You, S.[Shaodi],
Tan, R.T.[Robby T.],
Kawakami, R.[Rei],
Mukaigawa, Y.[Yasuhiro],
Ikeuchi, K.[Katsushi],
Adherent Raindrop Modeling, Detection and Removal in Video,
PAMI(38), No. 9, September 2016, pp. 1721-1733.
IEEE DOI
1609
BibRef
Earlier:
Raindrop Detection and Removal from Long Range Trajectories,
ACCV14(II: 569-585).
Springer DOI
1504
BibRef
Earlier: A1, A2, A3, A5, Only:
Adherent Raindrop Detection and Removal in Video,
CVPR13(1035-1042)
IEEE DOI
1309
BibRef
Machot, F.A.[Fadi Al],
Ali, M.[Mouhannad],
Mosa, A.H.[Ahmad Haj],
Schwarzlmüller, C.[Christopher],
Gutmann, M.[Markus],
Kyamakya, K.[Kyandoghere],
Real-time raindrop detection based on cellular neural networks for ADAS,
RealTimeIP(16), No. 4, August 2019, pp. 931-943.
Springer DOI
1908
BibRef
Peng, J.Y.[Jia-Yi],
Xu, Y.[Yong],
Chen, T.Y.[Tian-Yi],
Huang, Y.[Yan],
Single-image raindrop removal using concurrent channel-spatial
attention and long-short skip connections,
PRL(131), 2020, pp. 121-127.
Elsevier DOI
2004
Image recovery, Raindrop removal, Deep nerual networks,
Attention, Skip connection
BibRef
Alletto, S.,
Carlin, C.,
Rigazio, L.,
Ishii, Y.,
Tsukizawa, S.,
Adherent Raindrop Removal with Self-Supervised Attention Maps and
Spatio-Temporal Generative Adversarial Networks,
ADW19(2329-2338)
IEEE DOI
2004
image denoising, image motion analysis,
image restoration, neural nets, rain, supervised learning, weather
BibRef
Kim, J.[Jinah],
Huh, D.[Dong],
Kim, T.[Taekyung],
Kim, J.[Jaeil],
Yoo, J.[Jeseon],
Shim, J.S.[Jae-Seol],
Raindrop-Aware GAN: Unsupervised Learning for Raindrop-Contaminated
Coastal Video Enhancement,
RS(12), No. 20, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Guo, Y.,
Chen, J.,
Ren, X.,
Wang, A.,
Wang, W.,
Joint Raindrop and Haze Removal From a Single Image,
IP(29), 2020, pp. 9508-9519.
IEEE DOI
1806
Rain, Shape, Artificial neural networks,
Generative adversarial networks, Visualization,
visual attention
BibRef
Shao, M.W.[Ming-Wen],
Li, L.[Le],
Meng, D.Y.[De-Yu],
Zuo, W.M.[Wang-Meng],
Uncertainty Guided Multi-Scale Attention Network for Raindrop Removal
From a Single Image,
IP(30), 2021, pp. 4828-4839.
IEEE DOI
2105
BibRef
Luo, W.J.[Wen-Jie],
Lai, J.H.[Jian-Huang],
Xie, X.H.[Xiao-Hua],
Weakly Supervised Learning for Raindrop Removal on a Single Image,
CirSysVideo(31), No. 5, 2021, pp. 1673-1683.
IEEE DOI
2105
BibRef
Yan, W.[Wending],
Xu, L.[Lu],
Yang, W.H.[Wen-Han],
Tan, R.T.[Robby T.],
Feature-Aligned Video Raindrop Removal With Temporal Constraints,
IP(31), 2022, pp. 3440-3448.
IEEE DOI
2205
Optical imaging, Image restoration, Rain, Cameras, Convolution,
Training, Optical variables control, Low-level vision,
adherent raindrop removal
BibRef
Zini, S.[Simone],
Buzzelli, M.[Marco],
Laplacian encoder-decoder network for raindrop removal,
PRL(158), 2022, pp. 24-33.
Elsevier DOI
2205
Rain removal, Raindrop removal, Image restoration
BibRef
Yan, X.[Xu],
Loke, Y.R.[Yuan Ren],
RainGAN: Unsupervised Raindrop Removal via Decomposition and
Composition,
VAQuality22(14-23)
IEEE DOI
2202
Training, Codes, Machine vision, Conferences, Cameras, Automotive components
BibRef
Quan, R.[Ruijie],
Yu, X.[Xin],
Liang, Y.Z.[Yuan-Zhi],
Yang, Y.[Yi],
Removing Raindrops and Rain Streaks in One Go,
CVPR21(9143-9152)
IEEE DOI
2111
Bridges, Rain, Shape, Fuses, Network architecture
BibRef
Kokubo, Y.[Yoshihito],
Asada, S.[Shusaku],
Maruyama, H.[Hirotaka],
Koide, M.[Masaru],
Yamamoto, K.[Kohei],
Suetsugu, Y.[Yoshihisa],
Removing Raindrops from a Single Image using Synthetic Data,
ICPR21(2081-2088)
IEEE DOI
2105
Training, Image segmentation, Shape, Adhesives, Training data, Cameras,
Data models, Raindrop removal, Synthetic data
BibRef
Lin, J.,
Dai, L.,
X-NET For Single Image Raindrop Removal,
ICIP20(1003-1007)
IEEE DOI
2011
Image restoration, Decoding, Rain, Convolution, Training,
Image color analysis, Convolutional codes, Raindrop removal,
X-Net
BibRef
Quan, Y.,
Deng, S.,
Chen, Y.,
Ji, H.,
Deep Learning for Seeing Through Window With Raindrops,
ICCV19(2463-2471)
IEEE DOI
2004
convolutional neural nets, image restoration,
learning (artificial intelligence), glass window,
Machine learning
BibRef
Liu, Y.F.[Yun-Fei],
Li, Y.[Yu],
You, S.D.[Shao-Di],
Lu, F.[Feng],
Unsupervised Learning for Intrinsic Image Decomposition from a Single
Image,
CVPR20(3245-3254)
IEEE DOI
2008
Image decomposition, Unsupervised learning, Task analysis,
Supervised learning, Training data, Lighting, Training
BibRef
Hao, Z.X.[Zhi-Xiang],
You, S.D.[Shao-Di],
Li, Y.[Yu],
Li, K.M.[Kun-Ming],
Lu, F.[Feng],
Learning From Synthetic Photorealistic Raindrop for Single Image
Raindrop Removal,
PBDL19(4340-4349)
IEEE DOI
2004
cameras, image motion analysis, image sensors,
learning (artificial intelligence), object detection, rain,
computer vision
BibRef
Guo, T.,
Akcay, S.,
Adey, P.A.,
Breckon, T.P.,
On the Impact of Varying Region Proposal Strategies for Raindrop
Detection and Classification Using Convolutional Neural Networks,
ICIP18(3413-3417)
IEEE DOI
1809
Proposals, Automotive engineering,
Feature extraction, Visualization, Sensors, Image color analysis,
CNN
BibRef
Fouad, E.[Elhassouni],
Salma, A.[Alami],
Abdelhak, E.[Ezzine],
Modelisation of Raindrops Based on Declivity Principle,
CGiV16(249-252)
IEEE DOI
1608
automotive components
BibRef
Webster, D.D.[Dereck D.],
Breckon, T.P.[Toby P.],
Improved raindrop detection using combined shape and saliency
descriptors with scene context isolation,
ICIP15(4376-4380)
IEEE DOI
1512
all-weather computer vision
BibRef
Nashashibi, F.,
de Charrette, R.,
Lia, A.,
Detection of unfocused raindrops on a windscreen using low level image
processing,
ICARCV10(1410-1415).
IEEE DOI
1109
BibRef
Desvignes, M.[Michel],
Molinie, G.[Gilles],
Raindrops size from video and image processing,
ICIP12(1341-1344).
IEEE DOI
1302
BibRef
Wu, Q.[Qi],
Zhang, W.[Wende],
Kumar, B.V.K.V.[B.V.K. Vijaya],
Raindrop detection and removal using salient visual features,
ICIP12(941-944).
IEEE DOI
1302
BibRef
Roser, M.[Martin],
Geiger, A.[Andreas],
Video-based raindrop detection for improved image registration,
ObjectEvent09(570-577).
IEEE DOI
0910
BibRef
Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Snow Removal .