Dong, L.,
He, L.,
Mao, M.,
Kong, G.,
Wu, X.,
Zhang, Q.,
Cao, X.,
Izquierdo, E.,
CUNet: A Compact Unsupervised Network For Image Classification,
MultMed(20), No. 8, August 2018, pp. 2012-2021.
IEEE DOI
1808
feature extraction, image classification,
learning (artificial intelligence), neural nets,
K-means
BibRef
Kim, D.H.[Dae Ha],
Lee, M.K.[Min Kyu],
Lee, S.H.[Seung Hyun],
Song, B.C.[Byung Cheol],
Macro unit-based convolutional neural network for very light-weight
deep learning,
IVC(87), 2019, pp. 68-75.
Elsevier DOI
1906
BibRef
Earlier: A1, A3, A4, Only:
MUNet: Macro Unit-Based Convolutional Neural Network for Mobile
Devices,
EfficientDeep18(1749-17498)
IEEE DOI
1812
Deep neural networks, Light-weight deep learning, Macro-unit.
Convolution, Computational complexity,
Mobile handsets, Neural networks, Performance evaluation
BibRef
Hu, X.G.[Xue-Gang],
Yang, H.G.[Hong-Guang],
DRU-net: a novel U-net for biomedical image segmentation,
IET-IPR(14), No. 1, January 2020, pp. 192-200.
DOI Link
1912
BibRef
Hao, S.,
Wang, W.,
Salzmann, M.,
Geometry-Aware Deep Recurrent Neural Networks for Hyperspectral Image
Classification,
GeoRS(59), No. 3, March 2021, pp. 2448-2460.
IEEE DOI
2103
Logic gates, Recurrent neural networks, Feature extraction,
Geometry, Hyperspectral imaging, Deep learning,
U-shaped network (U-Net)
BibRef
Du, C.[Chuan],
Zhang, L.[Lei],
Adversarial Attack for SAR Target Recognition Based on
UNet-Generative Adversarial Network,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Zhao, F.Q.[Fen-Qiang],
Wu, Z.W.[Zheng-Wang],
Wang, L.[Li],
Lin, W.L.[Wei-Li],
Gilmore, J.H.[John H.],
Xia, S.R.[Shun-Ren],
Shen, D.G.[Ding-Gang],
Li, G.[Gang],
Spherical Deformable U-Net: Application to Cortical Surface
Parcellation and Development Prediction,
MedImg(40), No. 4, April 2021, pp. 1217-1228.
IEEE DOI
2104
CNN on spherical representations.
Convolution, Task analysis, Shape, Distortion,
Biomedical imaging, Surface treatment, triangular mesh
BibRef
Gao, H.Y.[Hong-Yang],
Ji, S.W.[Shui-Wang],
Graph U-Nets,
PAMI(44), No. 9, September 2022, pp. 4948-4960.
IEEE DOI
2208
Task analysis, Topology, Feature extraction,
Neural networks, Logic gates, Lattices, Graph neural networks, U-Net
BibRef
Fan, X.S.[Xiang-Suo],
Yan, C.[Chuan],
Fan, J.L.[Jin-Long],
Wang, N.[Nayi],
Improved U-Net Remote Sensing Classification Algorithm Fusing
Attention and Multiscale Features,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Sun, L.[Le],
Chen, Y.[Ying],
Li, B.Z.[Bao-Zhu],
SISLU-Net: Spatial Information-Assisted Spectral Information Learning
Unmixing Network for Hyperspectral Images,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Kirgo, M.[Maxime],
Terrasse, G.[Guillaume],
Thibault, G.[Guillaume],
Ovsjanikov, M.[Maks],
ReVISOR: ResUNets with visibility and intensity for structured
outlier removal,
PandRS(202), 2023, pp. 184-204.
Elsevier DOI
2308
Outlier detection, Deep learning, Point cloud semantic segmentation
BibRef
Wei, S.Q.[Si-Qi],
Liu, Y.F.[Ya-Fei],
Li, M.S.[Meng-Shan],
Huang, H.J.[Hai-Jun],
Zheng, X.[Xin],
Guan, L.X.[Li-Xin],
DCCaps-UNet: A U-Shaped Hyperspectral Semantic Segmentation Model
Based on the Depthwise Separable and Conditional Convolution Capsule
Network,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Nie, B.[Bofan],
Gai, S.[Shan],
Xiong, G.[Gonghe],
Color Image Denoising Using Reduced Biquaternion U-Network,
SPLetters(31), 2024, pp. 1119-1123.
IEEE DOI
2405
Deconvolution, Noise reduction, Feature extraction, Convolution,
Image color analysis, Task analysis, Color, Color image denoising,
dual attention mechanism
BibRef
Gai, S.[Shan],
Huang, X.[Xiang],
Reduced Biquaternion Convolutional Neural Network for Color Image
Processing,
CirSysVideo(32), No. 3, March 2022, pp. 1061-1075.
IEEE DOI
2203
WWW Link.
Code, CNN. Algebra, Color, Quaternions, Convolutional neural networks,
Neural networks, Feature extraction, Convolution,
color image classification
BibRef
Zhao, H.Q.[Heng-Qian],
Lu, Z.P.[Zheng-Pu],
Sun, S.S.[Sha-Sha],
Wang, P.[Pan],
Jia, T.Y.[Tian-Yu],
Xie, Y.[Yu],
Xu, F.[Fei],
Classification of Large Scale Hyperspectral Remote Sensing Images
Based on LS3EU-Net++,
RS(17), No. 5, 2025, pp. 872.
DOI Link
2503
BibRef
Huang, C.Y.[Cheng-Ying],
Wu, Z.[Zhengda],
Xi, H.[Heran],
Zhu, J.H.[Jing-Hua],
kMaXU: Medical image segmentation U-Net with k-means Mask Transformer
and contrastive cluster assignment,
PR(161), 2025, pp. 111274.
Elsevier DOI Code:
WWW Link.
2502
U-shaped network, Convolutional neural network,
Mask Transformer, Medical image segmentation, Cluster assignments
BibRef
Yin, L.X.[Ling-Xiao],
Tao, W.[Wei],
Zhao, D.[Dongyue],
Ito, T.[Tadayuki],
Osa, K.[Kinya],
Kato, M.[Masami],
Chen, T.W.[Tse-Wei],
Unet--: Memory-efficient and Feature-enhanced Network Architecture
Based on U-net with Reduced Skip-connections,
ACCV24(VII: 185-201).
Springer DOI
2412
BibRef
Anglada-Rotger, D.[David],
Sala, J.[Julia],
Marques, F.[Ferran],
Salembier, P.[Philippe],
Pardàs, M.[Montse],
Enhancing Ki-67 Cell Segmentation with Dual U-Net Models:
A Step Towards Uncertainty-Informed Active Learning,
DEF-AI-MIA24(5026-5035)
IEEE DOI
2410
Measurement, Uncertainty, Monte Carlo methods, Image analysis,
Annotations, Watersheds, Predictive models, Digital Pathology,
Cell segmentation
BibRef
Baumann, A.[Anton],
Roßberg, T.[Thomas],
Schmitt, M.[Michael],
Probabilistic MIMO U-Net: Efficient and Accurate Uncertainty
Estimation for Pixel-wise Regression,
Uncertainty23(4500-4508)
IEEE DOI
2401
BibRef
Tran, M.[Minh],
Vo-Ho, V.K.[Viet-Khoa],
Le, N.T.H.[Ngan T.H.],
3DConvCaps: 3DUnet with Convolutional Capsule Encoder for Medical
Image Segmentation,
ICPR22(4392-4398)
IEEE DOI
2212
CNN features, Capsule for structure.
Representation learning, Image segmentation, Visualization,
Training data, Robustness, Task analysis
BibRef
Paheding, S.[Sidike],
Reyes, A.A.[Abel A.],
Kasaragod, A.[Anush],
Oommen, T.[Thomas],
GAF-NAU: Gramian Angular Field encoded Neighborhood Attention U-Net
for Pixel-Wise Hyperspectral Image Classification,
PBVS22(408-416)
IEEE DOI
2210
Training, Deep learning, Transforms, Logic gates,
Object recognition, Task analysis
BibRef
Chitty-Venkata, K.T.[Krishna Teja],
Somani, A.K.[Arun K.],
Kothandaraman, S.[Sreenivas],
Searching Architecture and Precision for U-net based Image
Restoration Tasks,
ICIP21(1989-1993)
IEEE DOI
2201
Deep learning, Measurement, Quantization (signal), Tensors,
Computational modeling, Microprocessors,
Mixed Precision
BibRef
Wang, B.[Bowen],
Li, L.Z.[Liang-Zhi],
Verma, M.[Manisha],
Nakashima, Y.[Yuta],
Kawasaki, R.[Ryo],
Nagahara, H.[Hajime],
MTUNet: Few-shot Image Classification with Visual Explanations,
RCV21(2294-2298)
IEEE DOI
2109
Knowledge engineering, Visualization,
Computational modeling, Neural networks, Benchmark testing
BibRef
Schönfeld, E.,
Schiele, B.,
Khoreva, A.,
A U-Net Based Discriminator for Generative Adversarial Networks,
CVPR20(8204-8213)
IEEE DOI
2008
Generators, Decoding, Training,
Generative adversarial networks, Image segmentation, Computer architecture
BibRef
Huang, J.,
Qu, L.,
Jia, R.,
Zhao, B.,
O2U-Net: A Simple Noisy Label Detection Approach for Deep Neural
Networks,
ICCV19(3325-3333)
IEEE DOI
2004
learning (artificial intelligence), neural nets,
probability, deep neural networks, human annotations,
BibRef
Esser, P.[Patrick],
Sutter, E.[Ekaterina],
A Variational U-Net for Conditional Appearance and Shape Generation,
CVPR18(8857-8866)
IEEE DOI
1812
Shape, Generators, Image generation, Standards, Image color analysis,
Training, Footwear
BibRef
Tang, Z.Q.[Zhi-Qiang],
Peng, X.[Xi],
Geng, S.J.[Shi-Jie],
Wu, L.F.[Ling-Fei],
Zhang, S.T.[Shao-Ting],
Metaxas, D.N.[Dimitris N>],
Quantized Densely Connected U-Nets for Efficient Landmark Localization,
ECCV18(III: 348-364).
Springer DOI
1810
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Convolutional Neural Networks, Design, Implementation Issues .