14.1.4.6 One Shot Learning, Few Shot Learning

Chapter Contents (Back)
Small Sample Size. One-Shot Learning. Single Shot Learning. Few-Shot Learning. See also Zero-Shot Learning.

Fei-Fei, L.[Li], Fergus, R.[Rob], Perona, P.[Pietro],
One-Shot Learning of Object Categories,
PAMI(28), No. 4, April 2006, pp. 594-611.
IEEE DOI 0604
BibRef
Earlier:
A bayesian approach to unsupervised one-shot learning of object categories,
ICCV03(1134-1141).
IEEE DOI 0311
BibRef

Wang, G.[Gang], Zhang, Y.[Ye], Fei-Fei, L.[Li],
Using Dependent Regions for Object Categorization in a Generative Framework,
CVPR06(II: 1597-1604).
IEEE DOI 0606
BibRef

Fei-Fei, L.[Li], Fergus, R.[Rob], Perona, P.[Pietro],
Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories,
CVIU(106), No. 1, April 2007, pp. 59-70.
Elsevier DOI 0704
BibRef
Earlier: GenModel04(178).
IEEE DOI 0406
Object recognition; Categorization; Generative model; Incremental learning; Bayesian model BibRef

Fei-Fei, L.[Li], Perona, P.[Pietro],
A Bayesian Hierarchical Model for Learning Natural Scene Categories,
CVPR05(II: 524-531).
IEEE DOI 0507
BibRef

Rodner, E.[Erik], Denzler, J.[Joachim],
Learning with few examples for binary and multiclass classification using regularization of randomized trees,
PRL(32), No. 2, 15 January 2011, pp. 244-251.
Elsevier DOI 1101
BibRef
Earlier:
One-Shot Learning of Object Categories Using Dependent Gaussian Processes,
DAGM10(232-241).
Springer DOI 1009
BibRef
Earlier:
Randomized Probabilistic Latent Semantic Analysis for Scene Recognition,
CIARP09(945-953).
Springer DOI 0911
BibRef
Earlier:
Learning with Few Examples by Transferring Feature Relevance,
DAGM09(252-261).
Springer DOI 0909
Feature relevance from related tasks. Use as prior distribution. Object categorization; Randomized trees; Few examples; Interclass transfer; Transfer learning BibRef

Haase, D.[Daniel], Rodner, E.[Erid], Denzler, J.[Joachim],
Instance-Weighted Transfer Learning of Active Appearance Models,
CVPR14(1426-1433)
IEEE DOI 1409
active appearance models BibRef

Rahman, S.[Shafin], Khan, S.[Salman], Porikli, F.M.[Fatih M.],
A Unified Approach for Conventional Zero-Shot, Generalized Zero-Shot, and Few-Shot Learning,
IP(27), No. 11, November 2018, pp. 5652-5667.
IEEE DOI 1809
Semantics, Visualization, Cats, Rats, Seals, Measurement, Task analysis, Zero-shot learning, few-shot learning, class adaptive principal direction BibRef

Rahman, S.[Shafin], Khan, S.[Salman], Porikli, F.M.[Fatih M.],
Zero-Shot Object Detection: Learning to Simultaneously Recognize and Localize Novel Concepts,
ACCV18(I:547-563).
Springer DOI 1906
BibRef

Rahman, S.[Shafin], Khan, S.[Salman], Barnes, N.,
Deep0Tag: Deep Multiple Instance Learning for Zero-Shot Image Tagging,
MultMed(22), No. 1, January 2020, pp. 242-255.
IEEE DOI 2001
BibRef
Earlier: A1, A2, Only:
Deep Multiple Instance Learning for Zero-Shot Image Tagging,
ACCV18(I:530-546).
Springer DOI 1906
Deep learning, Multiple instance learning, Feature pooling, Object detection, Zero-shot tagging BibRef

Zhuang, S.[Shuo], Wang, P.[Ping], Jiang, B.[Boran], Wang, G.[Gang], Wang, C.[Cong],
A Single Shot Framework with Multi-Scale Feature Fusion for Geospatial Object Detection,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Zheng, Y.[Yan], Wang, R.[Ronggui], Yang, J.[Juan], Xue, L.X.[Li-Xia], Hu, M.[Min],
Principal characteristic networks for few-shot learning,
JVCIR(59), 2019, pp. 563-573.
Elsevier DOI 1903
Few-shot learning, Principal characteristic, Mixture loss function, Embedding network, Fine-tuning BibRef

Liu, B.[Bing], Yu, X.C.[Xu-Chu], Yu, A.Z.[An-Zhu], Zhang, P.Q.[Peng-Qiang], Wan, G.[Gang], Wang, R.R.[Rui-Rui],
Deep Few-Shot Learning for Hyperspectral Image Classification,
GeoRS(57), No. 4, April 2019, pp. 2290-2304.
IEEE DOI 1904
convolutional neural nets, geophysical image processing, hyperspectral imaging, image classification, residual learning BibRef

Gao, K.L.[Kui-Liang], Liu, B.[Bing], Yu, X.C.[Xu-Chu], Qin, J.C.[Jin-Chun], Zhang, P.Q.[Peng-Qiang], Tan, X.[Xiong],
Deep Relation Network for Hyperspectral Image Few-Shot Classification,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Woo, S.H.[Sang-Hyun], Hwang, S.[Soonmin], Jang, H.D.[Ho-Deok], Kweon, I.S.[In So],
Gated bidirectional feature pyramid network for accurate one-shot detection,
MVA(30), No. 4, June 2019, pp. 543-555.
Springer DOI 1906
BibRef

Chen, Z., Fu, Y., Zhang, Y., Jiang, Y., Xue, X., Sigal, L.,
Multi-Level Semantic Feature Augmentation for One-Shot Learning,
IP(28), No. 9, Sep. 2019, pp. 4594-4605.
IEEE DOI 1908
computer vision, feature extraction, learning (artificial intelligence), semantic networks, vectors, feature augmentation BibRef

Sihag, S., Tajer, A.,
Optimal Network Parameter Estimation: Single-Shot Exchange of Local Decisions,
SPLetters(26), No. 9, September 2019, pp. 1280-1284.
IEEE DOI 1909
costing, estimation theory, iterative methods, least mean squares methods, mean square error methods, networks BibRef

Zhang, L.L.[Ling-Ling], Liu, J.[Jun], Luo, M.[Minnan], Chang, X.J.[Xiao-Jun], Zheng, Q.H.[Qing-Hua], Hauptmann, A.G.[Alexander G.],
Scheduled sampling for one-shot learning via matching network,
PR(96), 2019, pp. 106962.
Elsevier DOI 1909
Scheduled sampling, Matching network, From easy to difficult, One-shot learning, Difficulty metric BibRef

Mai, S.[Sijie], Hu, H.F.[Hai-Feng], Xu, J.[Jia],
Attentive matching network for few-shot learning,
CVIU(187), 2019, pp. 102781.
Elsevier DOI 1909
Few-shot learning, Metric learning, Feature attention, Complementary Cosine loss BibRef

Ding, Y.M.[Yue-Ming], Tian, X.[Xia], Yin, L.R.[Li-Rong], Chen, X.[Xiaobing], Liu, S.[Shan], Yang, B.[Bo], Zheng, W.F.[Wen-Feng],
Multi-scale Relation Network for Few-shot Learning Based on Meta-learning,
CVS19(343-352).
Springer DOI 1912
BibRef

Chen, X., Wang, Y., Liu, J., Qiao, Y.,
DID: Disentangling-Imprinting-Distilling for Continuous Low-Shot Detection,
IP(29), 2020, pp. 7765-7778.
IEEE DOI 2007
Object detection, low-shot learning, continuous learning, deep learning, transfer learning BibRef

Zhang, C.J.[Chun-Jie], Li, C.H.[Cheng-Hua], Cheng, J.[Jian],
Few-Shot Visual Classification Using Image Pairs With Binary Transformation,
CirSysVideo(30), No. 9, September 2020, pp. 2867-2871.
IEEE DOI 2009
Training, Visualization, Testing, Correlation, Image representation, Automation, Convolutional neural networks, object categorization BibRef


Sbai, O.[Othman], Couprie, C.[Camille], Aubry, M.[Mathieu],
Impact of Base Dataset Design on Few-shot Image Classification,
ECCV20(XVI: 597-613).
Springer DOI 2010
BibRef

Liu, Y.Y.[Yao-Yao], Schiele, B.[Bernt], Sun, Q.[Qianru],
An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning,
ECCV20(XVI: 404-421).
Springer DOI 2010
BibRef

Guo, Z.[Zichao], Zhang, X.Y.[Xiang-Yu], Mu, H.[Haoyuan], Heng, W.[Wen], Liu, Z.[Zechun], Wei, Y.[Yichen], Sun, J.[Jian],
Single Path One-shot Neural Architecture Search with Uniform Sampling,
ECCV20(XVI: 544-560).
Springer DOI 2010
BibRef

Guo, Y., Cheung, N.,
Attentive Weights Generation for Few Shot Learning via Information Maximization,
CVPR20(13496-13505)
IEEE DOI 2008
Task analysis, Feature extraction, Mutual information, Generators, Mathematical model, Adaptation models, Linear programming BibRef

Liu, C., Xu, C., Wang, Y., Zhang, L., Fu, Y.,
An Embarrassingly Simple Baseline to One-shot Learning,
VL3W20(4005-4009)
IEEE DOI 2008
Training, Measurement, Task analysis, Testing, Machine learning, Support vector machines, Image recognition BibRef

Li, X., Lin, C., Li, C., Sun, M., Wu, W., Yan, J., Ouyang, W.,
Improving One-Shot NAS by Suppressing the Posterior Fading,
CVPR20(13833-13842)
IEEE DOI 2008
Computer architecture, Training, Fading channels, Bayes methods, Computational modeling, Data models, Search problems BibRef

Zhang, M., Li, H., Pan, S., Chang, X., Su, S.,
Overcoming Multi-Model Forgetting in One-Shot NAS With Diversity Maximization,
CVPR20(7806-7815)
IEEE DOI 2008
Computer architecture, Training, Task analysis, Optimization, Search methods, Solid modeling, Degradation BibRef

You, S., Huang, T., Yang, M., Wang, F., Qian, C., Zhang, C.,
GreedyNAS: Towards Fast One-Shot NAS With Greedy Supernet,
CVPR20(1996-2005)
IEEE DOI 2008
Training, Computer architecture, Task analysis, Graphics processing units, Hardware, Computer vision, Estimation BibRef

Zhang, C.[Chi], Cai, Y.J.[Yu-Jun], Lin, G.S.[Guo-Sheng], Shen, C.H.[Chun-Hua],
DeepEMD: Few-Shot Image Classification With Differentiable Earth Mover's Distance and Structured Classifiers,
CVPR20(12200-12210)
IEEE DOI 2008
Optimal matching, Earth, Task analysis, Training, Measurement, Image representation, Neural networks BibRef

Elsken, T., Staffler, B., Metzen, J.H., Hutter, F.,
Meta-Learning of Neural Architectures for Few-Shot Learning,
CVPR20(12362-12372)
IEEE DOI 2008
Task analysis, Computer architecture, Training, Neural networks, Adaptation models, Standards, Machine learning BibRef

Li, A., Huang, W., Lan, X., Feng, J., Li, Z., Wang, L.,
Boosting Few-Shot Learning With Adaptive Margin Loss,
CVPR20(12573-12581)
IEEE DOI 2008
Task analysis, Training, Semantics, Measurement, Additives, Mars, Generators BibRef

Wang, Y., Xu, C., Liu, C., Zhang, L., Fu, Y.,
Instance Credibility Inference for Few-Shot Learning,
CVPR20(12833-12842)
IEEE DOI 2008
Training, Data models, Feature extraction, Prediction algorithms, Training data, Linear regression, Semisupervised learning BibRef

Yu, Z., Chen, L., Cheng, Z., Luo, J.,
TransMatch: A Transfer-Learning Scheme for Semi-Supervised Few-Shot Learning,
CVPR20(12853-12861)
IEEE DOI 2008
Feature extraction, Training, Task analysis, Semisupervised learning, Data models, Entropy, Data mining BibRef

Yang, L., Li, L., Zhang, Z., Zhou, X., Zhou, E., Liu, Y.,
DPGN: Distribution Propagation Graph Network for Few-Shot Learning,
CVPR20(13387-13396)
IEEE DOI 2008
Conferences, Computer vision, Pattern recognition BibRef

Tang, L., Wertheimer, D., Hariharan, B.,
Revisiting Pose-Normalization for Fine-Grained Few-Shot Recognition,
CVPR20(14340-14349)
IEEE DOI 2008
Feature extraction, Training, Task analysis, Birds, Heating systems, Standards, Semantics BibRef

Bateni, P., Goyal, R., Masrani, V., Wood, F., Sigal, L.,
Improved Few-Shot Visual Classification,
CVPR20(14481-14490)
IEEE DOI 2008
Feature extraction, Task analysis, Computer architecture, Euclidean distance, Prototypes, Computational modeling BibRef

Xue, Z., Xie, Z., Xing, Z., Duan, L.,
Relative Position and Map Networks in Few-shot Learning for Image Classification,
VL3W20(4032-4036)
IEEE DOI 2008
Measurement, Training, Feature extraction, Visualization, Task analysis, Neural networks, Computational modeling BibRef

Ye, H., Hu, H., Zhan, D., Sha, F.,
Few-Shot Learning via Embedding Adaptation With Set-to-Set Functions,
CVPR20(8805-8814)
IEEE DOI 2008
Task analysis, Visualization, Adaptation models, Feature extraction, Cats, Prototypes, Training BibRef

Zhou, L., Cui, P., Jia, X., Yang, S., Tian, Q.,
Learning to Select Base Classes for Few-Shot Classification,
CVPR20(4623-4632)
IEEE DOI 2008
Optimization, Testing, Data models, Training data, Adaptation models, Training, Bayes methods BibRef

Simon, C., Koniusz, P., Nock, R., Harandi, M.,
Adaptive Subspaces for Few-Shot Learning,
CVPR20(4135-4144)
IEEE DOI 2008
Prototypes, Task analysis, Feature extraction, Neural networks, Data models, Robustness, Machine learning BibRef

Fan, Q., Zhuo, W., Tang, C., Tai, Y.,
Few-Shot Object Detection With Attention-RPN and Multi-Relation Detector,
CVPR20(4012-4021)
IEEE DOI 2008
Object detection, Training, Task analysis, Detectors, Proposals, Semantics, Computer vision BibRef

Tao, X., Hong, X., Chang, X., Dong, S., Wei, X., Gong, Y.,
Few-Shot Class-Incremental Learning,
CVPR20(12180-12189)
IEEE DOI 2008
Power capacitors, Training, Task analysis, Topology, Adaptation models, Neural networks, Network topology BibRef

Jena, R., Halder, S.S., Sycara, K.,
MA3: Model Agnostic Adversarial Augmentation for Few Shot learning,
VL3W20(3966-3970)
IEEE DOI 2008
Task analysis, Training, Transforms, Standards, Neural networks, Data models BibRef

Li, K., Zhang, Y., Li, K., Fu, Y.,
Adversarial Feature Hallucination Networks for Few-Shot Learning,
CVPR20(13467-13476)
IEEE DOI 2008
Generators, Task analysis, Data models, Training, Measurement, Neural networks BibRef

Rahimpour, A., Qi, H.,
Class-Discriminative Feature Embedding For Meta-Learning based Few-Shot Classification,
WACV20(3168-3176)
IEEE DOI 2006
Task analysis, Measurement, Training, Prototypes, Predictive models, Machine learning, Data models BibRef

Mangla, P., Singh, M., Sinha, A., Kumari, N., Balasubramanian, V.N., Krishnamurthy, B.,
Charting the Right Manifold: Manifold Mixup for Few-shot Learning,
WACV20(2207-2216)
IEEE DOI 2006
Task analysis, Manifolds, Training, Feature extraction, Robustness, Neural networks, Adaptation models BibRef

Chen, P.F.[Peng-Fei], Yuan, M.L.[Ming-Lei], Lu, T.[Tong],
Multi-scale Comparison Network for Few-shot Learning,
MMMod20(II:3-13).
Springer DOI 2003
BibRef

Seo, S.[Seonguk], Seo, P.H.[Paul Hongsuck], Han, B.H.[Bo-Hyung],
Learning for Single-Shot Confidence Calibration in Deep Neural Networks Through Stochastic Inferences,
CVPR19(9022-9030).
IEEE DOI 2002
BibRef

Wang, X.[Xin], Yu, F.[Fisher], Wang, R.[Ruth], Darrell, T.[Trevor], Gonzalez, J.E.[Joseph E.],
TAFE-Net: Task-Aware Feature Embeddings for Low Shot Learning,
CVPR19(1831-1840).
IEEE DOI 2002
BibRef

Chen, Z.[Zitian], Fu, Y.W.[Yan-Wei], Wang, Y.X.[Yu-Xiong], Ma, L.[Lin], Liu, W.[Wei], Hebert, M.[Martial],
Image Deformation Meta-Networks for One-Shot Learning,
CVPR19(8672-8681).
IEEE DOI 2002
BibRef

Kim, J.[Junsik], Oh, T.H.[Tae-Hyun], Lee, S.[Seokju], Pan, F.[Fei], Kweon, I.S.[In So],
Variational Prototyping-Encoder: One-Shot Learning With Prototypical Images,
CVPR19(9454-9462).
IEEE DOI 2002
BibRef

Zhang, H.[Hongguang], Zhang, J.[Jing], Koniusz, P.[Piotr],
Few-Shot Learning via Saliency-Guided Hallucination of Samples,
CVPR19(2765-2774).
IEEE DOI 2002
BibRef

Zhang, C.[Chi], Lin, G.[Guosheng], Liu, F.[Fayao], Yao, R.[Rui], Shen, C.H.[Chun-Hua],
CANet: Class-Agnostic Segmentation Networks With Iterative Refinement and Attentive Few-Shot Learning,
CVPR19(5212-5221).
IEEE DOI 2002
BibRef

Chu, W.H.[Wen-Hsuan], Li, Y.J.[Yu-Jhe], Chang, J.C.[Jing-Cheng], Wang, Y.C.A.F.[Yu-Chi-Ang Frank],
Spot and Learn: A Maximum-Entropy Patch Sampler for Few-Shot Image Classification,
CVPR19(6244-6253).
IEEE DOI 2002
BibRef

Alfassy, A.[Amit], Karlinsky, L.[Leonid], Aides, A.[Amit], Shtok, J.[Joseph], Harary, S.[Sivan], Feris, R.[Rogerio], Giryes, R.[Raja], Bronstein, A.M.[Alex M.],
LaSO: Label-Set Operations Networks for Multi-Label Few-Shot Learning,
CVPR19(6541-6550).
IEEE DOI 2002
BibRef

Wertheimer, D.[Davis], Hariharan, B.[Bharath],
Few-Shot Learning With Localization in Realistic Settings,
CVPR19(6551-6560).
IEEE DOI 2002
BibRef

Wang, T.[Tao], Zhang, X.P.[Xiao-Peng], Yuan, L.[Li], Feng, J.[Jiashi],
Few-Shot Adaptive Faster R-CNN,
CVPR19(7166-7175).
IEEE DOI 2002
BibRef

Li, A.[Aoxue], Luo, T.[Tiange], Lu, Z.W.[Zhi-Wu], Xiang, T.[Tao], Wang, L.[Liwei],
Large-Scale Few-Shot Learning: Knowledge Transfer With Class Hierarchy,
CVPR19(7205-7213).
IEEE DOI 2002
BibRef

Li, W.B.[Wen-Bin], Wang, L.[Lei], Xu, J.[Jinglin], Huo, J.[Jing], Gao, Y.[Yang], Luo, J.B.[Jie-Bo],
Revisiting Local Descriptor Based Image-To-Class Measure for Few-Shot Learning,
CVPR19(7253-7260).
IEEE DOI 2002
BibRef

Schonfeld, E.[Edgar], Ebrahimi, S.[Sayna], Sinha, S.[Samarth], Darrell, T.[Trevor], Akata, Z.[Zeynep],
Generalized Zero- and Few-Shot Learning via Aligned Variational Autoencoders,
CVPR19(8239-8247).
IEEE DOI 2002
BibRef

Xian, Y.Q.[Yong-Qin], Choudhury, S.[Subhabrata], He, Y.[Yang], Schiele, B.[Bernt], Akata, Z.[Zeynep],
Semantic Projection Network for Zero- and Few-Label Semantic Segmentation,
CVPR19(8248-8257).
IEEE DOI 2002
BibRef

Lifchitz, Y.[Yann], Avrithis, Y.[Yannis], Picard, S.[Sylvaine], Bursuc, A.[Andrei],
Dense Classification and Implanting for Few-Shot Learning,
CVPR19(9250-9259).
IEEE DOI 2002
BibRef

Jamal, M.A.[Muhammad Abdullah], Qi, G.J.[Guo-Jun],
Task Agnostic Meta-Learning for Few-Shot Learning,
CVPR19(11711-11719).
IEEE DOI 2002
BibRef

Ye, M.[Meng], Guo, Y.H.[Yu-Hong],
Progressive Ensemble Networks for Zero-Shot Recognition,
CVPR19(11720-11728).
IEEE DOI 2002
BibRef

Atzmon, Y.[Yuval], Chechik, G.[Gal],
Adaptive Confidence Smoothing for Generalized Zero-Shot Learning,
CVPR19(11663-11672).
IEEE DOI 2002
BibRef

Kampffmeyer, M.[Michael], Chen, Y.[Yinbo], Liang, X.D.[Xiao-Dan], Wang, H.[Hao], Zhang, Y.[Yujia], Xing, E.P.[Eric P.],
Rethinking Knowledge Graph Propagation for Zero-Shot Learning,
CVPR19(11479-11488).
IEEE DOI 2002
BibRef

Tong, B.[Bin], Wang, C.[Chao], Klinkigt, M.[Martin], Kobayashi, Y.[Yoshiyuki], Nonaka, Y.[Yuuichi],
Hierarchical Disentanglement of Discriminative Latent Features for Zero-Shot Learning,
CVPR19(11459-11468).
IEEE DOI 2002
BibRef

Hascoet, T.[Tristan], Ariki, Y.[Yasuo], Takiguchi, T.[Tetsuya],
On Zero-Shot Recognition of Generic Objects,
CVPR19(9545-9553).
IEEE DOI 2002
BibRef

Xie, G.S.[Guo-Sen], Liu, L.[Li], Jin, X.B.[Xiao-Bo], Zhu, F.[Fan], Zhang, Z.[Zheng], Qin, J.[Jie], Yao, Y.Z.[Ya-Zhou], Shao, L.[Ling],
Attentive Region Embedding Network for Zero-Shot Learning,
CVPR19(9376-9385).
IEEE DOI 2002
BibRef

Paul, A.[Akanksha], Krishnan, N.C.[Narayanan C.], Munjal, P.[Prateek],
Semantically Aligned Bias Reducing Zero Shot Learning,
CVPR19(7049-7058).
IEEE DOI 2002
BibRef

Ding, Z.[Zhengming], Liu, H.[Hongfu],
Marginalized Latent Semantic Encoder for Zero-Shot Learning,
CVPR19(6184-6192).
IEEE DOI 2002
BibRef

Li, J.[Jin], Lan, X.[Xuguang], Liu, Y.[Yang], Wang, L.[Le], Zheng, N.N.[Nan-Ning],
Compressing Unknown Images With Product Quantizer for Efficient Zero-Shot Classification,
CVPR19(5458-5467).
IEEE DOI 2002
BibRef

Zhu, P.[Pengkai], Wang, H.[Hanxiao], Saligrama, V.[Venkatesh],
Generalized Zero-Shot Recognition Based on Visually Semantic Embedding,
CVPR19(2990-2998).
IEEE DOI 2002
BibRef

Pal, A.[Arghya], Balasubramanian, V.N.[Vineeth N.],
Zero-Shot Task Transfer,
CVPR19(2184-2193).
IEEE DOI 2002
BibRef

Sariyildiz, M.B.[Mert Bulent], Cinbis, R.G.[Ramazan Gokberk],
Gradient Matching Generative Networks for Zero-Shot Learning,
CVPR19(2163-2173).
IEEE DOI 2002
BibRef

Huang, H.[He], Wang, C.[Changhu], Yu, P.S.[Philip S.], Wang, C.D.[Chang-Dong],
Generative Dual Adversarial Network for Generalized Zero-Shot Learning,
CVPR19(801-810).
IEEE DOI 2002
BibRef

Li, J.J.[Jing-Jing], Jing, M.M.[Meng-Meng], Lu, K.[Ke], Ding, Z.M.[Zheng-Ming], Zhu, L.[Lei], Huang, Z.[Zi],
Leveraging the Invariant Side of Generative Zero-Shot Learning,
CVPR19(7394-7403).
IEEE DOI 2002
BibRef

Li, H.Y.[Hong-Yang], Eigen, D.[David], Dodge, S.[Samuel], Zeiler, M.[Matthew], Wang, X.G.[Xiao-Gang],
Finding Task-Relevant Features for Few-Shot Learning by Category Traversal,
CVPR19(1-10).
IEEE DOI 2002
BibRef

Kim, J.[Jongmin], Kim, T.[Taesup], Kim, S.[Sungwoong], Yoo, C.D.[Chang D.],
Edge-Labeling Graph Neural Network for Few-Shot Learning,
CVPR19(11-20).
IEEE DOI 2002
BibRef

Gidaris, S.[Spyros], Komodakis, N.[Nikos],
Generating Classification Weights With GNN Denoising Autoencoders for Few-Shot Learning,
CVPR19(21-30).
IEEE DOI 2002
BibRef

Sun, Q.R.[Qian-Ru], Liu, Y.Y.[Yao-Yao], Chua, T.S.[Tat-Seng], Schiele, B.[Bernt],
Meta-Transfer Learning for Few-Shot Learning,
CVPR19(403-412).
IEEE DOI 2002
BibRef

Pahde, F., Ostapenko, O., Hnichen, P.J., Klein, T., Nabi, M.,
Self-Paced Adversarial Training for Multimodal Few-Shot Learning,
WACV19(218-226)
IEEE DOI 1904
learning (artificial intelligence), neural nets, object recognition, Oxford-102 dataset, fine grained CUB dataset, Training data BibRef

Mehrotra, A., Dukkipati, A.,
Skip Residual Pairwise Networks With Learnable Comparative Functions for Few-Shot Learning,
WACV19(886-894)
IEEE DOI 1904
image representation, learning (artificial intelligence), mini-Imagenet dataset, skip residual pairwise networks, Data models BibRef

Pahde, F., Puscas, M., Wolff, J., Klein, T., Sebe, N., Nabi, M.,
Low-Shot Learning From Imaginary 3D Model,
WACV19(978-985)
IEEE DOI 1904
image classification, learning (artificial intelligence), neural nets, object recognition, set theory, Meta-Learning BibRef

Zhang, H., Koniusz, P.,
Power Normalizing Second-Order Similarity Network for Few-Shot Learning,
WACV19(1185-1193)
IEEE DOI 1904
computer vision, higher order statistics, image capture, image recognition, learning (artificial intelligence), protocols, Image recognition BibRef

Zhao, B.[Bo], Sun, X.W.[Xin-Wei], Hong, X.P.[Xiao-Peng], Yao, Y.[Yuan], Wang, Y.Z.[Yi-Zhou],
Zero-Shot Learning Via Recurrent Knowledge Transfer,
WACV19(1308-1317)
IEEE DOI 1904
graph theory, learning (artificial intelligence), object recognition, pattern clustering, learned SSS, Image edge detection BibRef

Zhang, L.[Lu], Yang, X.[Xu], Liu, Z.Y.[Zhi-Yong], Qi, L.[Lu], Zhou, H.[Hao], Chiu, C.[Charles],
Single Shot Feature Aggregation Network for Underwater Object Detection,
ICPR18(1906-1911)
IEEE DOI 1812
Feature extraction, Object detection, Detectors, Task analysis, Training, Semantics, Convolutional neural networks BibRef

Xu, P., Zhao, X., Huang, K.,
Densely Connected Single-Shot Detector,
ICPR18(2178-2183)
IEEE DOI 1812
Feature extraction, Detectors, Object detection, Convolution, Transforms, Task analysis, Pattern recognition BibRef

Gidaris, S., Komodakis, N.,
Dynamic Few-Shot Visual Learning Without Forgetting,
CVPR18(4367-4375)
IEEE DOI 1812
Training, Feature extraction, Generators, Training data, Visualization, Object recognition, Task analysis BibRef

Qiao, S., Liu, C., Shen, W., Yuille, A.,
Few-Shot Image Recognition by Predicting Parameters from Activations,
CVPR18(7229-7238)
IEEE DOI 1812
Training, Neural networks, Visualization, Training data, Linearity, Computer vision BibRef

Wang, Y., Girshick, R., Hebert, M., Hariharan, B.,
Low-Shot Learning from Imaginary Data,
CVPR18(7278-7286)
IEEE DOI 1812
Training, Strain, Visualization, Data visualization, Task analysis, Feature extraction, Machine vision BibRef

Zhu, L.C.[Lin-Chao], Yang, Y.[Yi],
Compound Memory Networks for Few-Shot Video Classification,
ECCV18(VII: 782-797).
Springer DOI 1810
BibRef

Zhao, F.[Fang], Zhao, J.[Jian], Yan, S.C.[Shui-Cheng], Feng, J.[Jiashi],
Dynamic Conditional Networks for Few-Shot Learning,
ECCV18(XV: 20-36).
Springer DOI 1810
BibRef

Lin, C., Wang, Y.F., Lei, C., Chen, K.,
Semantics-Guided Data Hallucination for Few-Shot Visual Classification,
ICIP19(3302-3306)
IEEE DOI 1910
Few-shot learning, deep learning, image classification, data hallucination BibRef

Chu, W., Wang, Y.F.,
Learning Semantics-Guided Visual Attention for Few-Shot Image Classification,
ICIP18(2979-2983)
IEEE DOI 1809
Task analysis, Training, Feature extraction, Visualization, Semantics, Generators, Silicon, Few-shot learning, image classification BibRef

Pahde, F.[Frederik], Nabi, M.[Main], Klein, T.[Tassila], Jahnichen, P.[Patrick],
Discriminative Hallucination for Multi-Modal Few-Shot Learning,
ICIP18(156-160)
IEEE DOI 1809
Training, Visualization, Birds, Machine learning, Training data, Task analysis, Few-Shot Learning, Multi-Modal, Fine-grained Recognition BibRef

Choi, J., Krishnamurthy, J., Kembhavi, A., Farhadi, A.,
Structured Set Matching Networks for One-Shot Part Labeling,
CVPR18(3627-3636)
IEEE DOI 1812
Labeling, Training, Task analysis, Visualization, Predictive models, Cognition, Semantics BibRef

Cai, Q., Pan, Y., Yao, T., Yan, C., Mei, T.,
Memory Matching Networks for One-Shot Image Recognition,
CVPR18(4080-4088)
IEEE DOI 1812
Training, Image recognition, Memory modules, Task analysis, Optimization, Knowledge engineering, Neural networks BibRef

Qi, H., Brown, M., Lowe, D.G.,
Low-Shot Learning with Imprinted Weights,
CVPR18(5822-5830)
IEEE DOI 1812
Training, Neural networks, Semantics, Google, Training data, Euclidean distance BibRef

Douze, M., Szlam, A., Hariharan, B., Jégou, H.,
Low-Shot Learning with Large-Scale Diffusion,
CVPR18(3349-3358)
IEEE DOI 1812
Sparse matrices, Semisupervised learning, Visualization, Diffusion processes, Training, Measurement, Image edge detection BibRef

Hariharan, B.[Bharath], Girshick, R.[Ross],
Low-Shot Visual Recognition by Shrinking and Hallucinating Features,
ICCV17(3037-3046)
IEEE DOI 1802
Recognize categories from very few examples. image recognition, learning (artificial intelligence), object recognition, feature hallucination, feature shrinking, Visualization BibRef

Wang, P.[Peng], Liu, L.Q.[Ling-Qiao], Shen, C.H.[Chun-Hua], Huang, Z.[Zi], van den Hengel, A.J.[Anton J.], Shen, H.T.[Heng Tao],
Multi-attention Network for One Shot Learning,
CVPR17(6212-6220)
IEEE DOI 1711
Detectors, Feature extraction, Image recognition, Image representation, Semantics, Training, Visualization BibRef

Xu, Z., Zhu, L., Yang, Y.,
Few-Shot Object Recognition from Machine-Labeled Web Images,
CVPR17(5358-5366)
IEEE DOI 1711
Google, Neural networks, Object recognition, Training, Visualization BibRef

Orrite, C.[Carlos], Rodriguez, M.[Mario], Medrano, C.[Carlos],
One-shot learning of temporal sequences using a distance dependent Chinese Restaurant Process,
ICPR16(2694-2699)
IEEE DOI 1705
Computational modeling, Encoding, Feature extraction, Hidden Markov models, Kernel, Videos BibRef

Sagawa, R., Shiba, Y., Hirukawa, T., Ono, S., Kawasaki, H., Furukawa, R.,
Automatic feature extraction using CNN for robust active one-shot scanning,
ICPR16(234-239)
IEEE DOI 1705
Cameras, Decoding, Encoding, Image color analysis, Image reconstruction, Shape, BibRef

Rodriguez, M.[Mario], Medrano, C.[Carlos], Herrero, E.[Elias], Orrite, C.[Carlos],
Spectral Clustering Using Friendship Path Similarity,
IbPRIA15(319-326).
Springer DOI 1506
BibRef

Yan, W.[Wang], Yap, J.[Jordan], Mori, G.[Greg],
Multi-Task Transfer Methods to Improve One-Shot Learning for Multimedia Event Detection,
BMVC15(xx-yy).
DOI Link 1601
BibRef

Tang, K.D.[Kevin D.], Tappen, M.F.[Marshall F.], Sukthankar, R.[Rahul], Lampert, C.H.[Christoph H.],
Optimizing one-shot recognition with micro-set learning,
CVPR10(3027-3034).
IEEE DOI 1006
Learn from single example. BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Data Augmentation, Generative Network, Convolutional Network .


Last update:Oct 19, 2020 at 15:02:28