*Shaham, U.[Uri]*,
*Lederman, R.R.[Roy R.]*,

**Learning by coincidence:
Siamese networks and common variable learning**,

*PR(74)*, No. 1, 2018, pp. 52-63.

Elsevier DOI
**1711**

Similarity learning
BibRef

*He, Z.[Zhi]*,
*He, D.[Dan]*,

**Spatial-Adaptive Siamese Residual Network for Multi-/Hyperspectral
Classification**,

*RS(12)*, No. 10, 2020, pp. xx-yy.

DOI Link
**2006**

BibRef

*Qin, Y.*,
*Bruzzone, L.*,
*Li, B.*,

**Learning Discriminative Embedding for Hyperspectral Image Clustering
Based on Set-to-Set and Sample-to-Sample Distances**,

*GeoRS(58)*, No. 1, January 2020, pp. 473-485.

IEEE DOI
**2001**

Clustering algorithms, Clustering methods, Training,
Hyperspectral imaging, Computational modeling,
siamese network
BibRef

*Mukherjee, S.[Souvick]*,
*Prasad, S.[Saurabh]*,

**A spatial-spectral semisupervised deep learning framework using
siamese networks and angular loss**,

*CVIU(194)*, 2020, pp. 102943.

Elsevier DOI
**2005**

Semi-supervised deep learning, Angular feature extraction,
Angular softmax classification, Unsupervised pre-training,
Spatial-spectral classification
BibRef

*Rao, M.[Mengbin]*,
*Tang, P.[Ping]*,
*Zhang, Z.[Zheng]*,

**A Developed Siamese CNN with 3D Adaptive Spatial-Spectral Pyramid
Pooling for Hyperspectral Image Classification**,

*RS(12)*, No. 12, 2020, pp. xx-yy.

DOI Link
**2006**

BibRef

*Zhu, M.[Mu]*,
*Zhang, H.[Hui]*,
*Zhang, J.[Jing]*,
*Zhuo, L.[Li]*,

**Multi-level prediction Siamese network for real-time UAV visual
tracking**,

*IVC(103)*, 2020, pp. 104002.

Elsevier DOI
**2011**

UAV tracking, Small target, Feature fusion, Multi-level prediction
BibRef

*Shao, J.[Jia]*,
*Du, B.[Bo]*,
*Wu, C.[Chen]*,
*Gong, M.M.[Ming-Ming]*,
*Liu, T.L.[Tong-Liang]*,

**HRSiam: High-Resolution Siamese Network, Towards Space-Borne
Satellite Video Tracking**,

*IP(30)*, 2021, pp. 3056-3068.

IEEE DOI
**2103**

Satellites, Target tracking, Spatial resolution, Object tracking,
Tracking, Robustness, Adaptation models, Satellite videos,
gaussian mixture model
BibRef

*Ghosh, S.[Souvik]*,
*Ghosh, S.[Spandan]*,
*Kumar, P.[Pradeep]*,
*Scheme, E.[Erik]*,
*Roy, P.P.[Partha Pratim]*,

**A novel spatio-temporal Siamese network for 3D signature recognition**,

*PRL(144)*, 2021, pp. 13-20.

Elsevier DOI
**2103**

Siamese network, Spatio-temporal relationships, CNN, LSTM,
3D signature recognition
BibRef

*Wang, S.D.[Shi-Dong]*,
*Ren, Y.[Yi]*,
*Parr, G.[Gerard]*,
*Guan, Y.[Yu]*,
*Shao, L.[Ling]*,

**Invariant Deep Compressible Covariance Pooling for Aerial Scene
Categorization**,

*GeoRS(59)*, No. 8, August 2021, pp. 6549-6561.

IEEE DOI
**2108**

Tensors, Manifolds, Feature extraction, Covariance matrices,
Remote sensing, Computer architecture, Matrix decomposition,
Stiefel manifold and aerial scene categorization
BibRef

*Jiang, X.[Xiao]*,
*Li, G.[Gang]*,
*Zhang, X.P.[Xiao-Ping]*,
*He, Y.[You]*,

**A Semisupervised Siamese Network for Efficient Change Detection in
Heterogeneous Remote Sensing Images**,

*GeoRS(60)*, 2022, pp. 1-18.

IEEE DOI
**2112**

Remote sensing, Training, Feature extraction, Transfer learning,
Computational efficiency, Semantics, Visualization,
transfer learning
BibRef

*Zhang, L.[Lei]*,
*He, Z.W.[Zhen-Wei]*,
*Yang, Y.[Yi]*,
*Wang, L.[Liang]*,
*Gao, X.[Xinbo]*,

**Tasks Integrated Networks:
Joint Detection and Retrieval for Image Search**,

*PAMI(44)*, No. 1, January 2022, pp. 456-473.

IEEE DOI
**2112**

With a siamese network
Task analysis, Feature extraction, Training, Measurement, Proposals,
Search problems, Detectors, Image search, object detection,
deep learning
BibRef

Springer DOI

BibRef

*Zhang, L.C.[Li-Chao]*,
*Gonzalez-Garcia, A.[Abel]*,
*van de Weijer, J.[Joost]*,
*Danelljan, M.[Martin]*,
*Khan, F.S.[Fahad Shahbaz]*,

**Learning the Model Update for Siamese Trackers**,

*ICCV19*(4009-4018)

IEEE DOI
**2004**

convolutional neural nets, learning (artificial intelligence),
object tracking, Siamese trackers, model update, Correlation
BibRef

*Roy, S.[Soumava]*,
*Harandi, M.[Mehrtash]*,
*Nock, R.[Richard]*,
*Hartley, R.I.[Richard I.]*,

**Siamese Networks: The Tale of Two Manifolds**,

*ICCV19*(3046-3055)

IEEE DOI
**2004**

Siamese networks are non-linear deep models.
geometry, gradient methods, image classification,
learning (artificial intelligence), neural nets, Optimization
BibRef

*Su, W.*,
*Hsu, C.*,
*Huang, Z.*,
*Lin, C.*,
*Cheung, G.*,

**Joint Pairwise Learning and Image Clustering Based on a Siamese CNN**,

*ICIP18*(1992-1996)

IEEE DOI
**1809**

Feature extraction, Graphics processing units, Visualization,
Computer architecture, Clustering methods, Noise measurement,
convolutional neural network
BibRef

*Vetrova, V.*,
*Coup, S.*,
*Frank, E.*,
*Cree, M.J.*,

**Hidden Features: Experiments with Feature Transfer for Fine-Grained
Multi-Class and One-Class Image Categorization**,

*IVCNZ18*(1-6)

IEEE DOI
**1902**

Feature extraction, Task analysis, Convolutional neural networks,
Training, Tuning, Support vector machines, Image recognition,
Siamese networks
BibRef

*Feng, W.[Wu]*,
*Liu, D.[Dong]*,

**Fine-Grained Image Recognition from Click-Through Logs Using Deep
Siamese Network**,

*MMMod17*(I: 127-138).

Springer DOI
**1701**

Need large scale labeled datasets for training.
Dog breeds.
BibRef

*Vijay Kumar, B.G.*,
*Carneiro, G.[Gustavo]*,
*Reid, I.D.[Ian D.]*,

**Learning Local Image Descriptors with Deep Siamese and Triplet
Convolutional Networks by Minimizing Global Loss Functions**,

*CVPR16*(5385-5394)

IEEE DOI
**1612**

BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in

Neural Networks Applied to Specific Problems .

Last update:Jan 24, 2022 at 14:35:49