Gader, P.D.,
Khabou, M.A.,
Automatic Feature Generation for Handwritten Digit Recognition,
PAMI(18), No. 12, December 1996, pp. 1256-1261.
IEEE DOI
9701
Neural Networks. Two different measures, orthogonality and information, guide the search
for features to use in the NN implementation.
Uses multiple classifiers. Recognition rates are around 98% on a test set
with 1000 digits per class.
BibRef
Chiang, J.H.,
Gader, P.D.,
A Hybrid Feature Extraction Framework for
Handwritten Numeric Fields Recognition,
ICPR96(IV: 436-440).
IEEE DOI
9608
(Ind. Tech. Res. Institute, ROC)
BibRef
Knerr, S.,
Personnaz, L., and
Dreyfus, G.,
Handwritten Digit Recognition by Neural Networks with
Single-Layer Training,
TNN(3), No. 6, November 1992, pp. 962-968.
BibRef
9211
Calabro, C.,
Ferragina, P.,
Granieri, M.N.,
Recognition of Hand-Written Rotated Digits by Neural Networks,
MVA(8), No. 5, 1995, pp. 351-357.
Springer DOI
BibRef
9500
Lee, S.W.[Seong-Whan],
Off-Line Recognition of Totally Unconstrained Handwritten Numerals
Using Multilayer Cluster Neural-Network,
PAMI(18), No. 6, June 1996, pp. 648-652.
IEEE DOI
9607
BibRef
Earlier:
Add
Kim, Y.J.[Young Joon], :
ICPR94(B:507-509).
IEEE DOI
9410
BibRef
Lee, S.W.,
Kim, C.H.,
Ma, H.,
Tang, Y.Y.,
Multiresolution Recognition of Unconstrained Handwritten Numerals with
Wavelet Transform and Multilayer Cluster Neural-Network,
PR(29), No. 12, December 1996, pp. 1953-1961.
Elsevier DOI
9701
Wavelets.
Neural Networks.
BibRef
Cho, S.B.,
Neural-Network Classifiers for Recognizing Totally
Unconstrained Handwritten Numerals,
TNN(8), No. 1, January 1997, pp. 43-53.
9701
BibRef
Earlier:
Recognition Of Unconstrained Handwritten Numerals by
Doubly Self-Organizing Neural Network,
ICPR96(IV: 426-430).
IEEE DOI
9608
(Yonsei Univ., KOR)
BibRef
Cao, J.,
Ahmadi, M.,
Shridhar, M.,
A Hierarchical Neural-Network Architecture for
Handwritten Numeral Recognition,
PR(30), No. 2, February 1997, pp. 289-294.
Elsevier DOI
9704
BibRef
Cao, J.,
Shridhar, M.,
Kimura, F.,
Ahmadi, M.,
Statistical and neural classification of handwritten numerals: a
comparative study,
ICPR92(II:643-646).
IEEE DOI
9208
BibRef
Reddy, N.V.S.,
Nagabhushan, P.,
A Three-Dimensional Neural-Network Model for
Unconstrained Handwritten Numeral Recognition: A New Approach,
PR(31), No. 5, May 1998, pp. 511-516.
Elsevier DOI
9805
BibRef
Hwang, Y.S.[Young-Sup],
Bang, S.Y.[Sung-Yang],
Recognition of Unconstrained Handwritten Numerals by a
Radial Basis Function Neural Network Classifier,
PRL(18), No. 7, July 1997, pp. 657-664.
9711
BibRef
Earlier:
An Efficient Method to Construct a Radial Basis Function
Neural Network Classifier and its Application to Unconstrained
Handwritten Digit Recognition,
ICPR96(IV: 640-644).
IEEE DOI
9608
(Pohang Institute of Science, KOR)
BibRef
Lee, S.W.,
Kim, S.Y.,
Integrated Segmentation and Recognition of Handwritten Numerals with
Cascade Neural Network,
SMC-C(29), No. 2, May 1999, pp. 285.
IEEE Top Reference.
BibRef
9905
Zhou, J.[Jie],
Gan, Q.A.[Qi-Ang],
Krzyzak, A.[Adam],
Suen, C.Y.[Ching Y.],
Recognition of handwritten numerals by Quantum Neural Network with
fuzzy features,
IJDAR(2), No. 1, 1999, pp. 30-36.
BibRef
9900
Wang, J.G.[Jian-Guo],
Yan, H.[Hong],
A hybrid method for unconstrained handwritten numeral recognition by
combining structural and neural 'gas' classifiers,
PRL(21), No. 6-7, June 2000, pp. 625-635.
0006
See also Model-Based Segmentation Method for Handwritten Numeral Strings, A.
BibRef
Zhang, B.L.[Bai-Ling],
Fu, M.Y.[Min-Yue],
Yan, H.[Hong],
A nonlinear neural network model of mixture of local principal
component analysis: application to handwritten digits recognition,
PR(34), No. 2, February 2001, pp. 203-214.
Elsevier DOI
0011
BibRef
Earlier:
A Modular Classification Scheme with Elastic Net Models for
Handwritten Digit Recognition,
ICPR98(Vol II: 1859-1861).
IEEE DOI
9808
BibRef
You, D.K.[Dae-Keun],
Kim, G.H.[Gyeong-Hwan],
An approach for locating segmentation points of handwritten digit
strings using a neural network,
ICDAR03(142-146).
IEEE DOI
0311
BibRef
Wong, K.W.[Kwok-Wo],
Leung, C.S.[Chi-Sing],
Chang, S.J.[Sheng-Jiang],
Handwritten digit recognition using multi-layer feedforward neural
networks with periodic and monotonic activation functions,
ICPR02(III: 106-109).
IEEE DOI
0211
BibRef
Kim, H.Y.[Ho-Yon],
Lim, K.T.[Kil-Taek],
Nam, Y.S.[Yun-Seok],
Handwritten numeral string recognition using neural network classifier
trained with negative data,
FHR02(395-400).
IEEE Top Reference.
0209
BibRef
Lim, K.T.[Kil-Taek],
Chien, S.I.[Sung-Il],
Neural Network Based Feature Space Generation for
Multiple Databases of Handwritten Numerals,
ICPR98(Vol I: 375-377).
IEEE DOI
9808
BibRef
Kawaguchi, T.,
Nagata, R.I.,
Miyake, Y.[Yasuji],
Inoue, S.,
Wakabayashi, T.[Tetsushi],
Kimura, F.[Fumitaka],
Tsuruoka, S.,
Handwritten Numeral Recognition Using
Autoassociative Neural Networks,
ICPR98(Vol I: 166-171).
IEEE DOI
9808
BibRef
Lin, X.,
Ding, X.,
Wu, Y.,
Handwritten Numeral Recognition Using MFNN Based Multiexpert
Combination Strategy,
ICDAR97(471-474).
IEEE DOI
9708
BibRef
Lee, S., and
Pan, J.C.,
Handwritten Numeral Recognition Based on Hierarchically
Self-Organizing Learning Networks with Spatio-Temporal Pattern Recognition,
CVPR92(176-182).
IEEE DOI
BibRef
9200
Williams, C.K.I.,
Combining Deformable Models and Neural Networks for
Handprinted Digit Recognition,
Ph.D.Thesis, 1994,
BibRef
9400
Toronto
BibRef
Lemarie, B.,
Practical Implementation of a Radial Basis Function Network for
Handwritten Digit Recognition,
ICDAR93(412-415).
BibRef
9300
Tsay, S.C.[Shuh-Chuan],
Hong, P.R.[Peir-Ren],
Chieu, B.C.[Bin-Chang],
Handwritten digits recognition system via OCON neural network by
pruning selective update,
ICPR92(II:656-659).
IEEE DOI
9208
BibRef
Chapter on OCR, Document Analysis and Character Recognition Systems continues in
Money and Check Processing -- Amounts, etc. .