Dreschler, L., and
Nagel, H.H.,
Volumetric Model and 3D Trajectory of a Moving Car from Monocular
TV Frames Sequence of a Street Scene,
CGIP(20), No. 3, November 1982, pp. 199-228.
Elsevier DOI
BibRef
8211
And:
IJCAI81(692-697).
Relaxation.
Corner Detector.
BibRef
Earlier:
Using 'Affinity' for Extracting Images of Moving Objects from
TV-Frame Sequences,
Hamburg, Bericht 44, February 1978.
Polyhedral approximation of 3D object, using a modification of
Thompson's technique. Find feature points, track to the next
image, generate triangular patches (basically connect the near
points without crossing lines).
BibRef
Dreschler, L., and
Nagel, H.H.,
On the Selection of Critical Points and Local Curvature Extrema
of Region Boundaries for Interframe Matching,
ISPDSA83(457-470).
BibRef
8300
Westphal, H., and
Nagel, H.H.,
Towards the Derivation of Three-Dimensional Descriptions from
Image Sequences for Nonconvex Moving Objects,
CVGIP(34), No. 3, June 1986, pp. 302-320.
Elsevier DOI This extends the above paper from 1982, to incorporate concavities
and surface markings.
BibRef
8606
Westphal, H., and
Nagel, H.H.,
Exploiting Reflectance
Properties to Analyze Images of Moving Objects Needs Local Constraints,
CVGIP(38), No. 1, April 1987, pp. 90-98.
Elsevier DOI Some more analysis related to the two above papers to extend them to
curved surfaces from polyhedral surfaces.
BibRef
8704
Ibison, M.C.,
Zapalowski, L.,
Harris, C.G.,
Direct Surface Reconstruction from a Moving Sensor,
IVC(3), No. 4, November 1985, pp. 170-176.
Elsevier DOI
BibRef
8511
Nagel, H.H.,
From Image Sequences Towards Conceptual Descriptions,
IVC(6), No. 2, May 1988, pp. 59-74.
Elsevier DOI
BibRef
8805
Kollnig, H.,
Nagel, H.H.,
Otte, M.,
Association of Motion Verbs with Vehicle Movements Extracted from
Dense Optical Flow Fields,
ECCV94(B:338-347).
Springer DOI
BibRef
9400
Koller, D.,
Heinze, H., and
Nagel, H.H.,
Algorithmic Characterization of Vehicle Trajectories from
Image Sequences by Motion Verbs,
CVPR91(90-95).
IEEE DOI
BibRef
9100
Suorsa, R.E.,
Sridhar, B.,
A Parallel Implementation of a Multisensor Feature-Based
Range-Estimation Method,
RA(10), 1994, pp. 755-768.
BibRef
9400
Earlier:
CVPR93(379-385).
IEEE DOI Motion and structure from a sequence.
BibRef
Soni, T., and
Sridhar, B.,
Modelling Issues in Vision Based Aircraft Navigation During Landing,
WACV94(89-96).
IEEE Abstract.
BibRef
9400
Smith, P.N.,
Sridhar, B., and
Hussien, B.,
Vision-Based Range Estimation Using Helicopter Flight Data,
CVPR92(202-208).
IEEE DOI You know the helicopter motion, derive the structure of the scene.
BibRef
9200
Hung, Y.S.,
Ho, H.T.,
A Kalman Filter Approach to Direct Depth Estimation Incorporating
Surface Structure,
PAMI(21), No. 6, June 1999, pp. 570-575.
IEEE DOI
BibRef
9906
And:
Errata:
Corrections to 'A Kalman Filter Approach to Direct Depth Estimation
Incorporating Surface Structure',
PAMI(21), No. 10, October 1999, pp. 1101.
Pixel based depth from motion. Applied to navigation problems.
BibRef
Hu, Z.Z.[Zhao-Zheng],
Tan, Z.[Zheng],
Depth recovery and affine reconstruction under camera pure translation,
PR(40), No. 10, October 2007, pp. 2826-2836.
Elsevier DOI
0707
Depth recovery, Affine reconstruction, Camera pure translation;
Homography, Active vision
BibRef
Ramachandran, M.[Mahesh],
Veeraraghavan, A.[Ashok],
Chellappa, R.[Rama],
A Fast Bilinear Structure from Motion Algorithm Using a Video Sequence
and Inertial Sensors,
PAMI(33), No. 1, January 2011, pp. 186-193.
IEEE DOI
1011
BibRef
Earlier:
Fast Bilinear SfM with Side Information,
ICCV07(1-8).
IEEE DOI
0710
Use gravity (vertical) and height of the camera (i.e. from a vehicle mounted
camera). Simplifies the SfM equations.
BibRef
Kim, J.H.[Jae-Hak],
Li, H.D.[Hong-Dong],
Hartley, R.I.[Richard I.],
Motion Estimation for Nonoverlapping Multicamera Rigs:
Linear Algebraic and L_infty Geometric Solutions,
PAMI(32), No. 6, June 2010, pp. 1044-1059.
IEEE DOI
1004
BibRef
Earlier:
Motion estimation for multi-camera systems using global optimization,
CVPR08(1-8).
IEEE DOI
0806
BibRef
And: A2, A3, A1:
A linear approach to motion estimation using generalized camera models,
CVPR08(1-8).
IEEE DOI
0806
Egomotion from multicamera system for 2 positions.
One linear solution, one geometric solution.
See also Motion from 3D Line Correspondences: Linear and Non-Linear Solutions.
BibRef
Clipp, B.[Brian],
Kim, J.H.[Jae-Hak],
Frahm, J.M.[Jan-Michael],
Pollefeys, M.[Marc],
Hartley, R.I.[Richard I.],
Robust 6DOF Motion Estimation for Non-Overlapping, Multi-Camera Systems,
WACV08(1-8).
IEEE DOI
0801
BibRef
Zhang, K.X.[Kai-Xiang],
Chen, J.[Jian],
Li, Y.[Yang],
Zhang, X.F.[Xin-Fang],
Visual Tracking and Depth Estimation of Mobile Robots Without Desired
Velocity Information,
Cyber(50), No. 1, January 2020, pp. 361-373.
IEEE DOI
1910
Mobile robots, Trajectory tracking, Visualization, Cameras,
Estimation, Trajectory, Robot vision systems, Depth estimation,
visual trajectory tracking
BibRef
Kim, J.H.[Jae-Hean],
Choi, J.S.[Jin Sung],
Initial Closed-Form Solution to Mapping from Unknown Planar Motion of
an Omni-directional Vision Sensor,
ISVC14(II: 609-619).
Springer DOI
1501
BibRef
Klingner, B.[Bryan],
Martin, D.[David],
Roseborough, J.[James],
Street View Motion-from-Structure-from-Motion,
ICCV13(953-960)
IEEE DOI
1403
geometric computer vision. Generalized cameras, large scale images. Use
relative pose along path.
BibRef
Jacquet, B.[Bastien],
Hane, C.[Christian],
Koser, K.[Kevin],
Pollefeys, M.[Marc],
Real-World Normal Map Capture for Nearly Flat Reflective Surfaces,
ICCV13(713-720)
IEEE DOI
1403
Surface normal map capture.
Reflections of straight lines with moving camera.
BibRef
Zhu, M.L.[Meng-Long],
Ramalingam, S.[Srikumar],
Taguchi, Y.[Yuichi],
Garaas, T.[Tyler],
Monocular Visual Odometry and Dense 3D Reconstruction for On-Road
Vehicles,
CVVT12(II: 596-606).
Springer DOI
1210
BibRef
Zhou, H.Y.[Hui-Yu],
Schaefer, G.[Gerald],
Effective and Efficient Tracking and Ego-Motion Recovery for Mobile
Cameras,
PReMI09(345-350).
Springer DOI
0912
BibRef
Morita, T.,
Yasukawa, Y.,
Inamoto, Y.,
Uchiyama, T., and
Kawakami, S.,
Measurement in Three Dimensions by Motion
Stereo and Spherical Mapping,
CVPR89(422-428).
IEEE DOI Map the image
onto a sphere and translate the camera. This gives a point on a
great circle and 3-D can be derived.
BibRef
8900
Chang, Y.L.,
Aggarwal, J.K.,
Reconstructing 3D Lines from a Sequence of 2D Projections:
Representation and Estimation,
ICCV90(101-105).
IEEE DOI
BibRef
9000
Chang, Y.L., and
Aggarwal, J.K.,
3D Structure Reconstruction from an Ego Motion Sequence Using
Statistical Estimation and Detection Theory,
Motion91(268-273).
Predict features to detect
then combine feature matches with motion estimation, high level control.
BibRef
9100
Stephens, M.J.,
Blissett, R.J.,
Charnley, D.,
Sparks, E.P., and
Pike, J.M.,
Outdoor Vehicle Navigation Using Passive 3D Vision,
CVPR89(556-562).
IEEE DOI Basic structure from
motion using matching edges and corners and triangulation.
BibRef
8900
Chapter on Motion Analysis -- Low-Level, Image Level Analysis, Mosaic Generation, Super Resolution, Shape from Motion continues in
Matrix Factorization Approach to Motion and Structure .