8.6.1.3 Instance Semgmentation for Aerial Images, Remote Sensing

Chapter Contents (Back)
Instance Segmentation. Aerial Images. Remote Sensing. 2507
Includes counting instances.
See also Vehicle Counting.
See also ATR -- Vehicles, Aerial Images, Vehicle Detection.

Harwood, D.A., Chang, S., and Davis, L.S.,
Interpreting Aerial Photographs by Segmentation and Search,
DARPA87(507-520).
See also Sigma Image Understanding System, The. Find segments (homogeneous regions), then find instances which satisfy definitions of object types, then search for support, then improve instances, then iterate with new estimates of parameters.
See also Fua and Leclerc Guided Segmentation Papers. BibRef 8700

Su, H.[Hao], Wei, S.J.[Shun-Jun], Liu, S.[Shan], Liang, J.D.[Jia-Dian], Wang, C.[Chen], Shi, J.[Jun], Zhang, X.L.[Xiao-Ling],
HQ-ISNet: High-Quality Instance Segmentation for Remote Sensing Imagery,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Ferreira de Carvalho, O.L.[Osmar Luiz], de Carvalho Júnior, O.A.[Osmar Abílio], de Albuquerque, A.O.[Anesmar Olino], de Bem, P.P.[Pablo Pozzobon], Silva, C.R.[Cristiano Rosa], Ferreira, P.H.G.[Pedro Henrique Guimarães], dos Santos de Moura, R.[Rebeca], Gomes, R.A.T.[Roberto Arnaldo Trancoso], Guimarães, R.F.[Renato Fontes], Borges, D.L.[Díbio Leandro],
Instance Segmentation for Large, Multi-Channel Remote Sensing Imagery Using Mask-RCNN and a Mosaicking Approach,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link 2101
BibRef

Wang, H.[Hui], Li, H.[Hao], Qian, W.L.[Wan-Li], Diao, W.H.[Wen-Hui], Zhao, L.J.[Liang-Jin], Zhang, J.H.[Jing-Hua], Zhang, D.B.[Dao-Bing],
Dynamic Pseudo-Label Generation for Weakly Supervised Object Detection in Remote Sensing Images,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Chen, L.W.[Lin-Wei], Fu, Y.[Ying], You, S.[Shaodi], Liu, H.Z.[Hong-Zhe],
Efficient Hybrid Supervision for Instance Segmentation in Aerial Images,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link 2101
BibRef

Zeng, X.F.[Xiang-Feng], Wei, S.J.[Shun-Jun], Wei, J.S.[Jin-Shan], Zhou, Z.C.[Zi-Chen], Shi, J.[Jun], Zhang, X.L.[Xiao-Ling], Fan, F.[Fan],
CPISNet: Delving into Consistent Proposals of Instance Segmentation Network for High-Resolution Aerial Images,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link 2107
BibRef

Lu, J.Y.[Jun-Yan], Jia, H.G.[Hong-Guang], Li, T.[Tie], Li, Z.Q.[Zhu-Qiang], Ma, J.Y.[Jing-Yu], Zhu, R.F.[Rui-Fei],
An Instance Segmentation Based Framework for Large-Sized High-Resolution Remote Sensing Images Registration,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link 2105
BibRef

Yang, F.[Feng], Yuan, X.Y.[Xiang-Yue], Ran, J.[Jie], Shu, W.Q.[Wen-Qiang], Zhao, Y.[Yue], Qin, A.[Anyong], Gao, C.Q.[Chen-Qiang],
Accurate Instance Segmentation for Remote Sensing Images via Adaptive and Dynamic Feature Learning,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Gao, J.Y.[Jun-Yu], Gong, M.[Maoguo], Li, X.L.[Xue-Long],
Global Multi-Scale Information Fusion for Multi-Class Object Counting in Remote Sensing Images,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Guo, X.Y.[Xiang-Yu], Anisetti, M.[Marco], Gao, M.L.[Ming-Liang], Jeon, G.G.[Gwang-Gil],
Object Counting in Remote Sensing via Triple Attention and Scale-Aware Network,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Wang, G.H.[Gai-Hua], Zhai, Q.Y.[Qian-Yu], Lin, J.H.[Jin-Heng],
Multi-scale network for remote sensing segmentation,
IET-IPR(16), No. 6, 2022, pp. 1742-1751.
DOI Link 2204
BibRef

Ahmed, I.[Imran], Ahmad, M.[Misbah], Chehri, A.[Abdellah], Hassan, M.M.[Mohammad Mehedi], Jeon, G.G.[Gwang-Gil],
IoT Enabled Deep Learning Based Framework for Multiple Object Detection in Remote Sensing Images,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Zhang, X.Q.[Xiang-Qing], Feng, Y.[Yan], Zhang, S.[Shun], Wang, N.[Nan], Mei, S.H.[Shao-Hui], He, M.Y.[Ming-Yi],
Semi-Supervised Person Detection in Aerial Images with Instance Segmentation and Maximum Mean Discrepancy Distance,
RS(15), No. 11, 2023, pp. 2928.
DOI Link 2306
BibRef

Xu, J.T.[Jing-Ting], Luo, P.[Peng], Mu, D.J.[De-Jun],
Weakly Supervised Instance Segmentation in Aerial Images via Comprehensive Spatial Adaptation,
RS(16), No. 24, 2024, pp. 4757.
DOI Link 2501
BibRef

Chen, J.P.[Jin-Peng], Cong, R.M.[Run-Min], Ip, H.H.S.[Horace Ho Shing], Kwong, S.[Sam],
KepSalinst: Using Peripheral Points to Delineate Salient Instances,
Cyber(54), No. 6, June 2024, pp. 3392-3405.
IEEE DOI 2406
Task analysis, Head, Semantics, Object detection, Fuses, Urban areas, Remote sensing, Dynamic convolution, peripheral points, salient instance segmentation (SIS) BibRef

Liu, S.Z.[Shuang-Zhou], Wang, F.[Feng], You, H.J.[Hong-Jian], Jiao, N.G.[Nian-Gang], Zhou, G.Y.[Guang-Yao], Zhang, T.T.[Ting-Tao],
Context-Aggregated and SAM-Guided Network for ViT-Based Instance Segmentation in Remote Sensing Images,
RS(16), No. 13, 2024, pp. 2472.
DOI Link 2407
BibRef

Shen, Z.L.[Zhi-Ling], Li, G.Q.[Guo-Quan], Xia, R.Y.[Rui-Yang], Meng, H.Y.[Hong-Ying], Huang, Z.W.[Zheng-Wen],
A Lightweight Object Counting Network Based on Density Map Knowledge Distillation,
CirSysVideo(35), No. 2, February 2025, pp. 1492-1505.
IEEE DOI 2502
Feature extraction, Knowledge engineering, Accuracy, Remote sensing, Image reconstruction, Convolution, multi-scale BibRef

Wu, H.L.[Hong-Lin], Zeng, Z.B.[Zhao-Bin], Zhang, Z.J.[Zhen-Jun], Yu, X.Y.[Xin-Yu],
MCFNet: Multiscale Cross-Modal Fusion Network for Remote Sensing Image Semantic Segmentation,
SPLetters(32), 2025, pp. 2758-2762.
IEEE DOI 2508
Feature extraction, Remote sensing, Semantic segmentation, Convolution, Training, Micromechanical devices, Decoding, semantic segmentation BibRef

Verdonck, L.[Lieven], Dabas, M.[Michel], Bui, M.[Marc],
Interactive, Shallow Machine Learning-Based Semantic Segmentation of 2D and 3D Geophysical Data from Archaeological Sites,
RS(17), No. 17, 2025, pp. 3092.
DOI Link 2509
BibRef

Zhou, L.M.[Li-Ming], Yang, J.K.[Jia-Kang], Xie, Y.F.[Yuan-Fei], Zhang, G.C.[Guo-Chong], Liu, C.[Cheng], Liu, Y.[Yang],
BFRDNet: A UAV Image Object Detection Method Based on a Backbone Feature Reuse Detection Network,
IJGI(14), No. 9, 2025, pp. 365.
DOI Link 2510
BibRef


Zhu, H.[Hao], Zhu, Y.[Yan], Xiao, J.[Jiayu], Xiao, T.X.[Tian-Xiang], Ma, Y.[Yike], Zhang, Y.C.[Yu-Cheng], Dai, F.[Feng],
Exact: Exploring Space-Time Perceptive Clues for Weakly Supervised Satellite Image Time Series Semantic Segmentation,
CVPR25(14036-14045)
IEEE DOI 2508
Weak supervision, Semantic segmentation, Perturbation methods, Time series analysis, Semantics, Noise, Crops, Satellite images, Monitoring BibRef

Darji, D., Vejarano, G.,
Counting Static Targets Using an Unmanned Aerial Vehicle On-the-Fly and Autonomously,
CRV18(206-213)
IEEE DOI 1812
Cameras, Automobiles, Unmanned aerial vehicles, Trajectory, Roads, Portable computers, Target tracking, unmanned aerial vehicle, target counting BibRef

Hsieh, M.R., Lin, Y.L., Hsu, W.H.,
Drone-Based Object Counting by Spatially Regularized Regional Proposal Network,
ICCV17(4165-4173)
IEEE DOI 1802
SLAM (robots), automobiles, autonomous aerial vehicles, cameras, mobile robots, object detection, robot vision, LPNs, Videos BibRef

Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Segment Anything Model .


Last update:Oct 6, 2025 at 14:07:43