14.1.9.1 Cross-Domain Few-Shot Learning, Domain Adaption

Chapter Contents (Back)
Cross-Domain Learning. Domain Adaption.
See also Domain Adaptation.
See also Few Shot Learning.
See also One Shot Learning.

Liu, G.[Ge], Zhao, L.[Linglan], Fang, X.Z.[Xiang-Zhong],
PDA: Proxy-based domain adaptation for few-shot image recognition,
IVC(110), 2021, pp. 104164.
Elsevier DOI 2106
Few-shot image recognition, Domain adaptation, Few-shot learning, Transfer learning BibRef

Xu, R.J.[Ren-Jie], Xing, L.[Lei], Liu, B.[Baodi], Tao, D.P.[Da-Peng], Cao, W.J.[Wei-Jia], Liu, W.F.[Wei-Feng],
Cross-Domain Few-Shot classification via class-shared and class-specific dictionaries,
PR(144), 2023, pp. 109811.
Elsevier DOI 2310
Few-shot learning, Dictionary learning, Cross-Domain, Collaborative representation BibRef

Walsh, R.[Reece], Osman, I.[Islam], Shehata, M.S.[Mohamed S.],
Masked Embedding Modeling With Rapid Domain Adjustment for Few-Shot Image Classification,
IP(32), 2023, pp. 4907-4920.
IEEE DOI Code:
WWW Link. 2310
BibRef

Tian, P.Z.[Pin-Zhuo], Xie, S.R.[Shao-Rong],
An Adversarial Meta-Training Framework for Cross-Domain Few-Shot Learning,
MultMed(25), 2023, pp. 6881-6891.
IEEE DOI 2311
BibRef

Ji, F.F.[Fan-Fan], Yuan, X.T.[Xiao-Tong], Liu, Q.S.[Qing-Shan],
Soft Weight Pruning for Cross-Domain Few-Shot Learning With Unlabeled Target Data,
MultMed(26), 2024, pp. 6759-6769.
IEEE DOI 2404
Feature extraction, Task analysis, Self-supervised learning, Training, Data models, Data mining, Deep learning, soft weight pruning BibRef

Zhou, F.[Fei], Wang, P.[Peng], Zhang, L.[Lei], Wei, W.[Wei], Zhang, Y.N.[Yan-Ning],
Meta-Collaborative Comparison for Effective Cross-Domain Few-Shot Learning,
PR(156), 2024, pp. 110790.
Elsevier DOI 2408
BibRef
Earlier:
Revisiting Prototypical Network for Cross Domain Few-Shot Learning,
CVPR23(20061-20070)
IEEE DOI 2309
Cross-domain few-shot learning, Meta-learning, Deep neural network BibRef

Tang, H.J.[Hao-Jin], Yang, X.F.[Xiao-Fei], Tang, D.[Dong], Dong, Y.[Yiru], Zhang, L.[Li], Xie, W.X.[Wei-Xin],
Tensor-Based Few-Shot Learning for Cross-Domain Hyperspectral Image Classification,
RS(16), No. 22, 2024, pp. 4149.
DOI Link 2412
BibRef

Kong, D.C.[De-Chen], Yang, X.[Xi], Wang, N.N.[Nan-Nan], Gao, X.B.[Xin-Bo],
Perspectives of Calibrated Adaptation for Few-Shot Cross-Domain Classification,
CirSysVideo(35), No. 3, March 2025, pp. 2410-2421.
IEEE DOI 2503
Feature extraction, Adaptation models, Few shot learning, Context modeling, Metalearning, Data models, Circuits and systems, feature adaptation BibRef

Wang, W.[Wei], Wang, M.Z.[Meng-Zhu], Huang, C.[Chao], Wang, C.[Cong], Mu, J.[Jie], Nie, F.P.[Fei-Ping], Cao, X.C.[Xiao-Chun],
Optimal Graph Learning-Based Label Propagation for Cross-Domain Image Classification,
IP(34), 2025, pp. 1529-1544.
IEEE DOI 2503
Noise, Semisupervised learning, Germanium, Training, Iterative methods, Image classification, Harmonic analysis, locally discriminative structure BibRef


Xiao, K.[Kangyu], Wang, Z.[Zilei], Li, J.J.[Jun-Jie],
Semantic-guided Robustness Tuning for Few-shot Transfer Across Extreme Domain Shift,
ECCV24(XLIX: 303-320).
Springer DOI 2412
BibRef

Tang, Y.M.[Yu-Ming], Peng, Y.X.[Yi-Xing], Meng, J.[Jingke], Zheng, W.S.[Wei-Shi],
Rethinking Few-shot Class-incremental Learning: Learning from Yourself,
ECCV24(LXI: 108-128).
Springer DOI 2412
BibRef

Yue, L.[Ling], Feng, L.[Lin], Shuai, Q.P.[Qiu-Ping], Xu, L.X.[Ling-Xiao], Li, Z.[Zihao],
Diversified Task Augmentation with Redundancy Reduction for Cross-Domain Few-Shot Learning,
ICIP24(631-637)
IEEE DOI 2411
Training, Metalearning, Adaptation models, Redundancy, Transforms, Data models, Few-shot learning, meta-learning, task augmentation BibRef

Zou, Y.X.[Yi-Xiong], Liu, Y.C.[Yi-Cong], Hu, Y.[Yiman], Li, Y.H.[Yu-Hua], Li, R.X.[Rui-Xuan],
Flatten Long-Range Loss Landscapes for Cross-Domain Few-Shot Learning,
CVPR24(23575-23584)
IEEE DOI 2410
Training, Analytical models, Interpolation, Computational modeling, Training data, Data models BibRef

Perera, R.[Rashindrie], Halgamuge, S.[Saman],
Discriminative Sample-Guided and Parameter-Efficient Feature Space Adaptation for Cross-Domain Few-Shot Learning,
CVPR24(23794-23804)
IEEE DOI Code:
WWW Link. 2410
Training, Adaptation models, Sensitivity, Codes, Few shot learning, Cross-domain learning, Few-shot learning, Parameter efficiency BibRef

Xu, H.[Huali], Zhi, S.F.[Shuai-Feng], Liu, L.[Li],
Cross-Domain Few-Shot Classification Via Inter-Source Stylization,
ICIP23(565-569)
IEEE DOI 2312
BibRef

Ma, T.Y.[Tian-Yi], Sun, Y.F.[Yi-Fan], Yang, Z.X.[Zong-Xin], Yang, Y.[Yi],
ProD: Prompting-to-disentangle Domain Knowledge for Cross-domain Few-shot Image Classification,
CVPR23(19754-19763)
IEEE DOI 2309
BibRef

Ma, Y.X.[Yi-Xiao], Li, F.Z.[Fan-Zhang],
Self-Challenging Mask for Cross-Domain Few-Shot Classification,
ICPR22(4456-4453)
IEEE DOI 2212
Measurement, Visualization, Analytical models, Feature extraction, Robustness, Power capacitors BibRef

Chen, W.T.[Wen-Tao], Zhang, Z.[Zhang], Wang, W.[Wei], Wang, L.[Liang], Wang, Z.[Zilei], Tan, T.N.[Tie-Niu],
Cross-Domain Cross-Set Few-Shot Learning via Learning Compact and Aligned Representations,
ECCV22(XX:383-399).
Springer DOI 2211
BibRef

Hu, Y.[Yanxu], Ma, A.J.[Andy J.],
Adversarial Feature Augmentation for Cross-domain Few-Shot Classification,
ECCV22(XX:20-37).
Springer DOI 2211
BibRef

Li, W.H.[Wei-Hong], Liu, X.L.[Xia-Lei], Bilen, H.[Hakan],
Cross-domain Few-shot Learning with Task-specific Adapters,
CVPR22(7151-7160)
IEEE DOI 2210
BibRef
Earlier:
Universal Representation Learning from Multiple Domains for Few-shot Classification,
ICCV21(9506-9515)
IEEE DOI 2203
Training, Analytical models, Systematics, Costs, Computational modeling, Estimation, retrieval. Uniform resource locators, Representation learning, Knowledge engineering, Visualization, Computer aided instruction, Recognition and classification BibRef

Liu, Y.B.[Yan-Bin], Lee, J.H.[Ju-Ho], Zhu, L.C.[Lin-Chao], Chen, L.[Ling], Shi, H.[Humphrey], Yang, Y.[Yi],
A Multi-Mode Modulator for Multi-Domain Few-Shot Classification,
ICCV21(8433-8442)
IEEE DOI 2203
Training, Extrapolation, Correlation, Computational modeling, Modulation, Information sharing, BibRef

Liang, Z.Y.[Zi-Yun], Gu, Y.[Yun], Yang, J.[Jie],
Hardmix: A Regularization Method to Mitigate the Large Shift in Few-Shot Domain Adaptation,
ICIP21(454-458)
IEEE DOI 2201
Training, Bridges, Image processing, Training data, Benchmark testing, Classification algorithms, Domain Adaptation, Mix-Up BibRef

Yue, X.Y.[Xiang-Yu], Zheng, Z.W.[Zang-Wei], Zhang, S.H.[Shang-Hang], Gao, Y.[Yang], Darrell, T.J.[Trevor J.], Keutzer, K.[Kurt], Vincentelli, A.S.[Alberto Sangiovanni],
Prototypical Cross-domain Self-supervised Learning for Few-shot Unsupervised Domain Adaptation,
CVPR21(13829-13839)
IEEE DOI 2111
Semantics, Predictive models, Benchmark testing BibRef

Sun, J.[Jiamei], Lapuschkin, S.[Sebastian], Samek, W.[Wojciech], Zhao, Y.Q.[Yun-Qing], Cheung, N.M.[Ngai-Man], Binder, A.[Alexander],
Explanation-Guided Training for Cross-Domain Few-Shot Classification,
ICPR21(7609-7616)
IEEE DOI 2105
Training, Heating systems, Visualization, Computational modeling, Predictive models, Power capacitors BibRef

Guan, J.[Jiechao], Zhang, M.[Manli], Lu, Z.W.[Zhi-Wu],
Large-scale Cross-domain Few-shot Learning,
ACCV20(III:474-491).
Springer DOI 2103
BibRef

Guo, Y.H.[Yun-Hui], Codella, N.C.[Noel C.], Karlinsky, L.[Leonid], Codella, J.V.[James V.], Smith, J.R.[John R.], Saenko, K.[Kate], Rosing, T.[Tajana], Feris, R.S.[Rogerio S.],
A Broader Study of Cross-domain Few-shot Learning,
ECCV20(XXVII:124-141).
Springer DOI 2011
BibRef

Dvornik, N.[Nikita], Schmid, C.[Cordelia], Mairal, J.[Julien],
Selecting Relevant Features from a Multi-domain Representation for Few-shot Classification,
ECCV20(X:769-786).
Springer DOI 2011
BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Deep Few Shot Learning .


Last update:Mar 17, 2025 at 20:02:03