Huo, X.Y.[Xiao-Yang],
Zeng, X.P.[Xiang-Ping],
Wu, S.[Si],
Wong, H.S.[Hau-San],
Attention Regularized Semi-Supervised Learning with Class-Ambiguous
Data for Image Classification,
PR(129), 2022, pp. 108727.
Elsevier DOI
2206
Semi-supervised learning, Image classification,
Attention regularization, Class-ambiguous data
BibRef
Huo, X.Y.[Xiao-Yang],
Zeng, X.P.[Xiang-Ping],
Wu, S.[Si],
Shen, W.J.[Wen-Jun],
Wong, H.S.[Hau-San],
Collaborative Learning with Unreliability Adaptation for
Semi-Supervised Image Classification,
PR(133), 2023, pp. 109032.
Elsevier DOI
2210
Semi-supervised learning, Image classification,
Unreliability adaptation, Collaborative learning
BibRef
Li, G.J.[Guo-Jie],
Yu, Z.W.[Zhi-Wen],
Yang, K.X.[Kai-Xiang],
Chen, C.L.P.[C. L. Philip],
Li, X.L.[Xue-Long],
Ensemble-Enhanced Semi-Supervised Learning With Optimized Graph
Construction for High-Dimensional Data,
PAMI(47), No. 2, February 2025, pp. 1103-1119.
IEEE DOI
2501
Training, Noise measurement, Robustness, Collaboration,
Smoothing methods, Noise, Laplace equations, Genetics,
high-dimensional data
BibRef
Li, J.C.[Ji-Chang],
Wu, S.[Si],
Liu, C.[Cheng],
Yu, Z.W.[Zhi-Wen],
Wong, H.S.[Hau-San],
Semi-Supervised Deep Coupled Ensemble Learning with Classification
Landmark Exploration,
IP(29), No. 1, 2020, pp. 538-550.
IEEE DOI
1910
entropy, image classification, image matching,
learning (artificial intelligence), neural nets, landmark learning
BibRef
Wu, S.[Si],
Ji, Q.J.[Qiu-Jia],
Wang, S.F.[Shu-Feng],
Wong, H.S.[Hau-San],
Yu, Z.W.[Zhi-Wen],
Xu, Y.[Yong],
Semi-Supervised Image Classification With Self-Paced Cross-Task
Networks,
MultMed(20), No. 4, April 2018, pp. 851-865.
IEEE DOI
1804
Data models, Labeling, Predictive models, Semisupervised learning,
Streaming media, Training, Image classification,
semi-supervised learning
BibRef
Huang, S.X.[Shi-Xin],
Zeng, X.P.[Xiang-Ping],
Wu, S.[Si],
Yu, Z.W.[Zhi-Wen],
Azzam, M.[Mohamed],
Wong, H.S.[Hau-San],
Behavior regularized prototypical networks for semi-supervised
few-shot image classification,
PR(112), 2021, pp. 107765.
Elsevier DOI
2102
Few-shot learning, Semi-supervised learning,
Image classification, Prototypical networks
BibRef
Zhu, L.C.[Lin-Chao],
Yang, Y.[Yi],
Label Independent Memory for Semi-Supervised Few-Shot Video
Classification,
PAMI(44), No. 1, January 2022, pp. 273-285.
IEEE DOI
2112
BibRef
Earlier:
Compound Memory Networks for Few-Shot Video Classification,
ECCV18(VII: 782-797).
Springer DOI
1810
Training, Feature extraction, Task analysis, Compounds, Dynamics,
Data models, Prototypes, Few-shot video classification,
compound memory networks
BibRef
Zhang, B.[Bo],
Ye, H.C.[Han-Cheng],
Yu, G.[Gang],
Wang, B.[Bin],
Wu, Y.[Yike],
Fan, J.Y.[Jia-Yuan],
Chen, T.[Tao],
Sample-Centric Feature Generation for Semi-Supervised Few-Shot
Learning,
IP(31), 2022, pp. 2309-2320.
IEEE DOI
2203
Task analysis, Data models, Measurement, Training, Semantics,
Adaptation models, Benchmark testing, Few-shot learning,
sample-centric
BibRef
Xu, R.[Rui],
Xing, L.[Lei],
Shao, S.[Shuai],
Zhao, L.F.[Li-Fei],
Liu, B.[Baodi],
Liu, W.F.[Wei-Feng],
Zhou, Y.C.[Yi-Cong],
GCT: Graph Co-Training for Semi-Supervised Few-Shot Learning,
CirSysVideo(32), No. 12, December 2022, pp. 8674-8687.
IEEE DOI
2212
Feature extraction, Data mining, Finite element analysis,
Training data, Semi-supervised learning, Few-shot learning,
graph co-training (GCT)
BibRef
Liu, F.[Fan],
Yang, S.[Sai],
Chen, D.[Delong],
Huang, H.X.[Hua-Xi],
Zhou, J.[Jun],
Few-shot classification guided by generalization error bound,
PR(145), 2024, pp. 109904.
Elsevier DOI
2311
Few-shot classification, Generalization error bound,
Self-supervised learning, Knowledge distillation
BibRef
Clay, V.[Viviane],
Pipa, G.[Gordon],
Kühnberger, K.U.[Kai-Uwe],
König, P.[Peter],
Development of Few-Shot Learning Capabilities in Artificial Neural
Networks When Learning Through Self-Supervised Interaction,
PAMI(46), No. 1, January 2024, pp. 209-219.
IEEE DOI
2312
BibRef
Gao, R.X.[Rui-Xuan],
Su, H.[Han],
Prasad, S.[Shitala],
Tang, P.[Peisen],
Few-shot classification with multisemantic information fusion network,
IVC(141), 2024, pp. 104869.
Elsevier DOI
2402
Few-shot learning, Metric-based learning,
Feature representation, Unsupervised mechanism
BibRef
Wei, X.S.[Xiu-Shen],
Xu, H.Y.[He-Yang],
Yang, Z.W.[Zhi-Wen],
Duan, C.L.[Chen-Long],
Peng, Y.X.[Yu-Xin],
Negatives Make a Positive: An Embarrassingly Simple Approach to
Semi-Supervised Few-Shot Learning,
PAMI(46), No. 4, April 2024, pp. 2091-2103.
IEEE DOI
2403
Multiple signal classification, Task analysis, Training,
Predictive models, Data models, Computational modeling, Robustness,
few-shot learning
BibRef
Liu, B.[Bing],
Zhao, H.W.[Hong-Wei],
Li, J.[Jiao],
Gao, Y.S.[Yan-Sheng],
Zhang, J.R.[Jiang-Rong],
SRL-ProtoNet: Self-supervised representation learning for few-shot
remote sensing scene classification,
IET-CV(18), No. 7, 2024, pp. 1034-1042.
DOI Link
2411
image classification, natural scenes, remote sensing
BibRef
Liu, Y.K.[Yu-Kun],
Luo, Z.H.[Zhao-Hui],
Shi, D.M.[Da-Ming],
A convex Kullback-Leibler optimization for semi-supervised few-shot
learning,
CVIU(249), 2024, pp. 104152.
Elsevier DOI
2412
Few-shot learning, Convex function,
Kullback-Leibler (KL) optimization, Expectation-maximization (EM)
BibRef
Lazarou, M.[Michalis],
Stathaki, T.[Tania],
Avrithis, Y.[Yannis],
Exploiting unlabeled data in few-shot learning with manifold
similarity and label cleaning,
PR(161), 2025, pp. 111304.
Elsevier DOI Code:
WWW Link.
2502
Few-shot learning, Semi-supervised learning,
Transductive learning
BibRef
Jing, K.[Kunlei],
Ma, H.[Hebo],
Zhang, C.[Chen],
Wen, L.[Lei],
Zhang, Z.R.[Zhao-Rui],
Recursive Confidence Training for Pseudo-Labeling Calibration in
Semi-Supervised Few-Shot Learning,
IP(34), 2025, pp. 3194-3208.
IEEE DOI Code:
WWW Link.
2506
Entropy, Accuracy, Training, Calibration, Data models,
Few shot learning, Labeling, Prototypes, Adaptation models, Reviews,
recursive confidence training
BibRef
Lu, Y.N.[Yu-Ning],
Wen, L.J.[Liang-Jian],
Liu, J.Z.[Jian-Zhuang],
Liu, Y.J.[Ya-Jing],
Tian, X.[Xinmei],
Self-Supervision Can Be a Good Few-Shot Learner,
ECCV22(XIX:740-758).
Springer DOI
2211
BibRef
Dong, B.[Bowen],
Zhou, P.[Pan],
Yan, S.C.[Shui-Cheng],
Zuo, W.M.[Wang-Meng],
Self-Promoted Supervision for Few-Shot Transformer,
ECCV22(XX:329-347).
Springer DOI
2211
BibRef
Li, S.[Shuo],
Liu, F.[Fang],
Hao, Z.[Zehua],
Zhao, K.B.[Kai-Bo],
Jiao, L.C.[Li-Cheng],
Unsupervised Few-Shot Image Classification by Learning Features into
Clustering Space,
ECCV22(XXXI:420-436).
Springer DOI
2211
BibRef
Shirekar, O.K.[Ojas Kishore],
Jamali-Rad, H.[Hadi],
Self-Supervised Class-Cognizant Few-Shot Classification,
ICIP22(976-980)
IEEE DOI
2211
Human intelligence, Dark matter, Benchmark testing,
Iterative methods, Task analysis, Unsupervised learning, contrastive learning
BibRef
Liu, Y.[Yang],
Zhang, W.F.[Wei-Feng],
Xiang, C.[Chao],
Zheng, T.[Tu],
Cai, D.[Deng],
He, X.F.[Xiao-Fei],
Learning to Affiliate: Mutual Centralized Learning for Few-shot
Classification,
CVPR22(14391-14400)
IEEE DOI
2210
Atmospheric measurements, Markov processes,
Particle measurements, Task analysis,
Self- semi- meta- unsupervised learning
BibRef
Ling, J.[Jie],
Liao, L.[Lei],
Yang, M.[Meng],
Shuai, J.[Jia],
Semi-Supervised Few-shot Learning via Multi-Factor Clustering,
CVPR22(14544-14553)
IEEE DOI
2210
Manifolds, Learning systems, Codes, Fuses, Collaboration,
Benchmark testing, Self- semi- meta- Recognition: detection, retrieval
BibRef
Li, S.[Suichan],
Chen, D.D.[Dong-Dong],
Chen, Y.P.[Yin-Peng],
Yuan, L.[Lu],
Zhang, L.[Lei],
Chu, Q.[Qi],
Liu, B.[Bin],
Yu, N.H.[Neng-Hai],
Improve Unsupervised Pretraining for Few-label Transfer,
ICCV21(10181-10190)
IEEE DOI
2203
Annotations, Computational modeling, Clustering algorithms,
Representation learning, Vision applications and systems
BibRef
Ma, J.W.[Jia-Wei],
Xie, H.C.[Han-Chen],
Han, G.X.[Guang-Xing],
Chang, S.F.[Shih-Fu],
Galstyan, A.[Aram],
Abd-Almageed, W.[Wael],
Partner-Assisted Learning for Few-Shot Image Classification,
ICCV21(10553-10562)
IEEE DOI
2203
Training, Learning systems, Visualization, Annotations, Prototypes,
Benchmark testing, Representation learning,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Das, R.[Rajshekhar],
Wang, Y.X.[Yu-Xiong],
Moura, J.M.F.[José M. F.],
On the Importance of Distractors for Few-Shot Classification,
ICCV21(9010-9020)
IEEE DOI
2203
Training, Codes, Stochastic processes, Performance gain,
Task analysis, Transfer/Low-shot/Semi/Unsupervised Learning,
Representation learning
BibRef
Phoo, C.P.[Cheng Perng],
Hariharan, B.[Bharath],
Coarsely-labeled Data for Better Few-shot Transfer,
ICCV21(9032-9041)
IEEE DOI
2203
Representation learning, Codes, Filtering, Buildings,
Transfer/Low-shot/Semi/Unsupervised Learning,
Representation learning
BibRef
Lazarou, M.[Michalis],
Stathaki, T.[Tania],
Avrithis, Y.[Yannis],
Iterative label cleaning for transductive and semi-supervised
few-shot learning,
ICCV21(8731-8740)
IEEE DOI
2203
Manifolds, Codes, Semisupervised learning, Prediction algorithms,
Cleaning, Inference algorithms,
Recognition and classification
BibRef
Kang, D.[Dahyun],
Kwon, H.[Heeseung],
Min, J.[Juhong],
Cho, M.[Minsu],
Relational Embedding for Few-Shot Classification,
ICCV21(8802-8813)
IEEE DOI
2203
Training, Visualization, Tensors, Image recognition, Correlation,
Transforms, Transfer/Low-shot/Semi/Unsupervised Learning,
Representation learning
BibRef
Huang, K.[Kai],
Geng, J.[Jie],
Jiang, W.[Wen],
Deng, X.Y.[Xin-Yang],
Xu, Z.[Zhe],
Pseudo-loss Confidence Metric for Semi-supervised Few-shot Learning,
ICCV21(8651-8660)
IEEE DOI
2203
Measurement, Training, Weight measurement, Learning systems,
Estimation, Multitasking, Extraterrestrial measurements,
Recognition and classification
BibRef
Yang, L.[Lihe],
Zhuo, W.[Wei],
Qi, L.[Lei],
Shi, Y.H.[Ying-Huan],
Gao, Y.[Yang],
Mining Latent Classes for Few-shot Segmentation,
ICCV21(8701-8710)
IEEE DOI
2203
Training, Costs, Codes, Training data, Prototypes, Benchmark testing,
Transfer/Low-shot/Semi/Unsupervised Learning, Segmentation, grouping and shape
BibRef
Fei, N.Y.[Nan-Yi],
Gao, Y.Z.[Yi-Zhao],
Lu, Z.W.[Zhi-Wu],
Xiang, T.[Tao],
Z-Score Normalization, Hubness, and Few-Shot Learning,
ICCV21(142-151)
IEEE DOI
2203
Visualization, Prototypes, Benchmark testing, Boosting,
Recognition and classification, Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Zhang, X.T.[Xue-Ting],
Meng, D.B.[De-Bin],
Gouk, H.[Henry],
Hospedales, T.M.[Timothy M.],
Shallow Bayesian Meta Learning for Real-World Few-Shot Recognition,
ICCV21(631-640)
IEEE DOI
2203
Training, Representation learning, Measurement, Uncertainty,
Memory management, Feature extraction,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Bateni, P.[Peyman],
Barber, J.[Jarred],
van de Meent, J.W.[Jan-Willem],
Wood, F.[Frank],
Enhancing Few-Shot Image Classification with Unlabelled Examples,
WACV22(1597-1606)
IEEE DOI
2202
Training, Codes, Computational modeling,
Benchmark testing, Feature extraction, Data mining, Transfer,
Semi- and Un- supervised Learning
BibRef
Zhang, H.G.[Hong-Guang],
Koniusz, P.[Piotr],
Jian, S.[Songlei],
Li, H.D.[Hong-Dong],
Torr, P.H.S.[Philip H. S.],
Rethinking Class Relations: Absolute-relative Supervised and
Unsupervised Few-shot Learning,
CVPR21(9427-9436)
IEEE DOI
2111
Training, Learning systems, Protocols, Annotations,
Animals, Semantics
BibRef
Chen, Z.Y.[Zheng-Yu],
Ge, J.X.[Ji-Xie],
Zhan, H.[Heshen],
Huang, S.[Siteng],
Wang, D.L.[Dong-Lin],
Pareto Self-Supervised Training for Few-Shot Learning,
CVPR21(13658-13667)
IEEE DOI
2111
Training, Pareto optimization, Benchmark testing,
Space exploration, Task analysis
BibRef
Chen, Z.T.[Zi-Tian],
Maji, S.[Subhransu],
Learned-Miller, E.G.[Erik G.],
Shot in the Dark: Few-Shot Learning with No Base-Class Labels,
LLID21(2662-2671)
IEEE DOI
2109
Supervised learning, Robustness
BibRef
Nguyen, K.[Khoi],
Todorovic, S.[Sinisa],
A Self-supervised GAN for Unsupervised Few-shot Object Recognition,
ICPR21(3225-3231)
IEEE DOI
2105
Training, Image coding, Performance gain, Probabilistic logic,
Object recognition, Image reconstruction
BibRef
Liu, X.Y.[Xin-Yue],
Liu, P.X.[Peng-Xin],
Zong, L.L.[Lin-Lin],
Transductive Prototypical Network For Few-Shot Classification,
ICIP20(1671-1675)
IEEE DOI
2011
Prototypes, Training, Testing, Task analysis,
Neural networks, Semisupervised learning, Few-shot learning,
transductive learning
BibRef
Su, J.C.[Jong-Chyi],
Maji, S.[Subhransu],
Hariharan, B.[Bharath],
When Does Self-supervision Improve Few-shot Learning?,
ECCV20(VII:645-666).
Springer DOI
2011
BibRef
Monnier, T.[Tom],
Vincent, E.[Elliot],
Ponce, J.[Jean],
Aubry, M.[Mathieu],
Unsupervised Layered Image Decomposition into Object Prototypes,
ICCV21(8620-8630)
IEEE DOI
2203
Social networking (online), Computational modeling, Prototypes,
Predictive models, Benchmark testing, Image decomposition,
Visual reasoning and logical representation
BibRef
Yu, Z.,
Chen, L.,
Cheng, Z.,
Luo, J.,
TransMatch: A Transfer-Learning Scheme for Semi-Supervised Few-Shot
Learning,
CVPR20(12853-12861)
IEEE DOI
2008
Feature extraction, Training, Task analysis,
Semisupervised learning, Data models, Entropy, Data mining
BibRef
Zhu, H.[Hao],
Koniusz, P.[Piotr],
EASE: Unsupervised Discriminant Subspace Learning for Transductive
Few-Shot Learning,
CVPR22(9068-9078)
IEEE DOI
2210
Learning systems, Codes, Benchmark testing, Data structures,
Standards, Machine learning
BibRef
Simon, C.,
Koniusz, P.,
Nock, R.,
Harandi, M.,
Adaptive Subspaces for Few-Shot Learning,
CVPR20(4135-4144)
IEEE DOI
2008
Prototypes, Task analysis, Feature extraction, Neural networks,
Data models, Robustness, Machine learning
BibRef
Dutta, A.[Anjan],
Mancini, M.[Massimiliano],
Akata, Z.[Zeynep],
Concurrent Discrimination and Alignment for Self-Supervised Feature
Learning,
DeepMTL21(2189-2198)
IEEE DOI
2112
Learning systems, Visualization, Protocols, Image recognition,
Transfer learning, Semantics, Benchmark testing
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Cross-Domain Few-Shot Learning, Domain Adaption .