14.5.10.8.3 U-Net, Convolutional Neural Networks

Chapter Contents (Back)
Convolutional Neural Networks. U-Net. Deep Nets. CNN. 2601
Deep net, pooling operations replaced by Upsampling. Should aid in using context.

Dong, L., He, L., Mao, M., Kong, G., Wu, X., Zhang, Q., Cao, X., Izquierdo, E.,
CUNet: A Compact Unsupervised Network For Image Classification,
MultMed(20), No. 8, August 2018, pp. 2012-2021.
IEEE DOI 1808
feature extraction, image classification, learning (artificial intelligence), neural nets, K-means BibRef

Kim, D.H.[Dae Ha], Lee, M.K.[Min Kyu], Lee, S.H.[Seung Hyun], Song, B.C.[Byung Cheol],
Macro unit-based convolutional neural network for very light-weight deep learning,
IVC(87), 2019, pp. 68-75.
Elsevier DOI 1906
BibRef
Earlier: A1, A3, A4, Only:
MUNet: Macro Unit-Based Convolutional Neural Network for Mobile Devices,
EfficientDeep18(1749-17498)
IEEE DOI 1812
Deep neural networks, Light-weight deep learning, Macro-unit. Convolution, Computational complexity, Mobile handsets, Neural networks, Performance evaluation BibRef

Hu, X.G.[Xue-Gang], Yang, H.G.[Hong-Guang],
DRU-net: a novel U-net for biomedical image segmentation,
IET-IPR(14), No. 1, January 2020, pp. 192-200.
DOI Link 1912
BibRef

Hao, S., Wang, W., Salzmann, M.,
Geometry-Aware Deep Recurrent Neural Networks for Hyperspectral Image Classification,
GeoRS(59), No. 3, March 2021, pp. 2448-2460.
IEEE DOI 2103
Logic gates, Recurrent neural networks, Feature extraction, Geometry, Hyperspectral imaging, Deep learning, U-shaped network (U-Net) BibRef

Du, C.[Chuan], Zhang, L.[Lei],
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Zhao, F.Q.[Fen-Qiang], Wu, Z.W.[Zheng-Wang], Wang, L.[Li], Lin, W.L.[Wei-Li], Gilmore, J.H.[John H.], Xia, S.R.[Shun-Ren], Shen, D.G.[Ding-Gang], Li, G.[Gang],
Spherical Deformable U-Net: Application to Cortical Surface Parcellation and Development Prediction,
MedImg(40), No. 4, April 2021, pp. 1217-1228.
IEEE DOI 2104
CNN on spherical representations. Convolution, Task analysis, Shape, Distortion, Biomedical imaging, Surface treatment, triangular mesh BibRef

Gao, H.Y.[Hong-Yang], Ji, S.W.[Shui-Wang],
Graph U-Nets,
PAMI(44), No. 9, September 2022, pp. 4948-4960.
IEEE DOI 2208
Task analysis, Topology, Feature extraction, Neural networks, Logic gates, Lattices, Graph neural networks, U-Net BibRef

Fan, X.S.[Xiang-Suo], Yan, C.[Chuan], Fan, J.L.[Jin-Long], Wang, N.[Nayi],
Improved U-Net Remote Sensing Classification Algorithm Fusing Attention and Multiscale Features,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Sun, L.[Le], Chen, Y.[Ying], Li, B.Z.[Bao-Zhu],
SISLU-Net: Spatial Information-Assisted Spectral Information Learning Unmixing Network for Hyperspectral Images,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link 2302
BibRef

Kirgo, M.[Maxime], Terrasse, G.[Guillaume], Thibault, G.[Guillaume], Ovsjanikov, M.[Maks],
ReVISOR: ResUNets with visibility and intensity for structured outlier removal,
PandRS(202), 2023, pp. 184-204.
Elsevier DOI 2308
Outlier detection, Deep learning, Point cloud semantic segmentation BibRef

Wei, S.Q.[Si-Qi], Liu, Y.F.[Ya-Fei], Li, M.S.[Meng-Shan], Huang, H.J.[Hai-Jun], Zheng, X.[Xin], Guan, L.X.[Li-Xin],
DCCaps-UNet: A U-Shaped Hyperspectral Semantic Segmentation Model Based on the Depthwise Separable and Conditional Convolution Capsule Network,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link 2307
BibRef

Nie, B.[Bofan], Gai, S.[Shan], Xiong, G.[Gonghe],
Color Image Denoising Using Reduced Biquaternion U-Network,
SPLetters(31), 2024, pp. 1119-1123.
IEEE DOI 2405
Deconvolution, Noise reduction, Feature extraction, Convolution, Image color analysis, Task analysis, Color, Color image denoising, dual attention mechanism BibRef

Gai, S.[Shan], Huang, X.[Xiang],
Reduced Biquaternion Convolutional Neural Network for Color Image Processing,
CirSysVideo(32), No. 3, March 2022, pp. 1061-1075.
IEEE DOI 2203

WWW Link. Code, CNN. Algebra, Color, Quaternions, Convolutional neural networks, Neural networks, Feature extraction, Convolution, color image classification BibRef

Zhao, H.Q.[Heng-Qian], Lu, Z.P.[Zheng-Pu], Sun, S.S.[Sha-Sha], Wang, P.[Pan], Jia, T.Y.[Tian-Yu], Xie, Y.[Yu], Xu, F.[Fei],
Classification of Large Scale Hyperspectral Remote Sensing Images Based on LS3EU-Net++,
RS(17), No. 5, 2025, pp. 872.
DOI Link 2503
BibRef

Huang, C.Y.[Cheng-Ying], Wu, Z.[Zhengda], Xi, H.[Heran], Zhu, J.H.[Jing-Hua],
kMaXU: Medical image segmentation U-Net with k-means Mask Transformer and contrastive cluster assignment,
PR(161), 2025, pp. 111274.
Elsevier DOI Code:
WWW Link. 2502
U-shaped network, Convolutional neural network, Mask Transformer, Medical image segmentation, Cluster assignments BibRef


AL-Qurri, A.[Ahmed], Almekkawy, M.[Mohamed],
Improved UNet++ Based on Kolmogorov-Arnold Convolutions,
ICIP25(905-910)
IEEE DOI 2601
Deep learning, Jacobian matrices, Image segmentation, Accuracy, Semantics, Neural networks, Convolutional neural networks, Kolmogorov-Arnold Network (KAN) BibRef

Yin, L.X.[Ling-Xiao], Tao, W.[Wei], Zhao, D.[Dongyue], Ito, T.[Tadayuki], Osa, K.[Kinya], Kato, M.[Masami], Chen, T.W.[Tse-Wei],
Unet--: Memory-efficient and Feature-enhanced Network Architecture Based on U-net with Reduced Skip-connections,
ACCV24(VII: 185-201).
Springer DOI 2412
BibRef

Anglada-Rotger, D.[David], Sala, J.[Julia], Marques, F.[Ferran], Salembier, P.[Philippe], Pardàs, M.[Montse],
Enhancing Ki-67 Cell Segmentation with Dual U-Net Models: A Step Towards Uncertainty-Informed Active Learning,
DEF-AI-MIA24(5026-5035)
IEEE DOI 2410
Measurement, Uncertainty, Monte Carlo methods, Image analysis, Annotations, Watersheds, Predictive models, Digital Pathology, Cell segmentation BibRef

Baumann, A.[Anton], Roßberg, T.[Thomas], Schmitt, M.[Michael],
Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty Estimation for Pixel-wise Regression,
Uncertainty23(4500-4508)
IEEE DOI 2401
BibRef

Tran, M.[Minh], Vo-Ho, V.K.[Viet-Khoa], Le, N.T.H.[Ngan T.H.],
3DConvCaps: 3DUnet with Convolutional Capsule Encoder for Medical Image Segmentation,
ICPR22(4392-4398)
IEEE DOI 2212
CNN features, Capsule for structure. Representation learning, Image segmentation, Visualization, Training data, Robustness, Task analysis BibRef

Paheding, S.[Sidike], Reyes, A.A.[Abel A.], Kasaragod, A.[Anush], Oommen, T.[Thomas],
GAF-NAU: Gramian Angular Field encoded Neighborhood Attention U-Net for Pixel-Wise Hyperspectral Image Classification,
PBVS22(408-416)
IEEE DOI 2210
Training, Deep learning, Transforms, Logic gates, Object recognition, Task analysis BibRef

Chitty-Venkata, K.T.[Krishna Teja], Somani, A.K.[Arun K.], Kothandaraman, S.[Sreenivas],
Searching Architecture and Precision for U-net based Image Restoration Tasks,
ICIP21(1989-1993)
IEEE DOI 2201
Deep learning, Measurement, Quantization (signal), Tensors, Computational modeling, Microprocessors, Mixed Precision BibRef

Wang, B.[Bowen], Li, L.Z.[Liang-Zhi], Verma, M.[Manisha], Nakashima, Y.[Yuta], Kawasaki, R.[Ryo], Nagahara, H.[Hajime],
MTUNet: Few-shot Image Classification with Visual Explanations,
RCV21(2294-2298)
IEEE DOI 2109
Knowledge engineering, Visualization, Computational modeling, Neural networks, Benchmark testing BibRef

Schönfeld, E., Schiele, B., Khoreva, A.,
A U-Net Based Discriminator for Generative Adversarial Networks,
CVPR20(8204-8213)
IEEE DOI 2008
Generators, Decoding, Training, Generative adversarial networks, Image segmentation, Computer architecture BibRef

Huang, J., Qu, L., Jia, R., Zhao, B.,
O2U-Net: A Simple Noisy Label Detection Approach for Deep Neural Networks,
ICCV19(3325-3333)
IEEE DOI 2004
learning (artificial intelligence), neural nets, probability, deep neural networks, human annotations, BibRef

Esser, P.[Patrick], Sutter, E.[Ekaterina],
A Variational U-Net for Conditional Appearance and Shape Generation,
CVPR18(8857-8866)
IEEE DOI 1812
Shape, Generators, Image generation, Standards, Image color analysis, Training, Footwear BibRef

Tang, Z.Q.[Zhi-Qiang], Peng, X.[Xi], Geng, S.J.[Shi-Jie], Wu, L.F.[Ling-Fei], Zhang, S.T.[Shao-Ting], Metaxas, D.N.[Dimitris N>],
Quantized Densely Connected U-Nets for Efficient Landmark Localization,
ECCV18(III: 348-364).
Springer DOI 1810
BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Convolutional Neural Networks, Design, Implementation Issues .


Last update:Jan 8, 2026 at 12:52:16