Task analysis BibRef

Chang, M., Wei, Y., Song, N., Lyu, S.,
Video Analytics in Smart Transportation for the AIC'18 Challenge,
City18(61-617)
IEEE DOI 1812
Cameras, Estimation, Radar tracking, Calibration, Tracking, Anomaly detection, Vehicle crash testing BibRef

Xu, Y.[Yan], Xi, O.Y.[Ou-Yang], Cheng, Y.[Yu], Yu, S.N.[Shi-Ning], Xiong, L.[Lin], Ng, C.C.[Choon-Ching], Pranata, S.[Sugiri], Shen, S.M.[Sheng-Mei], Xing, J.L.[Jun-Liang],
Dual-Mode Vehicle Motion Pattern Learning for High Performance Road Traffic Anomaly Detection,
City18(145-1457)
IEEE DOI 1812
Roads, Automobiles, Anomaly detection, Vehicle dynamics, Analytical models, Tracking, Surveillance BibRef

Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Traffic Control, Traffic Analysis, Not Image Analysis .


Last update:Sep 28, 2024 at 17:47:54