12.3.4.3.2 6D Object Pose Estimation With Depth

Chapter Contents (Back)
Pose Estimation. 6-D Pose. RGB-D. 2507

Sahin, C.[Caner], Kouskouridas, R.[Rigas], Kim, T.K.[Tae-Kyun],
A learning-based variable size part extraction architecture for 6D object pose recovery in depth images,
IVC(63), No. 1, 2017, pp. 38-50.
Elsevier DOI 1706
Object registration BibRef

Doumanoglou, A.[Andreas], Kouskouridas, R.[Rigas], Malassiotis, S.[Sotiris], Kim, T.K.[Tae-Kyun],
Recovering 6D Object Pose and Predicting Next-Best-View in the Crowd,
CVPR16(3583-3592)
IEEE DOI 1612
BibRef

Zhang, H.[Haoruo], Cao, Q.X.[Qi-Xin],
Holistic and local patch framework for 6D object pose estimation in RGB-D images,
CVIU(180), 2019, pp. 59-73.
Elsevier DOI 1903
6D object pose estimation, RGB-D images, Holistic patch, Local patch, Convolutional neural network, Particle swarm optimization BibRef

Kaskman, R., Zakharov, S., Shugurov, I., Ilic, S.,
HomebrewedDB: RGB-D Dataset for 6D Pose Estimation of 3D Objects,
R6D19(2767-2776)
IEEE DOI 2004
image colour analysis, learning (artificial intelligence), object detection, pose estimation, solid modelling, deep learning, 6D Pose Estimation BibRef

Zakharov, S., Shugurov, I., Ilic, S.,
DPOD: 6D Pose Object Detector and Refiner,
ICCV19(1941-1950)
IEEE DOI 2004
image colour analysis, learning (artificial intelligence), object detection, pose estimation, solid modelling, input image, Training data BibRef

Zhou, G.L.[Guang-Liang], Yan, Y.[Yi], Wang, D.[Deming], Chen, Q.J.[Qi-Jun],
A Novel Depth and Color Feature Fusion Framework for 6D Object Pose Estimation,
MultMed(23), 2021, pp. 1630-1639.
IEEE DOI 2106
Pose estimation, Image color analysis, Feature extraction, Color, region-level feature BibRef

Shugurov, I.[Ivan], Zakharov, S.[Sergey], Ilic, S.[Slobodan],
DPODv2: Dense Correspondence-Based 6 DoF Pose Estimation,
PAMI(44), No. 11, November 2022, pp. 7417-7435.
IEEE DOI 2210
Pose estimation, Detectors, Deep learning, Training data, Solid modeling, 6 DoF pose estimation, dense correspondences, synthetic data BibRef

Huang, J.W.[Jun-Wen], Yu, H.[Hao], Yu, K.T.[Kuan-Ting], Navab, N.[Nassir], Ilic, S.[Slobodan], Busam, B.[Benjamin],
MatchU: Matching Unseen Objects for 6D Pose Estimation from RGB-D Images,
CVPR24(10095-10105)
IEEE DOI 2410
Geometry, Training, Point cloud compression, Solid modeling, Fuses, Scalability, 6D pose estimation, descriptor learning, unseen object pose estimation BibRef

Pitteri, G., Ramamonjisoa, M., Ilic, S.[Slobodan], Lepetit, V.[Vincent],
On Object Symmetries and 6D Pose Estimation from Images,
3DV19(614-622)
IEEE DOI 1911
Pose estimation, Training, Measurement, Machine learning algorithms, Deep Learning BibRef

Wu, C.R.[Chen-Rui], Chen, L.[Long], Wang, S.L.[Sheng-Long], Yang, H.[Han], Jiang, J.J.[Jun-Jie],
Geometric-aware dense matching network for 6D pose estimation of objects from RGB-D images,
PR(137), 2023, pp. 109293.
Elsevier DOI 2302
6D pose estimation, Metric learning, Triplet loss, Dense correspondences, Geometric constraint BibRef

Zhang, J.H.[Jia-Hui], Shi, J.L.[Jin-Long], Zou, D.P.[Dan-Ping], Shu, X.[Xin], Bai, S.[Suqin], Lu, J.[Jiawen], Zhu, H.[Haowei], Ni, J.[Jun], Sun, Y.H.[Yun-Han],
EPM-Net: Efficient Feature Extraction, Point-Pair Feature Matching for Robust 6-D Pose Estimation,
MultMed(26), 2024, pp. 5120-5130.
IEEE DOI 2404
Feature extraction, Pose estimation, Solid modeling, Point cloud compression, Cameras, Data mining, Robustness, RGB-D images BibRef

Cao, T.[Tuo], Zhang, W.X.[Wen-Xiao], Fu, Y.P.[Yan-Ping], Zheng, S.J.[Sheng-Jie], Luo, F.[Fei], Xiao, C.X.[Chun-Xia],
DGECN++: A Depth-Guided Edge Convolutional Network for End-to-End 6D Pose Estimation via Attention Mechanism,
CirSysVideo(34), No. 6, June 2024, pp. 4214-4228.
IEEE DOI 2406
BibRef
Earlier: A1, A5, A3, A2, A4, A6:
DGECN: A Depth-Guided Edge Convolutional Network for End-to-End 6D Pose Estimation,
CVPR22(3773-3782)
IEEE DOI 2210
Pose estimation, Feature extraction, Convolutional neural networks, Prediction algorithms, attention mechanism. Uncertainty, Network topology, Pipelines, Robustness, 3D from single images BibRef

Zhou, J.[Jun], Chen, K.[Kai], Wei, M.Q.[Ming-Qiang], Zhang, X.P.[Xiao-Ping], Dou, Q.[Qi], Qin, J.[Jing],
Canonical Shape Reconstruction With SE(3) Equivariance Learning for Weakly-Supervised Object Pose Estimation,
CirSysVideo(35), No. 7, July 2025, pp. 6895-6909.
IEEE DOI 2507
6D object pose estimation from a single RGB-D image. Shape, Training, Point cloud compression, Pose estimation, Solid modeling, Image reconstruction, Feature extraction, Geometry, SE(3) equivariance BibRef


Hong, Z.W.[Zong-Wei], Hung, Y.Y.[Yen-Yang], Chen, C.S.[Chu-Song], p
RDPN6D: Residual-based Dense Point-wise Network for 6Dof Object Pose Estimation Based on RGB-D Images,
DLGC24(5251-5260)
IEEE DOI Code:
WWW Link. 2410
Solid modeling, Pose estimation, Measurement uncertainty, Transforms, Object detection BibRef

Petitjean, T.[Théo], Wu, Z.W.[Zong-Wei], Laligant, O.[Olivier], Demonceaux, C.[Cédric],
QaQ: Robust 6D Pose Estimation via Quality-Assessed RGB-D Fusion,
MVA23(1-7)
DOI Link 2403
Fuses, Machine vision, Aggregates, Pose estimation, Color, Robustness, Noise measurement BibRef

Fan, Z.X.[Zhao-Xin], Song, Z.B.[Zhen-Bo], Xu, J.[Jian], Wang, Z.C.[Zhi-Cheng], Wu, K.J.[Ke-Jian], Liu, H.Y.[Hong-Yan], He, J.[Jun],
Object Level Depth Reconstruction for Category Level 6D Object Pose Estimation from Monocular RGB Image,
ECCV22(II:220-236).
Springer DOI 2211
BibRef

Wu, Y.Z.[Yang-Zheng], Zand, M.[Mohsen], Etemad, A.[Ali], Greenspan, M.[Michael],
Vote from the Center: 6 DoF Pose Estimation in RGB-D Images by Radial Keypoint Voting,
ECCV22(X:335-352).
Springer DOI 2211
BibRef

Lin, Y.L.[Yong-Liang], Su, Y.Z.[Yong-Zhi], Nathan, P.[Praveen], Inuganti, S.[Sandeep], Di, Y.[Yan], Sundermeyer, M.[Martin], Manhardt, F.[Fabian], Stricker, D.[Didier], Rambach, J.[Jason], Zhang, Y.[Yu],
HiPose: Hierarchical Binary Surface Encoding and Correspondence Pruning for RGB-D 6DoF Object Pose Estimation,
CVPR24(10148-10158)
IEEE DOI 2410
Accuracy, Pose estimation, Benchmark testing, Rendering (computer graphics), Encoding, Real-time systems, RGB-D BibRef

Su, Y.Z.[Yong-Zhi], Saleh, M.[Mahdi], Fetzer, T.[Torben], Rambach, J.[Jason], Navab, N.[Nassir], Busam, B.[Benjamin], Stricker, D.[Didier], Tombari, F.[Federico],
ZebraPose: Coarse to Fine Surface Encoding for 6DoF Object Pose Estimation,
CVPR22(6728-6738)
IEEE DOI 2210
Training, Measurement, Codes, Pose estimation, Robot vision systems, Object segmentation, Pose estimation and tracking, Robot vision BibRef

Jiang, X.[Xiaoke], Li, D.H.[Dong-Hai], Chen, H.[Hao], Zheng, Y.[Ye], Zhao, R.[Rui], Wu, L.W.[Li-Wei],
Uni6D: A Unified CNN Framework without Projection Breakdown for 6D Pose Estimation,
CVPR22(11164-11174)
IEEE DOI 2210
Training, Solid modeling, Head, Electric breakdown, Pose estimation, Pipelines, RGBD sensors and analytics, Robot vision BibRef

Cai, D.D.[Ding-Ding], Heikkiä, J.[Janne], Rahtu, E.[Esa],
OVE6D: Object Viewpoint Encoding for Depth-based 6D Object Pose Estimation,
CVPR22(6793-6803)
IEEE DOI 2210
Training, Pose estimation, Training data, Optical imaging, Cameras, Encoding, Pose estimation and tracking, Recognition: detection, RGBD sensors and analytics BibRef

Feng, H.T.[Hang-Tao], Zhang, L.[Lu], Yang, X.[Xu], Liu, Z.Y.[Zhi-Yong],
MixedFusion: 6D Object Pose Estimation from Decoupled RGB-Depth Features,
ICPR21(685-691)
IEEE DOI 2105
Measurement, Image color analysis, Fuses, Pose estimation, Color BibRef

Cheng, Y.[Yi], Zhu, H.Y.[Hong-Yuan], Sun, Y.[Ying], Acar, C.[Cihan], Jing, W.[Wei], Wu, Y.[Yan], Li, L.Y.[Li-Yuan], Tan, C.[Cheston], Lim, J.H.[Joo-Hwee],
6D Pose Estimation with Correlation Fusion,
ICPR21(2988-2994)
IEEE DOI 2105
Correlation, Pose estimation, Lighting, Grasping, Benchmark testing, Task analysis, object pose estimation, RGB-D, correlation fusion BibRef

Song, J.R.[Jing-Rui], Hao, S.[Shuling], Xu, K.[Kefeng],
Uncooperative Satellite 6D Pose Estimation with Relative Depth Information,
ISVC21(II:166-177).
Springer DOI 2112
BibRef

Hu, Y.L.[Yin-Lin], Speierer, S.[Sébastien], Jakob, W.[Wenzel], Fua, P.[Pascal], Salzmann, M.[Mathieu],
Wide-Depth-Range 6D Object Pose Estimation in Space,
CVPR21(15865-15874)
IEEE DOI 2111
Training, Solid modeling, Satellites, Pose estimation, Scattering, Benchmark testing BibRef

Cunico, F.[Federico], Carletti, M.[Marco], Cristani, M.[Marco], Masci, F.[Fabio], Conigliaro, D.[Davide],
6D Pose Estimation for Industrial Applications,
NTIAP19(374-384).
Springer DOI 1909
From both RGB and depth information. BibRef

Sahin, C.[Caner], Kim, T.K.[Tae-Kyun],
Category-Level 6D Object Pose Recovery in Depth Images,
4DPose18(I:665-681).
Springer DOI 1905
BibRef

Sock, J., Kasaei, S.H., Lopes, L.S., Kim, T.K.,
Multi-view 6D Object Pose Estimation and Camera Motion Planning Using RGBD Images,
6DPose17(2228-2235)
IEEE DOI 1802
Cameras, Entropy, Object detection, Object recognition, Planning, Pose estimation BibRef

Balntas, V., Doumanoglou, A., Sahin, C., Sock, J., Kouskouridas, R., Kim, T.K.,
Pose Guided RGBD Feature Learning for 3D Object Pose Estimation,
ICCV17(3876-3884)
IEEE DOI 1802
correlation methods, feature extraction, learning (artificial intelligence), pose estimation, Training BibRef

Basevi, H.[Hector], Leonardis, A.[Aleš],
Towards Categorization and Pose Estimation of Sets of Occluded Objects in Cluttered Scenes from Depth Data and Generic Object Models Using Joint Parsing,
6DPose16(III: 665-681).
Springer DOI 1611
BibRef

Chapter on Registration, Matching and Recognition Using Points, Lines, Regions, Areas, Surfaces continues in
Laplace-Beltrami Operator, Beltrami Flow .


Last update:Sep 10, 2025 at 12:00:25