Tomasi, C.[Carlo],
Shape and Motion from Image Streams: A Factorization Method,
CMU-CS-TR-91-172, September 1991.
BibRef
9109
Ph.D.Thesis (CS).
SVD.
Motion, Factorization. The thesis that combines all the other reports.
Break motion into Rotation and Structure (From the SVD
decomposition). Then solve for the two matricies and produce
the structure.
BibRef
Tomasi, C.[Carlo],
Kanade, T.[Takeo],
Shape and Motion from Image Streams:
A Factorization Method
2. Full Report on the Orthographic Case [Parts 2,8,10],
CMU-CS-TR-TR-104, January 1992.
Text:
PS File. Figures:
PS File.
BibRef
9201
Tomasi, C.[Carlo],
Kanade, T.[Takeo],
Shape and Motion from Image Streams: A Factorization Method
2. Point Features in 3D Motion,
CMU-CS-TR-91-105, January 1991.
PS File.
BibRef
9101
Tomasi, C., and
Kanade, T.,
Shape and Motion from Image Streams under Orthography:
A Factorization Method,
IJCV(9), No. 2, November 1992, pp. 137-154.
Springer DOI
BibRef
9211
Earlier:
The Factorization Method
for the Recovery of Shape and Motion from Image Streams,
DARPA92(459-472).
BibRef
And:
Factoring Images Sequences into Shape and Motion,
Motion91(21-28).
Combination of the series of reports. Motion is decomposed into
a rotation and structure matrix. Works for some kinds of
motion. The other papers (below) are all related to this work.
BibRef
Tomasi, C.,
Pictures and Trails: a New Framework for the Computation of
Shape and Motion from Perspective Image Sequences,
CVPR94(913-918).
IEEE DOI
BibRef
9400
Tomasi, C., and
Kanade, T.,
Shape and Motion from Image Streams:
A Factorization Method 1. Planar Motion,
CMU-CS-TR-90-166, CMU CS Dept., September 1990.
Decompose the image stream into shape and camera motion using
single scanline images.
BibRef
9009
Tomasi, C., and
Kanade, T.,
Shape and Motion from Image Streams: A Factorization Method
Part 3 - Detection and Tracking of Point Features,
CMU-CS-TR-91-132, CMU CS Dept., April 1991.
Given the small inter-frame distance (required), the Lucas and
Kanade tracking approach is best (
See also Iterative Image Registration Technique with an Application to Stereo Vision, An. ).
PS File.
Further developed by:
See also Good Features to Track.
BibRef
9104
Birchfield, S.T.[Stan T.],
KLT: An Implementation of the Kanade-Lucas-Tomasi Feature Tracker,
Online1997.
Code, Tracking.
WWW Link.
See also GPU_KLT: A GPU-based Implementation of the Kanade-Lucas-Tomasi Feature Tracker.
BibRef
9700
Weinshall, D., and
Tomasi, C.,
Linear and Incremental Acquisition of Invariant Shape Models
from Image Sequences,
PAMI(17), No. 5, May 1995, pp. 512-517.
IEEE DOI
BibRef
9505
Earlier:
ICCV93(675-682).
IEEE DOI Generate 3D models from the motion sequence.
See also Model-Based Invariants for 3-D Vision.
BibRef
Tomasi, C., and
Kanade, T.,
Shape and Motion without Depth,
ICCV90(91-95).
IEEE DOI
BibRef
9000
And:
DARPA90(258-270).
BibRef
And:
CMU-CS-TR-90-128, May 1990.
The shape (cylinder) is determined without depth or accurate
motion by tracking many points through several frames.
BibRef
Quan, L.[Long],
Kanade, T.,
Affine Structure from Line Correspondences with
Uncalibrated Affine Cameras,
PAMI(19), No. 8, August 1997, pp. 834-845.
IEEE DOI
9709
Motion, Three frames. Linear algorithm, 7 lines in 3 views.
Introduces a one-dimensional projective camera.
BibRef
Quan, L.,
Kanade, T.,
A Factorization Method for Shape and Motion from Line Correspondences,
CVPR96(803-808).
IEEE DOI Extension to Line features.
BibRef
9600
Costeira, J.P.[Joao P.],
Kanade, T.[Takeo],
A Multibody Factorization Method for Independently Moving-Objects,
IJCV(29), No. 3, September 1998, pp. 159-179.
DOI Link
9811
BibRef
Earlier:
A Multi-Body Factorization Method for Motion Analysis,
ICCV95(1071-1076).
IEEE DOI
BibRef
And:
ARPA96(1013-1026).
BibRef
And:
CMU-CS-TR-94-220. September 1994.
Factorization approach to handle separate objects.
Look for paper in:
HTML Version.
See also Estimating 3D shape from degenerate sequences with missing data.
BibRef
Morita, T.[Toshihiko], and
Kanade, T.[Takeo],
A Sequential Factorization Method for Recovering Shape and
Motion from Image Streams,
PAMI(19), No. 8, August 1997, pp. 858-867.
IEEE DOI
9709
BibRef
Earlier: A2, A1:
ARPA94(II:1177-1187).
BibRef
And: A2, A1:
CMU-CS-TR-94-158, May 1994.
SVD. Singular value Decomposition based method, in a sequential manner for
real time applications. SVD replaced with an updating computation of
three eigenvectors. Nearly as accurate (and more applicable to
real-time processing) as the original formulations.
PS File.
BibRef
Poelman, C.J.[Conrad J.],
Kanade, T.,
A Paraperspective Factorization Method for Shape and Motion Recovery,
PAMI(19), No. 3, March 1997, pp. 206-218.
IEEE DOI
9704
BibRef
Earlier:
A Paraperspective Factorization for Shape and Motion Recovery,
ECCV94(B:97-108).
Springer DOI
BibRef
And:
DARPA93(683-690).
BibRef
Earlier:
CMU-CS-TR-93-219, December 1993.
PS File.
BibRef
Earlier:
CMU-CS-TR-92-208, October 1992.
PS File. Entends the orthographic restriction.
BibRef
Poelman, C.J.[Conrad J.],
The Paraperspective and Projective Factorization Methods
for Recovering Shape and Motion,
CMU-CS-TR-95-173, July 1995.
BibRef
9507
Ph.D.Thesis, CS.
BibRef
Goldgof, D.B.,
Lee, H.,
Huang, T.S.,
Matching and Motion Estimation of Three-Dimensional Point and Line Sets
Using Eigenstructure without Correspondences,
PR(25), No. 3, March 1992, pp. 271-286.
Elsevier DOI
BibRef
9203
Lin, Z.C.,
Lee, H., and
Huang, T.S.,
Finding 3D Point Correspondences in Motion Estimation,
ICPR86(303-305).
BibRef
8600
Blostein, S.D., and
Huang, T.S.,
Algorithms for Motion Estimation Based on
Three-Dimensional Correspondences,
MU88(329-352).
Motion given depths in a straightforward technique (really just
generating the transformation that maps the points).
BibRef
8800
Lin, Z.C.,
Huang, T.S.,
Blostein, S.D.,
Lee, H., and
Margerum, E.A.,
Motion Estimation from 3-D Point Sets with and without Correspondences,
CVPR86(194-201).
Another version of some of the earlier papers, actually a
combination of 2 different papers.
BibRef
8600
Sim, P.G., and
Park, R.H.,
Anisotropic Hierarchical Motion Estimation Method Based
on Decomposition of the Functional Domain,
JVCIR(7), 1996, pp. 259-272.
BibRef
9600
Christy, S.[Stephane],
Horaud, R.[Radu],
Euclidean Shape and Motion from Multiple Perspective Views by
Affine Iterations,
PAMI(18), No. 11, November 1996, pp. 1098-1104.
IEEE DOI
9612
BibRef
And:
TRRR-2421, INRIA, December 1994.
PS File.
BibRef
Earlier:
Euclidean Reconstruction: From Paraperspective to Perspective,
ECCV96(II:129-140).
Springer DOI
Motion, Multiple Frames. Incrementally coverge to the solution.
Shape and motion from a sequence of images. Calibrated camera.
BibRef
Zaharescu, A.[Andrei],
Horaud, R.[Radu],
Robust Factorization Methods Using a Gaussian/Uniform Mixture Model,
IJCV(81), No. 3, March 2009, pp. xx-yy.
Springer DOI
0902
Factorization for both affine and perspective cameras.
BibRef
Zaharescu, A.[Andrei],
Horaud, R.[Radu],
Ronfard, R.[Remi],
Lefort, L.[Loic],
Multiple Camera Calibration Using Robust Perspective Factorization,
3DPVT06(504-511).
IEEE DOI
0606
BibRef
Soatto, S.[Stefano],
Perona, P.[Pietro],
Recursive 3-D Visual-Motion Estimation Using Subspace Constraints,
IJCV(22), No. 3, March/April 1997, pp. 235-259.
DOI Link
9706
BibRef
Earlier:
Visual motion estimation from point features: unified view,
ICIP95(III: 21-24).
IEEE DOI
9510
BibRef
Earlier:
Recursive estimation of camera motion from uncalibrated image sequences,
ICIP94(III: 58-62).
IEEE DOI
9411
BibRef
And:
Dynamic visual motion estimation from subspace constraints,
ICIP94(I: 333-337).
IEEE DOI
9411
BibRef
Oskarsson, M.[Magnus],
Zisserman, A.[Andrew],
Astrom, K.[Kalle],
Minimal Projective Reconstruction for Combinations of Points and Lines
in Three Views,
IVC(22), No. 10, 1 September 2004, pp. 777-785.
Elsevier DOI
0409
BibRef
Earlier:
BMVC02(Reconstruction).
0208
BibRef
Ĺström, K.,
Heyden, A.,
Kahl, F.,
Oskarsson, M.,
Structure and Motion from Lines under Affine Projections,
ICCV99(285-292).
IEEE DOI
BibRef
9900
Heyden, A.,
Berthilsson, R.,
Sparr, G.,
Recursive Structure and Motion from Image Sequences Using Shape and
Depth Spaces,
CVPR97(444-449).
IEEE DOI
9704
Subspace methods.
BibRef
Huynh, D.Q.,
Heyden, A.,
Recursive structure and motion estimation from noisy uncalibrated video
sequences,
ICPR08(1-5).
IEEE DOI
0812
BibRef
Huynh, D.Q.,
Hartley, R.I.,
Heyden, A.,
Outlier correction in image sequences for the affine camera,
ICCV03(585-590).
IEEE DOI
0311
For factorization approach, outliers break the SVD computations.
Iteratively correct the outliers.
BibRef
Ĺström, K.[Kalle],
Oskarsson, M.[Magnus],
Solutions and Ambiguities of the Structure and Motion Problem for 1D
Retinal Vision,
JMIV(12), No. 2, April 2000, pp. 121-135.
DOI Link
0002
BibRef
Earlier:
SCIA99(Computer Vision).
BibRef
Ĺström, K.[Kalle],
Kahl, F.[Fredrik],
Ambiguous Configurations for the 1D Structure and Motion Problem,
JMIV(18), No. 2, March 2003, pp. 191-203.
DOI Link
0301
BibRef
Earlier: A1, A2:
ICCV01(I: 184-189).
IEEE DOI
0106
BibRef
Kahl, F.[Fredrik],
Critical Motions and Ambiguous Euclidean Reconstructions in
Auto-Calibration,
ICCV99(469-475).
IEEE DOI
Calibration, Self.
BibRef
9900
Kahl, F.[Fredrik],
Triggs, B.[Bill],
Critical Motions in Euclidean Structure from Motion,
CVPR99(II: 366-372).
IEEE DOI Motions that lead to ambiguous 3-D reconstructions.
BibRef
9900
Kahl, F.[Fredrik],
Heyden, A.[Anders],
Euclidean Reconstruction and Auto-Calibration from Continuous Motion,
ICCV01(II: 572-577).
IEEE DOI
0106
BibRef
Heyden, A.[Anders],
Kahl, F.[Fredrik],
Direct Affine Reconstruction,
ICPR00(Vol I: 885-888).
IEEE DOI
0009
BibRef
Earlier:
Reconstruction from Affine Cameras Using Closure Constraints,
ICPR98(Vol I: 47-50).
IEEE DOI
9808
BibRef
Heyden, A.[Anders],
Kahl, F.[Fredrik],
Robust Self-Calibration and Euclidean Reconstruction
via Affine Approximation,
ICPR98(Vol I: 56-58).
IEEE DOI
9808
BibRef
Kahl, F.,
Hartley, R.I.,
Critical Curves and Surfaces for Euclidean Reconstruction,
ECCV02(II: 447 ff.).
Springer DOI
0205
See also Critical Configurations for Projective Reconstruction from Multiple Views.
BibRef
Kahl, F.[Fredrik],
Hartley, R.I.[Richard I.], and
Aström, K.[Kalle],
Critical Configurations for N-view Projective Reconstruction,
CVPR01(II:158-163).
IEEE DOI
0110
configuration of n >=3 cameras and m points all lying on
the intersection of two distinct ruled quadrics is critical.
BibRef
Kahl, F.[Fredrik],
Heyden, A.[Anders],
Affine Structure and Motion from Points, Lines and Conics,
IJCV(33), No. 3, September 1999, pp. 163-180.
DOI Link
BibRef
9909
Earlier:
Structure and motion from points, lines and conics with affine cameras,
ECCV98(I: 327).
Springer DOI
BibRef
Hammarstedt, P.[Pär],
Kahl, F.[Fredrik],
Heyden, A.[Anders],
Affine Reconstruction from Translational Motion under Various
Autocalibration Constraints,
JMIV(24), No. 2, March 2006, pp. 245-257.
Springer DOI
0605
BibRef
Earlier:
Affine structure from translational motion with varying and unknown
focal length,
ICPR04(I: 120-123).
IEEE DOI
0409
BibRef
Earlier:
Affine Structure from Translational Motion in Image Sequences,
SCIA03(387-394).
Springer DOI
0310
BibRef
Hammarstedt, P.,
Heyden, A.,
Euclidean reconstruction from translational motion using multiple
cameras,
3DIM05(352-359).
IEEE DOI
0508
BibRef
Nyberg, F.[Fredrik],
Dahl, O.[Ola],
Holst, J.[Jan],
Heyden, A.[Anders],
Using a Connected Filter for Structure Estimation in Perspective
Systems,
WDV06(270-284).
Springer DOI
0705
BibRef
Heyden, A.[Anders],
Dahl, O.[Ola],
Provably convergent on-line structure and motion estimation for
perspective systems,
WDV09(751-758).
IEEE DOI
0910
BibRef
And: A2, A1:
Dynamic structure from motion based on nonlinear adaptive observers,
ICPR08(1-4).
IEEE DOI
0812
Reformulate 3D feature point estimation as a constant, with time-varying 3D
position.
BibRef
Heyden, A.[Anders],
Nyberg, F.[Fredrik],
Dahl, O.[Ola],
Recursive Structure and Motion Estimation Based on Hybrid Matching
Constraints,
SCIA07(142-151).
Springer DOI
0706
BibRef
Nyberg, F.[Fredrik],
Heyden, A.[Anders],
Recursive Structure from Motion Using Hybrid Matching Constraints with
Error Feedback,
WDV06(285-298).
Springer DOI
0705
For real time tracking.
BibRef
Debrunner, C.H.[Christian H.],
Ahuja, N.[Narendra],
Segmentation and Factorization-Based Motion and Structure Estimation
for Long Image Sequences,
PAMI(20), No. 2, February 1998, pp. 206-211.
IEEE DOI
9803
BibRef
Earlier:
Motion and Structure Factorization and Segmentation of
Long Multiple Motion Image Sequences,
ECCV92(217-221).
Springer DOI
BibRef
And:
DARPA92(543-547).
Analysis of rigid motions of robot arm.
BibRef
Debrunner, C.H., and
Ahuja, N.,
A Direct Data Approximation Based Motion Estimation Algorithm,
ICPR90(I: 384-389).
IEEE DOI Several frames orthographic views.
BibRef
9000
Heyden, A.,
Berthilsson, R.,
Sparr, G.,
An iterative factorization method for projective structure and motion
from image sequences,
IVC(17), No. 13, 1 November 1999, pp. 981-991.
Elsevier DOI
9911
BibRef
Heyden, A.[Anders],
Projective Structure and Motion from Image Sequences
Using Subspace Methods,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Ben-Arie, J.,
Wang, Z.,
Estimation of 3-D Motion Using Eigen-Normalization and Expansion
Matching,
IP(9), No. 9, September 2000, pp. 1636-1640.
IEEE DOI
0008
See also Generalized Feature Extraction Using Expansion Matching.
BibRef
Sun, Z.H.[Zhao-Hui],
Tekalp, A.M.[A. Murat],
Navab, N.[Nassir],
Ramesh, V.[Visvanathan],
Interactive Optimization of 3D Shape and 2D Correspondence Using
Multiple Geometric Constraints via POCS,
PAMI(24), No. 4, April 2002, pp. 562-569.
IEEE DOI
0204
POCS (projections onto convex sets).
Structure from motion.
BibRef
Aguiar, P.M.Q.[Pedro M.Q.],
Moura, J.M.F.[Jose M.F.],
Rank 1 weighted factorization for 3D structure recovery:
Algorithms and performance analysis,
PAMI(25), No. 9, September 2003, pp. 1134-1149.
IEEE Abstract.
0309
BibRef
Earlier:
Factorization as a Rank 1 Problem,
CVPR99(I: 178-184).
IEEE DOI Recover the structure from a Rank 1 matrix rather than Rank 3.
Matrix has 2D motions.
BibRef
Quan, L.[Long],
Wei, Y.C.[Yi-Chen],
Lu, L.[Le],
Shum, H.Y.[Heung-Yeung],
Constrained planar motion analysis by decomposition,
IVC(22), No. 5, 1 May 2004, pp. 379-389.
Elsevier DOI
0403
Image plane permendicular to motion plane.
Decompose into two 1D images.
BibRef
Ma, Y.[Yi],
Huang, K.[Kun],
Vidal, R.[René],
Kosecká, J.[Jana],
Sastry, S.[Shankar],
Rank Conditions on the Multiple-View Matrix,
IJCV(59), No. 2, September 2004, pp. 115-137.
DOI Link
0404
BibRef
Miyagawa, I.,
Arakawa, K.,
Motion and Shape Recovery Based on Iterative Stabilization for Modest
Deviation from Planar Motion,
PAMI(28), No. 7, July 2006, pp. 1176-1181.
IEEE DOI
0606
Iteratively applies a factorization method based on planar motion.
BibRef
Li, J.[Jian],
Chellappa, R.[Rama],
Structure From Planar Motion,
IP(15), No. 11, November 2006, pp. 3466-3477.
IEEE DOI
0610
BibRef
Earlier:
A Factorization Method for Structure from Planar Motion,
Motion05(II: 154-159).
IEEE DOI
0502
BibRef
Brandt, S.S.[Sami S.],
Kolehmainen, V.,
Structure-From-Motion Without Correspondence From Tomographic
Projections by Bayesian Inversion Theory,
MedImg(26), No. 2, February 2007, pp. 238-248.
IEEE DOI
0702
BibRef
Earlier:
Motion without correspondence from tomographic projections by Bayesian
inversion theory,
CVPR04(I: 582-587).
IEEE DOI
0408
BibRef
Brandt, S.S.[Sami S.],
Robust Factorisation with Uncertainty Analysis,
ICPR06(I: 39-42).
IEEE DOI
0609
BibRef
Brandt, S.S.[Sami S.],
Koskenkorva, P.[Pekka],
Kannala, J.H.[Ju-Ho],
Heyden, A.[Anders],
Uncalibrated non-rigid factorisation with automatic shape basis
selection,
NORDIA09(352-359).
IEEE DOI
0910
BibRef
Oliensis, J.[John],
Hartley, R.I.[Richard I.],
Iterative Extensions of the Sturm/Triggs Algorithm:
Convergence and Nonconvergence,
PAMI(29), No. 12, December 2007, pp. 2217-2233.
IEEE DOI
0711
BibRef
Earlier:
ECCV06(IV: 214-227).
Springer DOI
0608
Discuss problems with:
See also Factorization Based Algorithm for Multi-Image Projective Structure and Motion, A. and
See also Provably-Convergent Iterative Methods for Projective Structure from Motion. Solution: add another step and it converges better.
BibRef
Quan, L.[Long],
Wang, J.D.[Jing-Dong],
Tan, P.[Ping],
Yuan, L.[Lu],
Image-Based Modeling by Joint Segmentation,
IJCV(75), No. 1, October 2007, pp. 135-150.
Springer DOI
0709
Kanade issue.
Trace factorization approaches to the original Kanade, etc. work and analyze.
BibRef
Xiao, J.X.[Jian-Xiong],
Quan, L.[Long],
Multiple view semantic segmentation for street view images,
ICCV09(686-693).
IEEE DOI
0909
BibRef
Xiao, J.X.[Jian-Xiong],
Wang, J.D.[Jing-Dong],
Tan, P.[Ping],
Quan, L.[Long],
Joint Affinity Propagation for Multiple View Segmentation,
ICCV07(1-7).
IEEE DOI
0710
BibRef
Liu, S.G.[Shi-Gang],
Wu, C.K.[Cheng-Ke],
Tang, L.[Li],
Jia, J.[Jing],
An Iterative Factorization Method Based on Rank 1 for Projective
Structure and Motion,
IEICE(E88-D), No. 9, September 2005, pp. 2183-2188.
DOI Link
0509
BibRef
Jia, H.J.[Hong-Jun],
Martinez, A.M.[Aleix M.],
Low-Rank Matrix Fitting Based on Subspace Perturbation Analysis with
Applications to Structure from Motion,
PAMI(31), No. 5, May 2009, pp. 841-854.
IEEE DOI
0903
BibRef
And:
Support Vector Machines in face recognition with occlusions,
CVPR09(136-141).
IEEE DOI
0906
BibRef
And:
Face recognition with occlusions in the training and testing sets,
FG08(1-6).
IEEE DOI
0809
Finding a robust low rank approximation.
The more distinct, the less noise changes things.
BibRef
Hu, Y.Q.[Yi-Qun],
Rajan, D.[Deepu],
Chia, L.T.[Liang-Tien],
Attention-from-motion:
A factorization approach for detecting attention objects in motion,
CVIU(113), No. 3, March 2009, pp. 319-331.
Elsevier DOI
0902
Motion Segmentation. Visual attention;
BibRef
Wang, G.H.[Guang-Hui],
Wu, Q.M.J.[Q.M. Jonathan],
Guide to Three Dimensional Structure and Motion Factorization,
Springer2011, ISBN: 978-0-85729-045-8
WWW Link.
Survey, Factorization.
Survey, Structure from Motion. Buy this book: Guide to Three Dimensional Structure and Motion Factorization (Advances in Pattern Recognition)
1010
BibRef
Civera, J.[Javier],
Davison, A.J.[Andrew J.],
Montiel, J.M.M.[José María Martínez],
Structure from Motion using the Extended Kalman Filter,
SpringerNew-York, 2012.
Solŕ, J.[Joan],
Vidal-Calleja, T.[Teresa],
Civera, J.[Javier],
Montiel, J.M.M.[José María Martínez],
Impact of Landmark Parametrization on Monocular EKF-SLAM with Points
and Lines,
IJCV(97), No. 3, May 2012, pp. 339-368.
WWW Link.
1203
BibRef
Li, K.,
Dai, Q.,
Xu, W.,
Yang, J.,
Jiang, J.,
Three-Dimensional Motion Estimation via Matrix Completion,
SMC-B(42), No. 2, April 2012, pp. 539-551.
IEEE DOI
1204
BibRef
Li, K.,
Yang, J.,
Jiang, J.,
Nonrigid Structure From Motion via Sparse Representation,
Cyber(45), No. 8, August 2015, pp. 1401-1413.
IEEE DOI
1506
Discrete cosine transforms
BibRef
Wang, G.H.[Guang-Hui],
Zelek, J.S.[John S.],
Wu, Q.M.J.[Q.M. Jonathan],
Structure and Motion Recovery Based on Spatial-and-Temporal-Weighted
Factorization,
CirSysVideo(22), No. 11, November 2012, pp. 1590-1603.
IEEE DOI
1211
BibRef
Earlier:
Spatial-and-Temporal-Weighted Structure from Motion,
CRV11(324-331).
IEEE DOI
1105
See also Single view based pose estimation from circle or parallel lines.
BibRef
Fakih, A.H.[Adel H.],
Zelek, J.S.[John S.],
On the Benefits of Using Gyroscope Measurements with Structure from
Motion,
M2SFA208(xx-yy).
0810
BibRef
Fakih, A.H.[Adel H.],
Asmar, D.[Daniel],
Zelek, J.S.[John S.],
Augmenting analytic SFM filters with frame-to-frame features,
CVIU(129), No. 1, 2014, pp. 1-14.
Elsevier DOI
1411
Structure from motion
BibRef
Fakih, A.H.[Adel H.],
Zelek, J.S.[John S.],
Extending Filter-based Structure from Motion to Large Baselines,
CRV11(332-339).
IEEE DOI
1105
BibRef
Earlier:
Efficient Augmentation of the EKF Structure from Motion with
Frame-to-Frame Features,
CRV10(47-54).
IEEE DOI
1005
BibRef
Earlier:
Scalable Near-Optimal Recursive Structure from Motion,
CRV09(23-30).
IEEE DOI
0905
BibRef
Earlier:
Structure from Motion:
Combining features correspondences and optical flow,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Earlier:
A Factorized Recursive Estimation of Structure and Motion from Image
Velocities,
CRV07(355-362).
IEEE DOI
0705
BibRef
Wang, G.H.[Guang-Hui],
Zelek, J.S.,
Wu, Q.M.J.,
Bajcsy, R.,
Robust rank-4 affine factorization for structure from motion,
WACV13(180-185).
IEEE DOI
1303
BibRef
Glashoff, K.[Klaus],
Bronstein, M.M.[Michael M.],
Structure from Motion Using Augmented Lagrangian Robust Factorization,
3DIMPVT12(379-386).
IEEE DOI
1212
BibRef
Angst, R.[Roland],
Pollefeys, M.[Marc],
Multilinear Factorizations for Multi-Camera Rigid Structure from Motion
Problems,
IJCV(103), No. 2, June 2013, pp. 240-266.
WWW Link.
1306
BibRef
Earlier:
5D Motion Subspaces for Planar Motions,
ECCV10(III: 144-157).
Springer DOI
1009
BibRef
Earlier:
Static multi-camera factorization using rigid motion,
ICCV09(1203-1210).
IEEE DOI
0909
BibRef
Jacquet, B.[Bastien],
Angst, R.[Roland],
Pollefeys, M.[Marc],
Articulated and Restricted Motion Subspaces and Their Signatures,
CVPR13(1506-1513)
IEEE DOI
1309
Factorization, Motion subspaces, Signature
BibRef
Cohen, A.[Andrea],
Zach, C.[Christopher],
Sinha, S.N.[Sudipta N.],
Pollefeys, M.[Marc],
Discovering and exploiting 3D symmetries in structure from motion,
CVPR12(1514-1521).
IEEE DOI
1208
BibRef
Angst, R.[Roland],
Zach, C.[Christopher],
Pollefeys, M.[Marc],
The generalized trace-norm and its application to structure-from-motion
problems,
ICCV11(2502-2509).
IEEE DOI
1201
trace-norm for SfM.
BibRef
Khan, I.,
Non-Rigid Structure-From-Motion With Uniqueness Constraint and Low
Rank Matrix Fitting Factorization,
MultMed(16), No. 5, August 2014, pp. 1350-1357.
IEEE DOI
1410
computer vision
BibRef
Khan, I.,
Robust Sparse and Dense Nonrigid Structure From Motion,
MultMed(20), No. 4, April 2018, pp. 841-850.
IEEE DOI
1804
Estimation, Image reconstruction, Optimization, Robustness, Shape,
Trajectory, Sparse and dense NRSfM,
supervised Gauss-Newton
BibRef
Zhang, H.,
Hu, S.,
Zhang, X.,
Luo, L.,
Visual Tracking via Constrained Incremental Non-negative Matrix
Factorization,
SPLetters(22), No. 9, September 2015, pp. 1350-1353.
IEEE DOI
1503
Image reconstruction
BibRef
Kennedy, R.[Ryan],
Balzano, L.[Laura],
Wright, S.J.[Stephen J.],
Taylor, C.J.[Camillo J.],
Online algorithms for factorization-based structure from motion,
CVIU(150), No. 1, 2016, pp. 139-152.
Elsevier DOI
1608
BibRef
Earlier:
WACV14(37-44)
IEEE DOI
1406
Structure from motion.
Cameras
BibRef
Wang, H.Y.[Heng-You],
Cen, Y.G.[Yi-Gang],
He, Z.H.[Zhi-Hai],
Zhao, R.Z.[Rui-Zhen],
Cen, Y.[Yi],
Zhang, F.Z.[Feng-Zhen],
Robust Generalized Low-Rank Decomposition of Multimatrices for Image
Recovery,
MultMed(19), No. 5, May 2017, pp. 969-983.
IEEE DOI
1704
GLRAM.
Approximation algorithms
BibRef
Wang, H.Y.[Heng-You],
Cen, Y.G.[Yi-Gang],
He, Z.Q.[Zhi-Quan],
He, Z.H.[Zhi-Hai],
Zhao, R.Z.[Rui-Zhen],
Zhang, F.Z.[Feng-Zhen],
Reweighted Low-Rank Matrix Analysis With Structural Smoothness for
Image Denoising,
IP(27), No. 4, April 2018, pp. 1777-1792.
IEEE DOI
1802
Image denoising, Image restoration, Matrix decomposition,
Minimization, Optimization, Sparse matrices, TV,
smooth
BibRef
Kou, W.[Wen],
Cheong, L.F.[Loong-Fah],
Zhou, Z.Y.[Zhi-Ying],
Proximal robust factorization for piecewise planar reconstruction,
CVIU(166), No. 1, 2018, pp. 88-101.
Elsevier DOI
1712
Dense planar reconstruction and 3D motion.
BibRef
Tang, J.J.[Jin-Jiang],
Qian, W.J.[Wei-Jie],
Zhao, Z.J.[Zhi-Jun],
Liu, W.L.[Wei-Liang],
He, P.[Ping],
Multi-view non-negative matrix factorization for scene recognition,
JVCIR(59), 2019, pp. 9-13.
Elsevier DOI
1903
Non-negative matrix factorization, Scene recognition, Multi-view
BibRef
Jin, C.C.[Cong-Cong],
Zhu, J.[Jihua],
Li, Y.C.[Yao-Chen],
Pang, S.M.[Shan-Min],
Chen, L.[Lei],
Wang, J.[Jun],
Multi-view registration based on weighted LRS matrix decomposition of
motions,
IET-CV(13), No. 4, June 2019, pp. 376-384.
DOI Link
1906
BibRef
Fonal, K.,
Zdunek, R.,
Fast Recursive Nonnegative Standard and Hierarchical Tucker
Decomposition,
SPLetters(26), No. 9, September 2019, pp. 1265-1269.
IEEE DOI
1909
computational complexity, matrix decomposition, tensors,
nonnegative matrix factorization algorithm,
nonnegative Tucker decomposition
BibRef
Kaloga, Y.,
Foare, M.,
Pustelnik, N.,
Jensen, P.,
Discrete Mumford-Shah on Graph for Mixing Matrix Estimation,
SPLetters(26), No. 9, September 2019, pp. 1275-1279.
IEEE DOI
1909
gradient methods, image denoising, image segmentation,
matrix algebra, minimisation,
nonconvex optimisation
BibRef
Wang, J.Y.[Jing-Yu],
Zhao, Y.[Yue],
Zhang, K.[Ke],
Wang, Q.[Qi],
Li, X.L.[Xue-Long],
Spatio-Temporal Online Matrix Factorization for Multi-Scale Moving
Objects Detection,
CirSysVideo(32), No. 2, February 2022, pp. 743-757.
IEEE DOI
2202
Object detection, Heuristic algorithms, Dynamics,
Adaptation models, Video sequences, Interference, Robustness,
low-rank matrix factorization
BibRef
Brandt, S.S.,
Ackermann, H.,
Grasshof, S.,
Uncalibrated Non-Rigid Factorisation by Independent Subspace Analysis,
RSL-CV19(569-578)
IEEE DOI
2004
emotion recognition, face recognition, image motion analysis,
image reconstruction, iterative methods, matrix algebra,
affine reconstruction
BibRef
Mu, Y.,
Dimitrakopoulos, R.,
Ferrie, F.P.[Frank P.],
Decoupling Spatial Pattern and its Movement Via Complex Factorization
Over Orthogonal Filter Pairs,
CRV19(1-8)
IEEE DOI
1908
Task analysis, Optical imaging, Buildings,
Artificial neural networks, Training, representation learning,
optical flow
BibRef
Ahuja, N.A.,
Subedar, M.,
Tickoo, O.,
Lee, Y.,
A Factorization Approach for Enabling Structure-from-Motion/SLAM
Using Integer Arithmetic,
Matrix-Tensor17(554-562)
IEEE DOI
1802
Covariance matrices, Jacobian matrices, Kalman filters,
Mobile communication, Program processors, Real-time systems, Simultaneous localization and mapping
BibRef
Dong, Q.[Qiulei],
Hu, H.[Hao],
Sequential factorization for nonrigid structure from motion via LBFGS,
ICPR16(1731-1736)
IEEE DOI
1705
Cameras, Matrix decomposition, Minimization, Motion estimation,
Optimization, Shape, Three-dimensional, displays
BibRef
Wang, M.Y.[Mei-Yuan],
Li, K.[Kun],
Wu, F.[Feng],
Lai, Y.K.[Yu-Kun],
Yang, J.Y.[Jing-Yu],
3-D motion recovery via low rank matrix analysis,
VCIP16(1-4)
IEEE DOI
1701
Cameras
BibRef
Qiu, C.L.[Chen-Lu],
Wu, X.D.[Xiao-Dong],
Xu, H.Y.[Hui-Ying],
Recursive projected sparse matrix recovery (ReProSMR) with
application in real-time video layer separation,
ICIP14(1332-1336)
IEEE DOI
1502
Estimation
BibRef
Ikeuchi, R.,
Sugaya, Y.,
Camera Motion Estimation by Geometric AIC for Factorization with
Missing Data,
ACPR13(241-245)
IEEE DOI
1408
cameras
BibRef
Angst, R.[Roland],
Pollefeys, M.[Marc],
A Unified View on Deformable Shape Factorizations,
ECCV12(VI: 682-695).
Springer DOI
1210
BibRef
Ricco, S.[Susanna],
Tomasi, C.[Carlo],
Video Motion for Every Visible Point,
ICCV13(2464-2471)
IEEE DOI
1403
BibRef
Earlier:
Simultaneous Compaction and Factorization of Sparse Image Motion
Matrices,
ECCV12(VI: 456-469).
Springer DOI
1210
BibRef
And:
Dense Lagrangian motion estimation with occlusions,
CVPR12(1800-1807).
IEEE DOI
1208
BibRef
Rehan, A.[Ali],
Zaheer, A.[Aamer],
Akhter, I.[Ijaz],
Saeed, A.[Arfah],
Usmani, M.H.[Muhammad Haris],
Mahmood, B.[Bilal],
Khan, S.[Sohaib],
NRSfM using local rigidity,
WACV14(69-74)
IEEE DOI
1406
Optimization, Trajectory, Transforms
BibRef
Zaheer, A.[Aamer],
Akhter, I.[Ijaz],
Baig, M.H.[Mohammad Haris],
Marzban, S.[Shabbir],
Khan, S.[Sohaib],
Multiview structure from motion in trajectory space,
ICCV11(2447-2453).
IEEE DOI
1201
3d from multiple static cameras
BibRef
Bernet, S.[Sacha],
Sturm, P.F.[Peter F.],
Cudel, C.[Christophe],
Basset, M.[Michel],
Study on the interest of hybrid fundamental matrix for head mounted eye
tracker modeling,
BMVC11(xx-yy).
HTML Version.
1110
BibRef
Li, P.[Ping],
Gunnewiek, R.K.[Rene Klein],
de With, P.[Peter],
Detecting Critical Configurations for Dividing Long Image Sequences for
Factorization-Based 3-D Scene Reconstruction,
ACCV09(II: 381-394).
Springer DOI
0909
BibRef
Cheriyadat, A.M.[Anil M.],
Radke, R.J.[Richard J.],
Non-negative matrix factorization of partial track data for motion
segmentation,
ICCV09(865-872).
IEEE DOI
0909
BibRef
Shaji, A.[Appu],
Chandran, S.[Sharat],
Suter, D.[David],
Manifold optimisation for motion factorisation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Wang, L.,
Wu, F.C.,
A factorization algorithm for trifocal tensor estimation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Matikainen, P.K.,
Sukthankar, R.,
Hebert, M.,
Ke, Y.,
Fast Motion Consistency through Matrix Quantization,
BMVC08(xx-yy).
PDF File.
0809
BibRef
Tardif, J.P.[Jean-Philippe],
Bartoli, A.E.[Adrien E.],
Trudeau, M.[Martin],
Guilbert, N.[Nicolas],
Roy, S.[Sebastien],
Algorithms for Batch Matrix Factorization with Application to
Structure-from-Motion,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Li, T.[Ting],
Kallem, V.[Vinutha],
Singaraju, D.[Dheeraj],
Vidal, R.[Rene],
Projective Factorization of Multiple Rigid-Body Motions,
CVPR07(1-6).
IEEE DOI
0706
BibRef
Lemuz-López, R.[Rafael],
Arias-Estrada, M.[Miguel],
Iterative Closest SIFT Formulation for Robust Feature Matching,
ISVC06(II: 502-513).
Springer DOI
0611
Shape and motion from multiple feature matches.
incremental factorization.
BibRef
Lemuz-López, R.[Rafael],
Arias-Estrada, M.[Miguel],
A Domain Reduction Algorithm for Incremental Projective Reconstruction,
ISVC06(II: 564-575).
Springer DOI
0611
BibRef
Chikatsu, H.,
Ohdake, T.,
Ubiquitous digital photogrammetry by consumer grade digital camera,
IEVM06(xx-yy).
PDF File.
0609
BibRef
Jung, Y.Y.[Yoon-Yong],
Hwang, Y.H.[Yong-Ho],
Hong, H.K.[Hyun-Ki],
Frame grouping measure for factorization-based projective
reconstruction,
ICPR04(IV: 112-115).
IEEE DOI
0409
BibRef
Saito, H.,
Kamijima, S.,
Factorization Method Using Interpolated Feature Tracking via Projective
Geometry,
BMVC03(xx-yy).
HTML Version.
0409
BibRef
Urfalioglu, O.,
Robust estimation of camera rotation, translation and focal length at
high outlier rates,
CRV04(464-471).
IEEE DOI
0408
BibRef
Langer, M.S.,
Chapdelaine-Couture, V.,
Mann, R.,
Roy, S.,
Motion Parallax without Motion Compensation in 3D Cluttered Scenes,
3DPVT06(65-72).
IEEE DOI
0606
See also Spectrum analysis of motion parallax in a 3D cluttered scene and application to egomotion.
BibRef
Chapdelaine-Couture, V.,
Langer, M.S.,
Can Lucas-Kanade be used to estimate motion parallax in 3D cluttered
scenes?,
CRV07(63-72).
IEEE DOI
0705
BibRef
Navab, N.,
Genc, Y.,
Khamene, A.,
Mitschke, M.,
Direct Method for Motion Estimation:
An Alternative to Decomposition of Planar Transformation Matrices,
DAGM02(575 ff.).
Springer DOI
0303
BibRef
Goncalves, B.B.,
Aguiar, P.M.Q.,
Complete 3-d models from video: a global approach,
ICIP04(IV: 2479-2482).
IEEE DOI
0505
BibRef
Guerreiro, R.F.C.,
Aguiar, P.M.Q.,
3D structure from video streams with partially overlapping images,
ICIP02(III: 897-900).
IEEE DOI
0210
BibRef
Vidal, R.,
Oliensis, J.,
Structure from Planar Motions with Small Baselines,
ECCV02(II: 383 ff.).
Springer DOI
0205
Addresses the factorization problem of small baselines.
BibRef
Brand, M.[Matthew],
Morphable 3D Models from Video,
CVPR01(II:456-463).
IEEE DOI
0110
Award, CVPR. Combine non-rigid motion and structure from optical flow to
get structure.
BibRef
Mahamud, S.,
Hebert, M.,
Omori, Y.,
Ponce, J.,
Provably-Convergent Iterative Methods for Projective Structure from
Motion,
CVPR01(I:1018-1025).
IEEE DOI
PS File.
0110
Minimization of distance between prediction and image points.
Compare to Bundle Adjustment
and Strum-Triggs (
See also Factorization Based Algorithm for Multi-Image Projective Structure and Motion, A. ).
BibRef
Huynh, D.Q.,
Heyden, A.,
Outlier Detection in Video Sequences under Affine Projection,
CVPR01(I:695-701).
IEEE DOI
0110
Factorization for shape from motion.
BibRef
Han, M.[Mei],
Linear and Bilinear Subspace Methods for Structure from Motion,
CMU-RI-TR-01-13, February, 2001.
BibRef
0102
Ph.D.Thesis.
PDF File.
PS File.
0205
BibRef
Han, M.[Mei],
Kanade, T.[Takeo],
Creating 3D Models with Uncalibrated Cameras,
WACV00(178-185).
IEEE DOI
0010
Factorization approach to do Perspective Projection and get focal length
(i.e. zoom camera), principal point, and aspect ratio.
So, really calibrate the cameras then create the model (but with
factorization approach these are all one step).
Requires 5 poitsn 4 frames, but works better with more. Requires points
to be in all frames, but does handle errors somewhat.
Reconstructions depend on matched points.
BibRef
Han, M., and
Kanade, T.,
Perspective Factorization Methods for Euclidean Reconstruction,
CMU-RI-TR-99-22, August, 1999.
HTML Version.
BibRef
9908
Han, M., and
Kanade, T.,
The Factorization Method with Linear Motions,
CMU-RI-TR-99-23, October, 1999.
HTML Version.
BibRef
9910
Vasiliu, M.,
Devos, F.,
Real-time 3D Reconstruction on High Resolution Focal Plane Array,
ICIP00(Vol I: 573-576).
IEEE DOI
0008
BibRef
Papadopoulo, T.,
Lourakis, M.I.A.,
Estimating the Jacobian of the Singular Value Decomposition:
Theory and Applications,
ECCV00(I: 554-570).
Springer DOI
0003
BibRef
Kurata, T.[Takeshi],
Fujiki, J.[Jun],
Kourogi, M.[Masakatsu],
Sakaue, K.[Katsuhiko],
A Fast and Robust Approach to Recovering Structure and Motion from Live
Video Frames,
CVPR00(II: 528-535).
IEEE DOI
0005
BibRef
Mahamud, S.[Shyjan],
Hebert, M.,
Iterative Projective Reconstruction from Multiple Views,
CVPR00(II: 430-437).
IEEE DOI
0005
BibRef
Hornegger, J.,
Tomasi, C.,
Representation Issues in the ML Estimation of Camera Motion,
ICCV99(640-647).
IEEE DOI
BibRef
9900
Ichimura, N.,
Motion Segmentation based on Factorization Method and Discriminant
Criterion,
ICCV99(600-605).
IEEE DOI
BibRef
9900
Kurata, T.[Takeshi],
Fujikiy, J.[Jun],
Kourogiz, M.[Masakatsu],
Sakauey, K.[Katsuhiko],
A Robust Recursive Factorization Method for Recovering Structure and
Motion from Live Video Frames,
Frame-Rate99().
HTML Version.
BibRef
9900
Li, Y.H.[Yan-Hua],
Brooks, M.J.[Michael J.],
An Efficient Recursive Factorization Method for Determining Structure
from Motion,
CVPR99(I: 138-143).
IEEE DOI
BibRef
9900
Ng, T.K.[Teck Khim],
Kanade, T.,
PALM: portable sensor-augmented vision system for large-scene modeling,
3DIM99(473-482).
IEEE DOI
9910
BibRef
Yokoya, N.[Naokazu],
Takemura, H.[Haruo],
Hwang, K.C.[Kuo-Chang],
Yamazawa, K.,
A Factorization Method Using 3-D Linear Combination for
Shape and Motion Recovery,
ICPR98(Vol II: 959-963).
IEEE DOI
9808
BibRef
Ma, J.B.[Jian-Bo],
Ahuja, N.[Narendra],
Dense Shape and Motion from Region Correspondences by Factorization,
CVPR98(219-224).
IEEE DOI
BibRef
9800
Morris, D.D.[Daniel D.], and
Kanade, T.[Takeo],
A Unified Factorization Algorithm for Points, Line Segments and
Planes with Uncertainty Models,
ICCV98(696-702).
IEEE DOI
BibRef
9800
Ueshiba, T.,
Tomita, F.,
A Factorization Method for Projective and Euclidean Reconstruction
from Multiple Perspective Views via Iterative Depth Estimation,
ECCV98(I: 296).
Springer DOI
BibRef
9800
Held, A.,
Piecewise Shape Reconstruction by Incremental Factorization,
BMVC96(Motion-Based Reconstruction).
9608
Real World Computing Partnership, Japan
BibRef
Yu, H.,
Chen, Q.[Qian],
Xu, G.,
Yachida, M.,
3D Shape and Motion by SVD under Higher-Order Approximation
of Perspective Projection,
ICPR96(I: 456-460).
IEEE DOI
9608
(Osaka Univ., J)
BibRef
Triggs, B.[Bill],
Factorization Methods for Projective Structure and Motion,
CVPR96(845-851).
IEEE DOI
BibRef
9600
Sturm, P.F.,
Triggs, B.,
A Factorization Based Algorithm for Multi-Image Projective Structure
and Motion,
ECCV96(II:709-720).
Springer DOI
BibRef
9600
Boult, T.E., and
Brown, L.G.,
Motion Segmentation Using Singular Value Decomposition,
DARPA92(495-506).
BibRef
9200
Earlier:
Factorization-Based Segmentation of Motions,
Motion91(179-186).
Building on the work of Tomasi at CMU, find multiple motions in the image.
BibRef
Chapter on Motion Analysis -- Low-Level, Image Level Analysis, Mosaic Generation, Super Resolution, Shape from Motion continues in
Motion with Matrix Factorization, Missing Data Issues, Articulated Motion .