7.1.7.12 Dense Object Detection

Chapter Contents (Back)
Object Detection. Dense Objects.
See also Counting Instances, Counting Objects.

Zhou, L.M.[Lin-Mao], Chang, H.[Hong], Ma, B.P.[Bing-Peng], Shan, S.G.[Shi-Guang],
Interactive Regression and Classification for Dense Object Detector,
IP(31), 2022, pp. 3684-3696.
IEEE DOI 2206
Location awareness, Detectors, Feature extraction, Object detection, Standards, Backpropagation, Pipelines, interactive BibRef

Yang, R.P.[Rui-Ping], Yu, J.[Jiguo], Yin, J.[Jian], Liu, K.[Kun], Xu, S.H.[Shao-Hua],
A dense R-CNN multi-target instance segmentation model and its application in medical image processing,
IET-IPR(16), No. 9, 2022, pp. 2495-2505.
DOI Link 2206
BibRef

Li, X.[Xiang], Lv, C.Q.[Cheng-Qi], Wang, W.H.[Wen-Hai], Li, G.[Gang], Yang, L.F.[Ling-Feng], Yang, J.[Jian],
Generalized Focal Loss: Towards Efficient Representation Learning for Dense Object Detection,
PAMI(45), No. 3, March 2023, pp. 3139-3153.
IEEE DOI 2302
Location awareness, Detectors, Estimation, Training, Predictive models, Feature extraction, Object detection, deep learning BibRef

Li, X.[Xiang], Wang, W.H.[Wen-Hai], Hu, X.L.[Xiao-Lin], Li, J.[Jun], Tang, J.H.[Jin-Hui], Yang, J.[Jian],
Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection,
CVPR21(11627-11636)
IEEE DOI 2111
Location awareness, Training, Uncertainty, Correlation, Estimation, Object detection BibRef

Wang, S.Y.[Sheng-Ye], Qu, Z.[Zhong], Li, C.J.[Cui-Jin],
A Dense-Aware Cross-splitNet for Object Detection and Recognition,
CirSysVideo(33), No. 5, May 2023, pp. 2290-2301.
IEEE DOI 2305
Object detection, Feature extraction, Detectors, Task analysis, Image recognition, Head, Convolution, Object detection, cross-splitNet BibRef

Chu, K.C.[Kuan-Chao], Nakayama, H.[Hideki],
Two-Path Object Knowledge Injection for Detecting Novel Objects with Single-Stage Dense Detector,
IEICE(E106-D), No. 11, November 2023, pp. 1868-1880.
WWW Link. 2311
BibRef

Song, Y.[Yaoye], Zhang, P.[Peng], Huang, W.[Wei], Zha, Y.F.[Yu-Fei], You, T.[Tao], Zhang, Y.N.[Yan-Ning],
Closed-loop unified knowledge distillation for dense object detection,
PR(149), 2024, pp. 110235.
Elsevier DOI 2403
Triple parallel distillation, Hierarchical re-weighting attention distillation, Closed-loop unified BibRef

Liu, C.[Chang], Li, X.M.[Xiao-Mao], Xiao, W.P.[Wei-Ping], Xie, S.R.[Shao-Rong],
CCDet: Confidence-Consistent Learning for Dense Object Detection,
IP(33), 2024, pp. 2746-2758.
IEEE DOI 2404
Location awareness, Task analysis, Estimation, Detectors, Electronics packaging, Feature extraction, label assignment BibRef

Ma, J.W.[Jia-Wei], Liang, M.[Min], Chen, L.[Lei], Tian, S.[Shu], Chen, S.L.[Song-Lu], Qin, J.Y.[Jing-Yan], Yin, X.C.[Xu-Cheng],
Sample Weighting with Hierarchical Equalization Loss for Dense Object Detection,
MultMed(26), 2024, pp. 5846-5859.
IEEE DOI 2404
Detectors, Task analysis, Object detection, Training, Location awareness, Feature extraction, Modulation, weighted loss BibRef

Lu, Y.X.[Yu-Xiang], Sirejiding, S.[Shalayiding], Ding, Y.[Yue], Wang, C.L.[Chun-Lin], Lu, H.T.[Hong-Tao],
Prompt Guided Transformer for Multi-Task Dense Prediction,
MultMed(26), 2024, pp. 6375-6385.
IEEE DOI 2404
Task analysis, Transformers, Decoding, Multitasking, Adaptation models, Feature extraction, Tuning, Multi-task learning, vision transformer BibRef

Wu, H.X.[Hui-Xin], Zhu, Y.[Yang], Cao, M.[Mengdi],
An algorithm for detecting dense small objects in aerial photography based on coordinate position attention module,
IET-IPR(18), No. 7, 2024, pp. 1759-1767.
DOI Link 2405
computer vision, convolutional neural nets, image processing BibRef


Zu, S.C.[Shi-Cheng], Jin, Y.C.[Yu-Cheng],
Rank and Sort Loss-Aware Label Assignment with Centroid Prior for Dense Object Detection,
FG24(1-9)
IEEE DOI 2408
Location awareness, Training, Costs, Shape, Semantics, Object detection, Gesture recognition BibRef

Zhang, S.L.[Shi-Long], Wang, X.J.[Xin-Jiang], Wang, J.Q.[Jia-Qi], Pang, J.M.[Jiang-Miao], Lyu, C.Q.[Cheng-Qi], Zhang, W.W.[Wen-Wei], Luo, P.[Ping], Chen, K.[Kai],
Dense Distinct Query for End-to-End Object Detection,
CVPR23(7329-7338)
IEEE DOI 2309
BibRef

Li, S.[Shuai], Li, M.H.[Ming-Han], Li, R.H.[Rui-Huang], He, C.H.[Chen-Hang], Zhang, L.[Lei],
One-to-Few Label Assignment for End-to-End Dense Detection,
CVPR23(7350-7359)
IEEE DOI 2309
BibRef

Stegmüller, T.[Thomas], Lebailly, T.[Tim], Bozorgtabar, B.[Behzad], Tuytelaars, T.[Tinne], Thiran, J.P.[Jean-Philippe],
CrOC: Cross-View Online Clustering for Dense Visual Representation Learning,
CVPR23(7000-7009)
IEEE DOI 2309
BibRef

Borse, S.[Shubhankar], Das, D.[Debasmit], Park, H.[Hyojin], Cai, H.[Hong], Garrepalli, R.[Risheek], Porikli, F.M.[Fatih M.],
DejaVu: Conditional Regenerative Learning to Enhance Dense Prediction,
CVPR23(19466-19477)
IEEE DOI 2309
BibRef

Yin, D.S.[Dong-Shuo], Yang, Y.[Yiran], Wang, Z.C.[Zhe-Chao], Yu, H.F.[Hong-Feng], Wei, K.W.[Kai-Wen], Sun, X.[Xian],
1% VS 100%: Parameter-Efficient Low Rank Adapter for Dense Predictions,
CVPR23(20116-20126)
IEEE DOI 2309
BibRef

Yang, C.Y.[Chenhong-Yi], Ochal, M.[Mateusz], Storkey, A.[Amos], Crowley, E.J.[Elliot J.],
Prediction-Guided Distillation for Dense Object Detection,
ECCV22(IX:123-138).
Springer DOI 2211
BibRef

Xu, D.L.[Dong-Li], Deng, J.H.[Jin-Hong], Li, W.[Wen],
Revisiting AP Loss for Dense Object Detection: Adaptive Ranking Pair Selection,
CVPR22(14167-14176)
IEEE DOI 2210
Location awareness, Codes, Focusing, Clustering algorithms, Object detection, Detectors, Recognition: detection, Vision applications and systems BibRef

Zheng, Z.H.[Zhao-Hui], Ye, R.G.[Rong-Guang], Wang, P.[Ping], Ren, D.W.[Dong-Wei], Zuo, W.M.[Wang-Meng], Hou, Q.[Qibin], Cheng, M.M.[Ming-Ming],
Localization Distillation for Dense Object Detection,
CVPR22(9397-9406)
IEEE DOI 2210
Location awareness, Training, Schedules, Semantics, Object detection, Detectors, Recognition: detection, categorization, retrieval BibRef

Shu, C.Y.[Chang-Yong], Liu, Y.F.[Yi-Fan], Gao, J.F.[Jian-Fei], Yan, Z.[Zheng], Shen, C.H.[Chun-Hua],
Channel-wise Knowledge Distillation for Dense Prediction*,
ICCV21(5291-5300)
IEEE DOI 2203
Training, Semantics, Estimation, Object detection, Detectors, Predictive models, Efficient training and inference methods, grouping and shape BibRef

Deng, Z.L.[Zhao-Li], Yang, C.[Chenhui],
Multiple-step Sampling for Dense Object Detection and Counting,
ICPR21(1036-1042)
IEEE DOI 2105
Training, Detectors, Object detection, Benchmark testing, Sampling methods, Feature extraction, Pattern recognition, object counting BibRef

Hu, H.Z.[Han-Zhe], Bai, S.[Shuai], Li, A.[Aoxue], Cui, J.S.[Jin-Shi], Wang, L.W.[Li-Wei],
Dense Relation Distillation with Context-aware Aggregation for Few-Shot Object Detection,
CVPR21(10180-10189)
IEEE DOI 2111
Training, Deep learning, Adaptation models, Codes, Annotations, Object detection BibRef

Gao, Z.T.[Zi-Teng], Wang, L.M.[Li-Min], Wu, G.S.[Gang-Shan],
Mutual Supervision for Dense Object Detection,
ICCV21(3621-3630)
IEEE DOI 2203
Training, Location awareness, Pipelines, Detectors, Object detection, Benchmark testing, Detection and localization in 2D and 3D, BibRef

Li, B.[Bo], Yao, Y.Q.[Yong-Qiang], Tan, J.R.[Jing-Ru], Zhang, G.[Gang], Yu, F.W.[Feng-Wei], Lu, J.W.[Jian-Wei], Luo, Y.[Ye],
Equalized Focal Loss for Dense Long-Tailed Object Detection,
CVPR22(6980-6989)
IEEE DOI 2210
Training, Industries, Deep learning, Pipelines, Detectors, Object detection, Transfer/low-shot/long-tail learning, retrieval BibRef

Tan, J.R.[Jing-Ru], Lu, X.[Xin], Zhang, G.[Gang], Yin, C.Q.[Chang-Qing], Li, Q.Q.[Quan-Quan],
Equalization Loss v2: A New Gradient Balance Approach for Long-tailed Object Detection,
CVPR21(1685-1694)
IEEE DOI 2111
Training, Codes, Object detection, Benchmark testing, Boosting, Pattern recognition BibRef

Kim, H.[Hanjae], Joung, S.[Sunghun], Kim, I.J.[Ig-Jae], Sohn, K.H.[Kwang-Hoon],
Shape-Adaptive Kernel Network for Dense Object Detection,
ICIP20(2046-2050)
IEEE DOI 2011
Kernel, Shape, Object detection, Detectors, Convolution, Feature extraction, Strain, Dense object detection, object deformation BibRef

Qiu, H.[Han], Ma, Y.C.[Yu-Chen], Li, Z.M.[Ze-Ming], Liu, S.T.[Song-Tao], Sun, J.[Jian],
BorderDet: Border Feature for Dense Object Detection,
ECCV20(I:549-564).
Springer DOI 2011
A point-like feature to guide the border search, for dense collection of objects. BibRef

Varadarajan, S.[Srikrishna], Kant, S.[Sonaal], Srivastava, M.M.[Muktabh Mayank],
Benchmark for Generic Product Detection: A Low Data Baseline for Dense Object Detection,
ICIAR20(I:30-41).
Springer DOI 2007
Generic detection, to use across applications. BibRef

Zhang, H.Y.[Hao-Yang], Wang, Y.[Ying], Dayoub, F.[Feras], Sünderhauf, N.[Niko],
VarifocalNet: An IoU-aware Dense Object Detector,
CVPR21(8510-8519)
IEEE DOI 2111
Location awareness, Training, Codes, Detectors, Computer architecture, Benchmark testing BibRef

Chen, X., Girshick, R., He, K., Dollar, P.,
TensorMask: A Foundation for Dense Object Segmentation,
ICCV19(2061-2069)
IEEE DOI 2004
convolutional neural nets, image segmentation, object detection, tensors, Mask R-CNN, dense sliding-window instance segmentation, Image segmentation BibRef

Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Masked Image Modeling .


Last update:Sep 28, 2024 at 17:47:54